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ABSTRACT

Several methods exist for simulating random fields. This
paper reviews some of the methods used to simulate station-
ary random fields in R™, n > 1. A recent study comparing
the traditional turning bands method to a method called the
random impact method is given. The results of this study
indicate that the random impact model is comparable to the
turning bands method in terms of execution time, and in
terms of reproducibility of the covariance functions.

1. INTRODUCTION

Stationary random fields (also called stationary stochas-
tic processes) occur naturally in several areas of science, and
the theoretical study of stationary processes has been an ac-
tive field of research for several years. In the fields of geo-
statistics, hydrology, mining and others, several methods ex-
ist for simulating such processes. One traditional method for
simulating stationary processes is called the turning bands
method. In this method simulations in higher-dimensional
space (usually three dimensions) are reduced to several sim-
ulations in one-space. We shall give a brief outline of the
method here; greater detail is given in, for example, Journel
and Huijbregts (1975).

Another method for simulating stationary random felds
is called the random impact method. This method differs
sharply from the turning bands method, and bears close re-
semblance to the method of generating coverage models; see
Ahuja and Schacter (1983). In this method spheres of ran-
dom radii are arranged at random in the plane, and points
in the sphere are assigned random values according to the
desired stationary distribution.

Comparisons between the turning bands method and the
random impact method are made with respect to several fac-
tors, and the results of a recent computer study are discussed.
In addition, some other methods for simulating stationary
processes are mentioned.

2. STATIONARY STOCHASTIC PROCESSES: DEFINITIONS

AND PROPERTIES

There are two types of stationary stochastic processes:

295

2.1. Second order (or wide sense) stationary processes:

The process {X(z),zeR™} is second order stationary if for
all z, heR™,

E\X(z)|® < 00, EX(z) = m, and

Cov(X(z), X(z + h))

EX(z)X(z + k) — m? = ¢{h),
i.e. is independent of z.

In the one-dimensional case such a process has a spectral
representation of the form

[eo]
X(z) = / e”‘“d;‘(/\),where ¢ is a process
)

with orthogonal increments, and the covariance function C (r)
is given by

[>=]
C(h) = / eA2dF()), whereF is a

—

function of A only.

The spectral representation above is an L? (second order)
representation; see Doob (1953).

2.2. Strictly stationary processes:

The process {X(z), zeR"} is strictly stationary if for all & >
1 and points z1,...,zk, heR™ the distribution of

(X(zl), e ,X(zk))

is the same as that of (X(z1 + h),..., X(zx + h)). It is easy
to see that if {X(z), zeR"} is strictly stationary with a finite
second moment E[X(z)|?> < oo, then it is also second-order
stationary. The converse is not necessarily true, but in the
important case where the process is Gaussian (normal} it is
true, since the joint distributions of a Gaussian process are

completely determined by the first two moments of the pro-
cess.

Further properties of stationary processes are given in Doob
(1953) and Yaglom (1962).
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3. SIMULATION OF STOCHASTIC PROCESSES

Some phenomena represented by functions defined in 2, 3,
or n > 3 dimensions are too complex or insufficiently well
understood to be given in analytic form. Such difficulties
are well-known in geosciences, hydrology, atmospheric physics
and soil physics, to name only a few areas. In such cases there
may be functional relationships known between variables at
some scales of observation, but in general it is only possible to
collect data at a finite number of spatial locations. Often the
data collected is a sample of only one realization. Simulation
of the random function can provide additional realizations.
For example, if rainfall is recorded at a number of gauges for
a given event in a region where rain if an infrequent event, it
may be desired to predict the best locations for catchments
for the next event. If it is assumed that rainfall at a location
is represented by a random spatial process with a known co-
variance then planning requires examining a number of real-
izations of that random function. The relevance of simulated
realizations for planning has been recognized in the exploita-
tion of one deposits, the management of aquifers, and the
use of low sulfur coal purchase contracts in conjunction with
mine mouth power plants in order to meet air pollution re-
quirements. A number of algorithms have been proposed and
utilized, but several questions remain. In particular, there
does not exist a coherent set of standards for comparing ex-
isting algorithms.

In simulating stationary stochastic processes, it is often the
case in practice that the first two moments of the process
(the mean function and covariance function) are all that are
known or to be estimated. In this case, a second order station-
ary process will be simulated. However, for both theoretical
reasons and ease of simulation, the process is often assumed
to be Gaussian.

Several procedures exist for simulating one-dimensional
realizations. Extensions to multi-
dimensional space are usually inextricable or costly in terms
of computer time. In the following we discuss two procedures
for simulating multi-dimensional second order stationary pro-
cesses.

3.1. Turning Bands Method

The turning bands method is a method which reduces n-
dimensional simulations (usually n=3) to several one-
dimensional simulations, which are rotated in R™. 'I:he one-
dimensional simulations use a moving average technique. ‘A
brief description of the method is given here. For more details
see Journel and Huijbregts (1978).

Given Y (t), a second order stationary process on —.oo <
t < oo,s a unit vector in R, and z a point in R*. Without

loss of generality, assume EY (t) =0.

It we set X.(z) = Y ({z,s)), where (z,s) is the inner p'roduct
of z and s, it is easy to see that X, isa second order stationary,
zero mean process, with an n-dimensional covariance

E{X,(z)Xs(z + H)} =
E{Y ((z,9)Y ((z+ h, )} = CD(R).

Now consider unit vectors sy, 2, - . . , S uniformly distributed
on the unit sphere. This gives processes X, (z),..., X, (2)-

k
If we set Xx(z) = \—}k: 3 X, (z), we see that Xi(z) is a zero
i=1

mean, second order s_ia.tionary process. Setting
E{Xi(2)Xi(2 + B)} = C(h), we get C(h) — C(r) =

k—oo
2 [ CO({h,s))dP(s), where P is a probability measure on
the unit sphere which is invariant under rotations, and r =
{h|. In the case of three dimensions, it follows easily that
C(r) = & 02" dﬂfo% CW(|rcosg|)singdg = L [T M (t)dt,
or ) (r) = &rC(r).

In practice, one is given C(r) and wishes to use C()(r) in
the simulation procedure. The above relation shows that this
is easily done.

Summarizing: Given the covariance function C{r), one sets
cW(7) = £rC(r), simulates processes X, (),...,Xs,(2)

k
as described above, and sets Xi(z) = 71-,; > Xoi(z). The
=1

1=
simulated process Xy(z) then serves as the desired realization
of a stationary process with covariance C(r). In practice k,
the number of turning band “lines” used, is often set to 15,
due to geometric considerations. In this case the differences
between C(k) and C(r) will be small, and can be theoretically
corrected. For details, see Journel and Huijbregts (1978).

In practice, the following are often used:

1. Spherical Model

3r 17r®
C(r) =K[1—-2-E 5;5],037'30'
0 ,r>a
&) 3 2r3] 0<r<a
c (r)=K[1—7+F’ <r=
0 ,r>a

2. Exponential Model
C(r)=Ke>,r>0

CO(r) = K[1—Arle™",r >0

3. Gaussian Model

C(r)=Ke ™/ r>0
cW(r) =K1~ gﬁ]e"’/““ r>0
- a2 of =

When the given process is defined in two-dimensional space,
the problem becomes more difficult. In this case there is
not such a simple relationship between the two-dimensional
and three-dimensional covariances. Some alternatives have
been considered. Mejia and Rodriguez-Iturbe (1974) and
Rodriquez-Iturbe and Mejia (1974) utilized the radial spec-
tral density and a form of a random cosine series to construct
the simulation.
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Each of these techniques is only intended to reproduce the
first two moments and perhaps the stationary distribution.

Some of the advantages and disadvantages of the tuning
bands method are the following:

1. It is fairly easy to understand

2. It is readily available. Software packages are commer-
cially available, and Journel and Huijbregts, (1978) and
Carr and Myers (1985) contain listings of computer pro-
grams.

3. The turning bands method does not extend easily to
higher dimensions.

4. Since the simulated process is the sum of several inde-
pendent simulated processes, it is approximately normally
distributed. Hence it is difficult to use this method to sim-
ulate non-normal processes.

Mantoglou (1987) extends the turning bands method to
simulate multivariate and anisotropic two-and three-
dimensional stochastic processes. Current research by the
author and others using a different type of extension of the
turning bands methods is being conducted. In this version,
both the multivariate and non-isotropic cases are being con-
sidered.

3.2. Random Impact Model

The random impact model has its roots in the area of ge-
ometrical probability. Several authors have studied similar
models in various settings, for example see Ahuja and Schac-
ter (1983), and especially Dagan (1981).

One use of the model was to utilize permeability duties for
simulating leakage paths of material through porous rocks;
see Silliman (1985). That study led to the present research
being conducted by the author and others.

Here we give an illustrative example in the simple case
where the X(i)’s form a stationary process on the positive
integers. Consider X (i), a second order stationary process,
with distribution function F, covariance function C(h), and
assume C'(k) > 0 with C(h) | 0 as b — oo. We also assume

C(h) = 0 for b > ho. In order to simulate X(1),...,X(N)
the following are generated:

1. 7 a random permutation of —ho +1,...,N.

2. Y(4), i = —ho+1,...,N: independent random variables
having the distribution F.

3. B{(i),i = —ho +1,...,N: independent uniform (0,1)
random variables.

4. X*(¢),i = —ho +1,...,N: random variables which will
be assigned values according to the following procedure:

At the 4th stage of the simulation procedure, the value 3 0]
is used in conjunction with a table to determine a “block size”
k, and those random variables X*(n(3)),...,X*(x(s) + h —
1) which have not previously been assigned values are given
the value ¥'(i). Once X*(—ho + 1),...,X*(N) have been

assigned values, X (1) is set equal to X*(¢),7=1,...,N. The
stationary distribution is preserved by the Y (7). The given
covariance C(h) determines the table used by the 8(:),i =
—hg+1,...,N.

In this example, C(k) = 0,k > 3, and it is desired to
simulate X (1}, X(2),...,X(5).

Suppose the following was obtained:

Stage =  B(3) Y(3)
1 0 4372 0432
2 2 T182 2143
3 -1 9T4 5111
4 3 7083 2222
5 2 5137 7745
6 4 8001  .8188
71 1162 .3736
8 5 3719 6817

Also assume the table giving block sizes for given value of
B was as follows:

8(3) Block Size
0-.50 1

50 - .70 2

70 - .80 3

80 - 1.00 4

During stage one, 7 = 0 and Y (1) = .9432 yield X*(0) =
9432, and § = .4372 gives a block size of 1. Hence at the
end of stage one X*(0) = .9432. During stage two, 7 = 2 and
Y (2) = .2143 gives X*(2) = .2143. Also, 8 = .T132 gives a
block size of 3. Hence at the end of stage 2, X*(2) = X*(3) =
X*(4) = .2143.

During stage three, 7 = —1 and Y (3) = .5111 gives X*(—1) =
.5111. Since # = .9774, the block size is 4. Hence one will set
X*(4) = .5111 for each 1,~1 < ¢ < 2 for which X*(z) has not
previously been assigned a value. Since X*(0) = .9432, from
stage 1, and X*(2) = .2143, from stage 2, the following will
be produced:

X*(-1) = X*(1) = .5111.

Continue in this fashion until X*(¢), i = —2,...,5 have
been assigned values. Then set X(i) = X*(3), ¢ = 1,...,5.
Thus in this example, X (1) = 5111, X(2) = X(8) = X(4) =
.2143, X(5) = .2222. It is easy to see that Cov(X (3}, X (7)) =

P[X*(1) = X*(5)]C(0) + P[X*(5) # X* ()]0 =
C(0)P[X* (i) = X*()}-

The fact that the X(f) process is strictly stationary and
has the stationary distribution F is easy to show. The joint
distributions of the X(¢) are also easy to calculate. For ex-
ample.

P[X(8) < 23, X(5) < 5] = F(min{zs, 2;)) P[X* (5)
= X" ()] + F(w:) F(z5) PIX*(3) # X* (7).
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Given C(h}, one must construct a table for block sizes that
will reproduce the covariance C(k), i.e. we need

Cov(X(3),X(5)) = C(}j — ). In many practical situations
this is easy to do, but it cannot be done in general.

This method is being extended to a very general case in
Newman and Wright (1987) and is called the random impact
model. This extended model simulates wide-sense stationary
processes in any dimension, and with any stationary distri-
bution for a wide class of covariance functions C(h). The
following is a description of this model.

Given a stationary covariance function o(k) and stationary
distribution F, the process may be defined in two parts: first
the n-dimensional space is randomly partitioned into regions
Va in a manner determined by the desired covariance as will
be described below. Second, Z(z) is defined by taking in-
dependent, identically distributed random variables W, with
distribution F, and assigning W, to each z in V.

To give a picturesque description of the random partition of
space, imagine that at random times T, explosive projectiles
land in space at random locations z,, and irradiate all points
with a random distance R, of the impact center z,. The
region V,, associated with the impact at z, is the subset of
the affected region which was not affected by any previous
impact.

Mathematically, the (z4,T,)’s form a stationary point pro-
cess in R™ x [0, 00) and the R,’s are independent, identically
distributed, positive valued random variables with common
distribution G. If we define S, to be the sphere of radius R,
centered at z,, then V,, is the subset of S, not contained in
any Sy with Ty < T,.

Again, it is easy to see that the Z(z) process thus con-
structed is a strictly stationary process having the desired sta-
tionary distribution #. The following result, which is proved
in Newman and Wright (1987) gives sufficient conditions on
the covariance function o(h) to produce a distribution G as
described above:

Theorem: Given a positive isotropic covariance function
C(r) defined on R3, with Jim a(r) = 0. To produce a dis-
tribution G that will enable the random impact model to
simulate a stationary random process with covariance o(h) it
is sufficient that the following hold:

14 o(2u) .
Ge(u) = VT [m] is defined

with G.{u) non-negative, decreasing, and G.(0) < o0, G,
0.

Fe(00) =

It is easy to verify that this condition is met in the expo-
nential case, for which o(r) = Ke™2r,

In the case where R is a constant random variable, n =
2, and F is a discrete random variable, the random impact
model is a special case of the coverage models used in image

processing; see Ahuja and Schacter (1983). Advantages and
disadvantages of the random impact model are the following:
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1. The method is extremely easy to understand.
2. It works for any n = 1,2,...

3. It can simulate values at all points in any given finite
region.

4. The process simulated is strictly stationary, but its joint
distributions are rather unusual. This could be an advan-
tage or disadvantage, depending on the particular physical
aspects of the process.

5. At the present time, in order to simulate values of the
random variables Z(z1),...,Z(zs) the process must con-
tinue generating spheres S, until all the points z;,...,z;
are covered. This can be time-consuming, and depends on
the distribution G.

3.3. A Computer Study Comparing the Two Methods

A recent study was conducted to compare the two methods;
see Silliman and Wright (1987). In this study discrete three-
dimensional versions of the turning bands and random impact
methods were used. The three-dimensional grids varied in size
from 5 X 5 x 5 to 20 x 20 x 10. The covariance simulated was
an exponential covariance with parameter A = 3.3.

The turning bands code used may be found in Thompson,
Abubou and Gelhar (1987). The number of turning band lines
used by this code varied between 10 and 100. The computer
used was a Prime 9955.

The following table gives some of the results of that study
in the case where the number of lines used was 15.

Table 1: Comparative CPU Time in
Seconds per Simulation Point

Grid Size Random  Turning
Impact Bands
5xX5x5 0.0013 0.0457
10 x10x 10 0.0011 0.0108
20x20x 10 0.0017 0.0047

As can be seen from Table 1, the random impact method

was faster for smaller grid sizes. But the simulation time per
simulation point is independent of grid size for the random
impact method, and descreases with grid size for the turning
bands method. This implies that for large grids, the turning
bands method may be faster. As would be expected, the
CPU time per simulation point increases as the number of
lines increases.

In all cases there was no significant difference between the
average covariance obtained after 100 simulations for the two
methods.
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3.4. Other Simulation Methods

There are several other methods for simulating random
fields. Mejia and Rodriguez-Iturbe (1974) discusses the spec-
tral method, Smith and Freeze (1979) utilize a nearest-neighbor
approved, Miles (1969} and (1971} discusses Poisson flats, and
Davis (1987) uses an LU decomposition of the covariance ma-
trix. A very good study of the turning bands method is given
in Mantoglou and Wilson (1982).
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