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ABSTRACT

The study of parameter estimation, prediction, and hy-
pothesis test methodology in time series analysis frequently
involves simulation of a stationary time series from an autore-
gressive moving average (ARMA) model with nonnormal ran-
dom shocks. The simulation question is how to generate the
dependent and possibly nonnormal initial values of the time
series. Usually, the simulation must be warmed up in order
to diminish the bias induced by approximate methods used to
generate the initial values of the time series. This paper ex-
amines current concepts and algorithms for simulating a sta-
tionary time series from an ARMA model with either normal
or nonnormal random shocks.

1. INTRODUCTION

Nonnormal time series play a fundamental role in the exam-
ination of robustness properties of parameter estimates, fore-
casts, and test statistics. One model of interest is the inno-
vations outlier model which consists of a perfectly observed
ARMA process whose random shocks follow a heavy-tailed and
possibly nonnormal distribution. An innovations outlier affects
both current and future observations of the time series, and is
consistent with the forecast system. A second model of interest
is the additive outlier model which consists of an imperfectly
observed ARMA process whose random shocks follow a normal
distribution. An additive outlier affects only the current ob-
servation, and is inconsistent with the forecast system. Failure
to distinguish an innovations outlier from an additive outlier
may result in inefficient parameter estimates, imprecise fore-
casts, and improper diagnosis of model adequacy {(Martin and
Zeh 1977). Hence, the simulation of stationary time series from
an ARMA model with possibly nonnormal random shocks is

essential to an empirical study of the robustness of the forecast
system.

1.1. Models of Time Series

Consider the ARMA(p, g) model defined by
where
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and B is the backward shift operator defined by B*W, = W,_,,
for all k. The standard model assumptions are

¢ The random shocks A; are independent and identically
distributed random variables with mean u4 = 0 and vari-
ance 0% > 0.

¢ The autoregressive operator ¢(B) is stationary. Equiva-
lently, the roots of the equation ¢(B) = 0 lie outside the
unit circle.

¢ The moving average operator 0{B) is invertible. Equiva-
lently, the roots of the equation §(B) = 0 lie outside the
unit circle.

The model includes an overall constant 8 to allow for a nonzero
series mean y. Refer to Box and Jenkins (1976, pages 91-93)
for further discussion.

The random shock form of the ARMA(p, g) model is given
by
W=+ 9(B) A

where

%(B) = ¢7(B)I(B)

1+ B+ 9B +---

The random shock model is particularly useful since the cor-
related time series observations W; are defined in terms of the
uncorrelated random shocks A;. The 1 weights of the infinite
order moving average may be determined by equating coef-
ficients of B in ¢(B)¥(B) = 6(B) (Box and Jenkins 1976,
pages 95-96). The sequence {1}, is absolutely convergent,
and the series 3222 o ¢ is absolutely summable. Note that the
ARMA(p, ¢) model and its random shock form may be equiv-
alently expressed as

$(B)W: = 6(B) 4

and .

W¢ = tﬁ(B)A;
respectively, where We=W, - 4 corresponds to a time series
with zero mean. Without loss of generality, I assume g = 0
{hence, 6o = 0) in the sequel.

1.3. Moments of Time Series

Departures from normality are often characterized in terms
of skewness (symmetry of distribution) and kurtosis (peaked-
ness of distribution). In particular, the normal distribution
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has skewness /81 = 0 and kurtosis f; = 3. Values of these
moments for a variety of univariate distributions are given in
Patel, Kapadia, and Owen (1976).

The mean, standard deviation, skewness, and kurtosis of
the marginal distribution of the ARMA(p,q) process may be
expressed in terms of the corresponding moments of the ran-
dom shock process. The relationship between the central mo-
ments of the ARMA(p, ¢) process and the central moments of
the random shock process is given by

p(W) = m(A)gw
wW) = p(4) ip
ws(W) = ps(4) i¢
(W) = u4(A)§¢;+s[uz(A)12 D

2

oo o0
{1a(4) = 3lua(A1} 3 0t + 3l () (Z '/’?)

7=0 J=0
where p;(W) and p;(A) denote the i-th central moment of
W; and A; respectively, for ¢ = 1,2,3,4. These moments
are easily determined based on the random shock form of the
ARMA(p, ¢) model. The mean, standard deviation, skewness,
and kurtosis of the distribution of W; are defined by

o= p(W)

o = (W)
VB = us(W)/[ua (W)
By = pa(W)/[u(W)J.

For independent and identically distributed (0, ¢%) random
shocks,

# =0
. .1/2
o = o (S)
=0
TR
VB = Bu(a) ==Y
(E;o¢‘?)3/2
00 4
B = ) -3 =B g
(Zxov?)

The stationarity and invertibility assumptions imply that the
infinite sums of the ¢; are absolutely convergent. Hence, the
above moments exist.

2. OBJECTIVES

My primary objective is to simulate a stationary time se-
ries W, of length n according to a specified ARMA(p, ¢) model.
My secondary objective is to generate p initial observations of
a stationary time series W, defined by a specified ARMA(p,q)
model.
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2.1. Simulation of Time Series

The following algorithms are equivalent—selection of either
is a matter of perspective.

SA 1: Simulation Algorithm 1

. Generate p initial ARMA(p,q) observations W; for
t=1—-p,2-p,...,0.

. Generate n+¢ randomshocks A; fort = 1—¢,2~gq,...,n.

. Generate n ARMA(p, g) observations W; fort = 1,2,...,n
using the initial ARMA(p,q) observations from Step 1
and the random shocks from Step 2.

SA 2: Simulation Algorithm 2

1. Generate p initial AR(p) observations Z; for
t=1-p—q,2~-p—¢q,...,0—¢q.
2. Generate n + q random shocks 4; for t = 1 — ¢,

2= qy.e.yn.

. Generate n + g AR(p) observations Z; for t = 1 — ¢,
2 - g,...,n using the initial AR(p) observations from
Step 1 and the random shocks from Step 2.

. Generate n ARMA(p, q) observations W, fort = 1,2,...,n
by applying the MA{qg) operator to the AR(p) observa-
tions from Step 3.

By definition, SA 1 generates observations of an ARMA(p, ¢)
process. To verify that SA 2 generates observations of an
ARMA(p, q) process, consider the AR(p) model

$(B)Z: = A,
and the MA(g) model
W, = 8(B) Z.

Then

$(B)W: = $(B)8(B)Z; = 6(B)A:
which implies that the W; process is defined by an ARMA(p, q)
model.

2.2. Initialization of Time Series

Since the random shocks are assumed to be independent
and identically distributed, all random shocks may be easily
generated from the specified distribution of A;. However, the
observations of the time series are dependent and may be non-
normal, and the joint distribution of the time series is usually
unknown. Hence, the generation of the initial observations is
the most difficult step in the simulation of stationary time se-
ries.
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Furthermore, if an approximate method is used to generate
the initial observations of the time series, then these obser-
vations represent transients which may disturb the stochastic
equilibrium (stationarity) of the system. The induction period
is defined as the length of time M required to minimize the
transient bias induced by the initial observations of the time
series (Anderson 1975). The total number of observations of
the time series to be generated is M + n with the first M ob-
servations used to warm up the simulation. Often the induc-
tion period M is chosen arbitrarily, and the simulation may be
warmed up longer than necessary.

Random Shock Method. Generate initial observations of the
time series from an approximation of the random shock
form of the ARMA model.

Linear Prediction Method. Generate initial observations of
the time series from the linear prediction equations based
on the ARMA model.

In particular, any method of generating the initial observations
of the time series should satisfy the following criteria:

1. The joint distribution of the p initial observations should
correspond to the joint distribution of p consecutive ob-
servations of the time series.

2. The induction period should be of minimal length.

Examination of the Random Shock Method, Linear Prediction
Method, and my proposed Adjusted Linear Prediction Method
is performed in light of these criteria.

3. METHODOLOGY

The description of the methodology consists of theory, al-
gorithm, and implications. Implementation of the algorithm is
not accounted for in the implications.

3.1 Random Shock Method

Suppose the MA(m) model

m
We=3 s
k=0

provides a satisfactory approximation of the random shock
form of the ARMA(p, ¢) model for sufficiently large m. Then
the following algorithm may be used to perform Step 1 of SA 1.

TIA 1: Initialization Algorithm 1

1. Generate m + p random shocks 4; for ¢t = 1 — m,
2—mMy...,D.
2. Generate p series values W; for ¢t = 1,2,...,p using the

MA(m) model and the random shocks from Step 1.

For normal and nonnormal random shocks

¢ The joint distribution of Wy,...,W, is an approximation
to the joint distribution of p consecutive observations of
the time series.

¢ An induction period may be required.
Anderson (1979) proposed a ‘precise’ method for determin-

ing the optimal induction period M for the Random Shock
Method. The induction period M depends upon

® n, the length of the simulated series
® ¢1,...,¢p, the AR parameters

However, the form of this dependence is quite complicated for
ARMA models with p > 1.

3.2 Linear Prediction Method

Let W, be defined by the AR{p) model
Wi =dWi1 +doWiz + -+ W, p + A
with theoretical autocovariance function
Vi = B[W: W]

The recursive relationship of Durbin (1960) is rewritten by
Wilson (1978) as

Brrrkrr = (Ver1 — SraVe — -+ — Srpm1) [Oh

Prtr,i = Orj — Prtrpr1Prpriog, J=1,...,k

‘713+1 = ‘713(1 - ¢i+1,k+1)

where o2 = .

Wilson (1978) states that initial observations of W; may be
generated by the sequence of AR(k) models for ¥ = 0,1,...,
p—1

Wiir = dp Wi + - + dp Wi + Apyy

where
® Appr = Ok€r1
® ¢4y are iid standard normal variates

The following algorithm may be used to perform Step 1 of
SA 2.
IA 2: Initialization Algorithm 2

1. Generate p iid (0,1) random shocks ¢ for t = 1,2,...,p.

2. Generate p initial observations Wy fort = 1,2,...,p using
the sequence of AR(k) models for k = 0,...,p — 1 and
the random shocks from Step 1.

For normaeal random shocks
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¢ The joint distribution of Wy,...,W, is equivalent to the
joint distribution of p consecutive observations of the
time series.

e An induction period is not required.
For nonnormal random shocks

e The second-order moments of the joint distribution of
W1,...,W, are equivalent. to the second-order moments
of the joint distribution of p consecutive observations of
the time series.

¢ An induction period may be required.

3.3 Adjusted Linear Prediction Method

Define
1 k=0
¢k(B)={1_¢k,le___¢k,kBk Emtopot
and
¥(B) = ¢;'(B)
1 k=0
1+ 1B+ p2Bi+--- k=1,...,p~1
Note that

 Stationarity of ¢(B) ensures stationarity of ¢3(B) for
k=1,...,p—1

o {¥r;}2, is absolutely convergent

L]

70 ¥r,; is absolutely summable

Consider the AR{k) model )
Sr(BYWii1 = Ara

and its corresponding random shock form
Wit = ¢u(B) Aea

for k =0,1,...,p— 1. Stationarity of W; implies the following
relationship between the moments of the time series and the
moments of the random shock process for each linear prediction
model:

- -1/2
o(Ap) = o(W) (Erﬁi,;)
J=0
w g2 \¥?
\/ﬁl(Ak+1) = \/ﬂl(W)(&?g_‘ﬁeg)_
J'=0’/’k,j
w 2.
PrlArn) = [B:(W) -3]_(2:;_0‘/"::_)_ s
=0 ¢’k,j

The following algorithm may be used to perform Step 1 of
SA 2.
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IA 3: Initialization Algorithm 3

. Generate p independent (0,1) random shocks A; for
t =1,2,...,p from successive Johnson curves based on
skewness and kurtosis of A4;.

. Generate p initial observations W; for ¢ = 1,2,...,p using
the sequence of AR(k) models for k = 0,...,p — 1 and
the random shocks from Step 1.

For normal and nonnormal random shocks, this method is
equivalent to the Linear Prediction Method. In addition, for
nonnormal random shocks the Adjusted Linear Prediction
Method ensures that the third- and fourth-order moments of
the marginal distributions are equivalent.

4. EXAMPLE

Consider the stationary time series W; defined by the AR(2)
model
We = 0.5W;_; +0.3W,_p + A,

where the A; are iid (0,1) random variables with skewness
VBAi(4) = 1 and kurtosis f2(4) = 9. A simulation experi-
ment was conducted to examine the third- and fourth-order
moments of the two initial observations of the time series.
Each of the three initialization algorithms was used to gen-
erate NREP = 10* pairs of initial observations (W1, W;). Sum-
mary statistics examining the marginal (univariate) and joint
(bivariate) distribution of the replicates were computed. This
two-stage procedure was super-replicated NSUPER=16 times to
allow assessment of the variability of the summary statistics.
The random shocks were generated using the Johnson curve
algorithm of Hill, Hill, and Holder (1985).

The graphical analysis of the simulation output is illus-
trated in part by Figure 1 and Figure 2. The boxplots in these
displays describe the distribution of the 16 super-replicates of
the bivariate skewness and bivariate kurtosis, respectively. (See
Mardia 1970 for definitions of these measures.) Each boxplot is
notched to illustrate an 84% confidence interval for the median.
This allows pairwise comparison of boxplots to be performed at
a family wide confidence level of 95% (Hettmansperger 1984).
The dotted line in each figure represents the theoretical value of
the bivariate skewness (0.9653) and bivariate kurtosis (14.7289).

In general, the Random Shock Method and Adjusted Linear
Prediction Method appear to describe the bivariate distribu-
tion of the initial observations rather well. The order m of the
moving average approximation of the Random Shock Method
was equivalent to the order of the ¢ polynomial used to com-
pute the moments of the Adjusted Linear Prediction Method.
In this case, it appears that neither of these methods requires
an induction period. For the Linear Prediction Method, the
confidence interval for the bivariate skewness fails to include
the true value, and the confidence interval for the bivariate
kurtosis barely contains the true value. The distribution of
these sample measures is more variable and more skewed for
the Linear Prediction Method than either of the other meth-
ods. However, based on these data, there is no pairwise differ-
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Figure 1: Boxplots of the Estimated Bivariate Skewness of the
Initial Observations of the AR(2) Example.
{(Method: 1=Random Shock, 2=Linear Prediction,
3=Adjusted Linear Prediction)

ence between the methods at the 95% confidence level. Further
graphical and statistical analysis of the simulation output is in
progress.

5. DISCUSSION

Theoretical and empirical comparison of the three meth-
ods indicates that for normal random shocks, the Linear Pre-
diction Method provides initial observations from the correct
joint distribution and does not require an induction period.
For nonnormal random shocks, if moments of order less than
or equal to four are of interest, the Adjusted Linear Prediction
Method may yield adequate results. For a specified ARMA
model, the computation time of IA 1 is linearly related to the
order m of the moving average approximation while the com-
putation times of the other algorithms are constant. Neverthe-
less, the Random Shock Method may be the optimal initializa-
tion method for ARMA models with nonnormal random shocks
since the time required to obtain the initial values should en-
sure the correct joint distribution and eliminate the need for
an induction period.
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