Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

ADVANCED FEATURES OF GPSS/H

Robert C. Crain
Daniel T. Brunner
James O. Henriksen
Wolverine Software Corporation
7630 Little River Turnpike, Suite 208
Annandale, VA 22003-2653

ABSTRACT

This tatorial describes many of GPSS/H's powerful additions to,
and extensions of, traditional GPSS, and shows how modelers can
take advantage of them to build simulations that are more
sophisticated in their gathering of statistics, more modelex- or user-
friendly, and significantly easier to build, modify and debug.. The
use of language features is illustrated by the examples in Appendices
A and B.

1. INTRODUCTION

A 90-minute tatorial, with accompanying handouts and the use of
audiovisual equipment, affords the opportunity to discuss the
advanced use of GPSS/H in considerable scope and detail. In a
paper of reasonable length for these Proceedings, we can only "hit
the highlights", giving an overview of the topics to be covered plus
additional detail on a selected few. For those unable to attend, we
hope that the material presented below, together with the example
models in Appendices A and B, will be sufficient for them to work
out for themselves some of the detail presented at the session. For
attendees, who will receive handouts and copies of transparencies,
we hope that this is a useful summary.

Since the first version of GPSS was introduced over twenty
years ago, the language has been the subject of ongoing development
and enhancement by multiple vendors. Many features have been
added or extended in order to provide greater functionality and ease
of use, while retaining the intrinsic strengths of the transaction-flow
approach. Unfortunately, modelers often do not have the time to
keep up with language development. This tutorial has been designed
to provide them with an update on GPSS/H capabilities and how
they may be used in normal modeling contexts.

Our focus is on three major areas of concern to the modeler:
designing and executing simulation experiments, creating enhanced
user interfaces, and building and debugging models. Within each of
these areas, the use of advanced features and techniques will be
presented. Example GPSS/H models, in which the features and
techniques are used, are included as Appendices. Because of space
considerations, only relatively small, stylized models have been
included.

2. DESIGNING AND EXECUTING SIMULATION
EXPERIMENTS

Typically, simulationists would like to separate their models from
the use of those models in controlled experiments. In many versions
of GPSS, such a task has been difficult, if not impossible, because
execution of the model is governed by (run-) control statements

269

which are limited in both function and flexibility. Traditional GPSS
Control Statements are executed exactly in the sequence in which
they appear, with neither forward nor backward branching, whether
conditional or unconditional. The ability to perform user-specified
input or output is also missing in traditional GPSS Control
Statements. As a consequence, experiments must be performed
manually by editing values and making new runs, or by embedding
the desired control structures (e.g., run length) in the model itself.

In contrast, the Control Statements of GPSS/H comprise a
complete run-control programming language, in which execution of
the model proper may be viewed in the same fashion as calling a
(rather large) subroutine. The run-control language can be used to
initialize or modify data values, to read from or write to files, to
conduct a dialogue with the modeler or user, to conditionally run the
model zero or more times, to collect data and statistics, to provide
customized output, and -- if the modeler desires -- to call programs
written in other languages. Moreover, all this power and flexibility
may be used incrementally. When a model is first being developed,
it can be run using a very simple set of control statements. Then, as
development proceeds, a more powerful run-control environment can
be added at the appropriate times.

A second problem that has plagued simulationists, particularly
after a model is largely complete and the emphasis is on its validation
and use in controlled experiments, is the need to provide multiple
independent streams of random numbers for use in different parts of
the model (or in the same parts for different runs). Simulation
languages ordinarily provide a means for changing the output of
random number generators, but typically have no convenient way to
ensure that the specified changes produce independent (non-
overlapping) streams, unless the user has a detailed understanding
of both the algorithm used in a generator and its implementation.
Few users have had the time or inclination to gain such an
understanding, and rightfully so. Modelers thus were prevented
from exercising intelligent control over a very important part of their
experiments.

The random number generator currently provided with GPSS/H
was implemented with special attention to the above problem.
Modelers can straightforwardly control the starting points of an
arbitrary number of different random number streams and be
guaranteed that the resulting streams will be independent (that they
will not be autocorrelated due to overlap). Moreover, GPSS/H will
automatically detect any overlap that might occur in a run, providing
an extra measure of protection,

In the subsections below, we examine some of the features of
GPSS/H that can be used to control execution of a model in a flexible
fashion. We also discuss the new GPSS/H random number
generator and how it can be used to improve the quality of statistics
gathered during a run.

R.C.Crain, D.T.Brunner and J.0.Henriksen

2.1 Using Ampervariables for General-Purpose Storage

Traditionally, GPSS models stored all non-Transaction data in
Savevalues or Matrix Savevalues. GPSS/H provides an alternative
means of storing such data, via Ampervariables. "Ampervariables"
are so called because their names begin with an ampersand ("&'"), in
order to provide a simple naming scheme and avoid confusion with
more traditional GPSS entities. Despite the superficial similarity in
names, Ampervariables are not to be confused with traditional GPSS
Variables (which actually define expressions), but behave like
variables in ordinary programming languages. By that, we mean that
they (1) must be declared before their first use, (2) support integer,
double-precision floating point, and character data types, (3) are not
affected by GPSS CLEAR statements, and (4) may be referred to by
name, using simple syntax.

Ampervariables can be used for a variety of purposes. They are
the obvious choice for local variables needed by the control language
(e.g., loop-control indices). They are also a good choice for
containing experimental parameters, since they can be used in Blocks
but are not affected by the CLEAR statement. In addition,
Ampervariables provide character-string variables and one-
dimensional arrays, both of which are missing from traditional
GPSS, and which can be appropriate for both Control Statements
and Blocks. For example, constructing an interactive dialogue is
much easier if character variables are available, and data that is input
to a manufacturing model may contain names as well as numeric
information.

2.2 Using Advanced Control Statements to Automate
Experiments

Good simulation results require multiple runs and careful
statistical housekeeping. For example, consider simulating a
hypothetical assembly line for automotive doors. One statistic of
obvious interest is the number of doors produced per hour, and since
the simulation results will typically be used to make management
decisions, it is highly desirable for them to specify confidence
intervals where possible.

A simulationist might approach this problem by first developing a
GPSS model of the assembly line that gathers the doors-per-hour
statistic each hour for the normal 40-hour work week, and calculates
the mean doors-per-hour value for the week. Using GPSS/H
advanced control statements such as DO and ENDDO, the
simulationist could then employ the technique of batch means,
running the model automatically for a multiple-week period, and
collecting data on the mean value of doors per hour for each week.
The weekly means of doors per hour will be normally distributed
(thanks to the Central Limit Theorem), even though the hour-by-hour
distribution of doors per hour is not. Having a normally distributed
statistic facilitates the construction of the needed confidence intervals,
and the GPSS/H control language facilitates gathering the normally

The principal statements that support general purpose
programmability in the GPSS/H control language are:

DO
ENDDO

DO-loop Iteration

IF
ELSEIF
ELSE
ENDIF

IF-THEN-ELSE Conditional Branching

270

GOTO Unconditional Branching

HERE Dummy Branch Target

INITIAL Assignment Statement for Traditional GPSS
Entities

LET Assignment Statement for Ampervariables

GETLIST Input Statement (List-Directed Read)

GETSTRING Input Statement (Unformatted String Read)

PUTPIC Output Statement (Picture-Directed Formatted
Write)

PUTSTRING Output Statement (Unformatted String Write)

CALL Call an External (User-Supplied) Routine

2.3 Using the GPSS/H Random Number Generator

Generating high-quality random variates is crucial in many
simulation experiments. The GPSS/H random number generator has
been improved over the years, and now uses an implementation of
Lehmer's multiplicative congruential algorithm, with parameters
selected on the basis of work by Fishman and Moore (1986). This
generator has the following properties:

The "next" random sample is produced by applying the
algorithm to the most recent sample. In other words, the nth
sample is produced solely as a function of the n-Ist sample. The
32-bit string from which the very first sample is produced is
known as the seed value.

The stream of samples produced repeats after a fixed number
of samples. This number is called the period of the generator,
and in the case of the Lehmer algorithm is 2%%31-2, so a supply
of over two billion unique random numbers is available.

Values specified as operands of the RMULT statement (or
BRMULT Block) are no longer used as seed values. Instead,
these values are interpreted as offsets from the starting point of
the generator. Thus, an RMULT operand of 50000 means "start
with the 50,000th number in the period of the generator". When
a model needs multiple, independent random-number streams, a
different starting offset value should be used for each stream, so
that each "taps in" at different points within the period of the

When the simulationist does not specify starting offsets, a
different default starting point is used for each random number
stream. The default starting offset for stream number »n is
(100000 * n).

Because the generator's seed value (not its starting offset) is
known, the nth sample can be calculated directly from » itself.
This very important property means that one can specify that the
generator start with "the one-millionth value in its period”
without having to generate and discard 999,999 intervening

The above properties allow the simulationist to provide
independent streams simply by knowing approximately how many
samples will be needed for each stream in the model, and ensuring
that the values supplied in the RMULT statement are correspondingly
far apart. If a model needed two streams, with approximately
500,000 samples to be drawn from each, the simulationist could
specify RMULT operands of "100000,700000", which would start
the second stream 600,000 samples "downstream” from the first,

Advanced Features of GPSS/H

leaving a comfortable margin before overlap would occur. In
addition, the default offsets have been chosen so that simulationists
who run models using multiple streams, but who provide neither an
RMULT Statement nor a BRMULT Block, are still guaranteed
independent (non-overlapping) streams unless their models draw
more than 100,000 samples from a given stream. To aid in the
determination of appropriate offset values, GPSS/H provides
standard output on each stream used in a model, showing the
stream's starting position (offset), ending position, number of
samples drawn, and chi-square measure of uniformity in the unit
interval for the samples drawn.

3. CREATING AN ENHANCED USER INTERFACE

More and more, people want to employ simulation in the day-to-
day management of systems, instead of just in their analysis and
design. Simulationists are thus faced with the need to provide
models that are designed to be used by non-simulationists. This
requires, among other things, the ability to provide custom-tailored
output, the ability to have the model read in some or all of the data to
be used in a run from an external source, and the ability to have the
user control the model interactively. GPSS/H has features that
enable the simulationist to accomplish all these objectives simply and

3.1 Generating Custom Output

One of the principal reasons we hear for people to use programs
outside the simulation language, written in FORTRAN or other
languages, is the need to generate customized output. This is
completely unnecessary in GPSS/H, which already contains a very
flexible, easy-to-use formatted output capability.

For customized output to appear as a standard part of the model
itself (while Blocks are being executed), the simulationist need only
use the BPUTPIC or BPUTSTRING Blocks. Custom output is also
available within the control language, for use before or after
execution of the model, via the PUTPIC and PUTSTRING
Statements. Both PUTPIC and BPUTPIC use a "picture" type of
format specification, which works in such a manner that "what you
see is what you get".

3.2 Creating a Data-Driven Model

Another common reason we hear for people to use programs
outside the simulation language, written in FORTRAN or other
languages, is the need to read input data from external files. This
also is completely unnecessary in GPSS/H, which already contains a
very flexible, easy-to-use input capability.

Input data that are used as part of the experiment specification, or
for purposes of run control, can be read in via the GETLIST
Statement before or after execution of the model, while data that are
intended as a standard part of the model can be read by the model
itself, via the BGETLIST Block. GETLIST and BGETLIST can
read from any reasonably well-formatted data file with a minimum of
trouble. Both can also handle error conditions and end-of-file

With forethought and (B)GETLIST, the modeler can place any
amount of specific model and/or run-control data into external files.
This is the same idea as the "experimental frame" notion employed in
some other languages, except that it is much more flexible.

271

3.3 Building a Model for Interactive Use by Non-
Simulationists

(BYGETLIST and (B)PUTPIC can be used for reading from and
writing to devices such as terminals, as well as files, and character-
type Ampervariables facilitate both reading and writing text.
Consequently, it is a relatively straightforward task to have a model,
or its experimental control program, or both, run with interactive
control. When properly designed, such interactively defined and/or
controlled models can be used by someone who knows nothing
about simulation or programming. Under such circumstances, the
interactive definition/control is usually implemented in a data-driven
model with custom-tailored output, as described in sections 3.1 and

4. BUILDING AND DEBUGGING MODELS

Building models takes time, and time is expensive. GPSS/H
contains numerous features which make the simulationist's task
easier, even when dealing with large models.

4.1 Using Improved Syntax

Many, if not most, simulation models are written by one person.
A difficult (but all too frequent) problem that arises from this “lone
ranger” syndrome is what to do when a model is to be changed, after
the modeler is no longer available to modify it. In fact, lack of
attention to readability and ease of understanding can cause major
problems even for the original modeler, especially when the project
is long or the model itself is large.

The improved syntax of GPSS/H offers several opportunities for
simulationists to improve the readability, understandability, and
maintainability of their models. Three that are worth special
attention, because of their broad applicability, are the use of
symbolically named Transaction Parameters, the use of expressions
as Block (or Control Statement) operands, and the use of
Parenthetical ("subscript") Notation.

Symbolically Named Parameters. The attributes of
moving objects in a model are stored in a Transaction's Parameters.
In traditional GPSS, these Parameters can only be referred to by
number, which is a particularly vexing restriction because of the high
frequency with which Parameter references tend to occur in a model.
In GPSS/H, enormous gains in readability and understandability can
be obtained by using symbolic names (rather than numbers) to refer
to individual Parameters. Moreover, the modeler can let the GPSS/H
compiler automatically assign numeric values to the names used, or
can make the assignments manually, using EQU Statements.

Use of Expressions as Block Operands. In traditional
GPSS, it was necessary to use GPSS Variables (each defined with a
VARIABLE statement), and/or to insert additional Blocks, when a
Block operand was to take on a calculated value. That was true even
if the calculation was needed for only one Block in the model.
Accordingly, the simulationist often was forced to leaf back and forth
repeatedly through pages of model source code while modifying and
verifying the model.

In GPSS/H, the modeler can code expressions of arbitrary
complexity directly in Block operand positions. This simplifies the
modeling process and aids readability in the case of "local”
calculations, which are specific to a single place in a model, and for
which the appropriate documentation is a comment next to the

R.C.Crain, D.T.Brunner and J.O.Henriksen

expression. At the same time, the modeler retains the ability to use a
GPSS Variable to define a "global" calculation, which is used widely
throughout a model, and which should be documented (and
modified, if necessary) in a single place.

A notable special case of real power and convenience arising
from the use of expressions as operands occurs in the TABLE
definition Control Statement. The A-operand of this Statement
defines the statistic that is to be observed and recorded when a
TABULATE Block naming that Table is executed during the course
of a simulation. In GPSS/H, the statistic can be coded as an
arbitrary expression, thus enabling the modeler to quickly collect and
tabulate almost anything of interest during a run.

Parenthetical Notation. Unlike most implementations of
GPSS, GPSS/H allows indices used in references to Standard
Numerical Attributes (SNAs) and Standard Logical Attributes
(SLAs) to be coded using parentheses, like subscripts in standard
programming languages. For example, PEQNAME) may be used in
place of PFSNAME, and MX(PH(MAT),3,3) in place of
MX*PHSMAT(3,3). Particularly where indirect addressing is used
to specify an entity, parenthetical notation provides a more natural
and intvitively understandable syntax. In addition, the basic syntax
of parenthetical notation is the same for all SNAs, SLAs and entities,
and there are no restrictions on what may appear within the
parentheses.

4.2 Interactive Debugging with Source Code Display

The GPSS/H Interactive Debugger is central to rapid model
development, verification, and modification. Several simple
commands are provided by the debugger for controlling a model's
execution and examining its status. Among the more frequently used

STEP Execute the next Block

STEPn Execute the next n Blocks

DISPLAY xxx Display statistics on one or more entities or
SNAs

BREAKPOINT yyy Set a Block Breakpoint (stop when any
Transaction reachés Block yyy)

ATyyy Set a Block Breakpoint with an attached
Debugger procedure to be run

CONTINUE Execute to coropletion, or to the next
Breakpoint

CONTINUE yyy Execute until Block yyy is reached by any
Transaction

TRAP XACTn Set a Transaction Trap (stop when
Transaction n tries to move)

TRAP CLOCK n Set a Clock Trap (stop when the Clock
reaches or exceeds n)

CHECKPOINT Save the complete state of the model

RESTORE Return to the CHECKPOINTed state

QQ Quit Quickly (return to the operating system)

The Debugger can be invoked at the beginning of a run, or
(except for batch runs) by interrupting a long-running model to be
sure everything is OK before continuing. Usually it is invoked at the
beginning of a run; in fact, its execution-speed penalty is so small
(less than 5 percent) that many simulationists use it exclusively as
their runtime environment for GPSS/H.

The GPSS/H Debugger also supports a "windowing" mode on
many of the machines and operating systems on which it runs. This
windowing mode, known as "TV" (test video), provides for the

272

display of GPSS/H source code and selected model status
information as the model is run. Unfortunately, there is no way to
adequately portray TV mode in this paper, but tutorial attendees will
have the opportunity to see it demonstrated.

4.3 Using Improved External Subroutine Interface
Features

Traditional GPSS required the use of somewhat unwieldy HELP
Blocks for calling external subroutines (written in FORTRAN or
other languages). Under GPSS/H, external subroutines can be
called via HELP (or its variants) for compatibility, but they also can
be called far more conveniently via the CALL Statement, the BCALL
Block, or in the case of a function that returns a value, by simply
including the function by name in any expression.

Although GPSS/H has dramatically improved the GPSS external
interface, external subroutines are rarely needed for traditional
purposes. Only in cases where GPSS/H's math function library falls
short (as it occasionally does), where a modeling algorithm requires
a separate program to implement (such as scheduling optimization),
or where needed for device-specific I/O does the simulationist need
to use an external subroutine.

4.4 Using the GPSS/H Double Precision Floating-Point
Clock

The use of a floating-point clock distinguishes GPSS/H from
other versions of GPSS. The use of a double precision\ floating-
point clock distinguishes GPSS/H from most if not all other general-
purpose simulation languages.

In general, the GPSS/H double precision floating-point clock
offers the following advantages:

"Natural" time units can be used. For example, if a model
requires resolution of simulated time to millisecond accuracy, the
use of an integer clock requires a time unit of one millisecond (or
smaller) per "tick”. If one millisecond is used as the time unit, a
time value of 3000 represents 3 seconds. Scaled values, such as
3000, are hard to read. With a floating-point clock, a time unit of
seconds can be used, so that a time value of 3 represents 3
seconds, and a time value of .001 represents 1 millisecond.
Such times are much easier to read.

Much larger times can be realized than with a 32-bit integer
clock. For example, if the time unit is one microsecond, the
maximum realizable value of a 32-bit integer clock is
approximately 0.6 hours.

Much higher precision is provided -- approximately 16
decimal digits, as opposed to 9 digits for a 32-bit integer clock
and approximately 7 digits for single precision floating-point.
With a time unit of one microsecond, the GPSS/H clock would
not suffer loss of precision until after more than 30 years of
simulated time, as opposed to approximately 10 seconds of
simulated time for single precision floating-point. For unusually
high-resolution models, the GPSS/H clock is capable of
simulating 11 days with a time unit of one nanosecond!

Uniform distributions of the form A+B, computed at
ADVANCE and GENERATE Blocks, yield an effectively infinite
number of sample values. With an integer clock, only 2B+1
sample values are realizable, and the A~ and B-operands must be

Advanced Features of GPSS/H

specified as integer values. This granularity can cause modeling
problems, such as being unable to represent a time advance
distributed uniformly over the interval from 10 to 15 (inclusive),
because the mean value of 12.5 is non-integral.

A double precision floating-point clock also has a few
disadvantages:

Double precision floating-point arithmetic is slower than 32-
bit integer arithmetic on most computers. The resultant
performance degradation in typical GPSS/H runs varies from
“hardly noticeable" to about 15 percent, depending upon the
particular model and particular computer on which the runs are

Cumulative roundoff errors may arise when using fractions,
depending upon whether the fraction has an exact representation
in binary floating-point. For example, after a sequence of 10000
"ADVANCE 0.1" Block executions, the clock will not register a
value of exactly 1000. This occurs because the fraction 1/10
does not have an exact representation in binary floating-point,
just as 1/3 does not have an exact representation in decimal
floating-point. Anyone who has performed floating-point
arithmetic on a computer has become acquainted with this

In the extremely unlikely case that more than 16 digits (1) of
precision are needed, "small" values will behave like zero
values. Adding 0.00001 to a value having 12 significant digits to
the left of the decimal point requires 17 digits of precision, and
hence will produce a result that is unchanged from the original
value.

5. SUMMARY

Many of the features being touted as new in discrete-event
simulation have been available for years to GPSS/H users. These
include sophisticated experimental design capabilities, built-in
facilities for creating "no programming" user interfaces, and model-
building tools such as a full-screen interactive debugger and high-
speed execution. For those unaware of these facilities, or those who
have not had the opportunity to explore how they can be used, we
hope that this tutorial has been informative. For more detail on the
features described in this paper, see Henriksen and Crain (1983).

ACKNOWLEDGEMENTS

Thanks go to Elizabeth Tucker for her thoughtful suggestions
and assistance in the preparation of this paper.

APPENDIX A: PROGRAMMING IN THE GPSS/H CONTROL LANGUAGE

The following GPSS "model" shows the general-purpose programming flexibility of GPSS/H Control Statements. Most readers will
recognize it as the "Sieve of Eratosthenes" program, which often is used as a computational benchmark. Please note that this perfectly

satisfactory GPSS/H program contains no Blocks whatsoever.

OPERCOL 45 ALLOW OPERANDS OUT TO COL 45, FOR INDENTING
SIMULATE
KK AKKA AR KRR AKRI AR IR A KR AT A TAR AR KA A AR AR ARR AR KA AR AR AR IR AR AR A AR Ak kR Ak hk kA hkhhhhkkk
* SIEVE OF ERATOSTHENES
KA KA AR ALK KRR A A IR AR R A AR AR A KRA KRR AR A AT R Ak Ik kbR AR Ak Ak AR Ak Ak Ak k ko hkkkkkk kA kkkhhkhhhhhhhkd
*
TRUE SYN 1
FALSE SYN 0
SIZE SYN 8190
*
INTEGER &ITER, &I, 6K, &COUNT, §PRIME, §FLAGS (8190)
*
*
DO &ITER=1,100 OUTER LOOP
LET &COUNT=0 INIT COUNTER
*
DO &I=1,SIZE INIT FLAGS
LET &FLAGS (&I) =TRUE
ENDDO
*
DO &I=1,SIZE INNER LOOP 1
IF (&FLAGS (&1)=TRUE) FIND PRIME
LET &PRIME=5T+&1+3 NEXT PRIME
DO &K= (&I+&PRIME) , SIZE, §PRIME INNER LOOP 2
LET &FLAGS (&K) =FALSE FLAG N*PRIME
ENDDO END INNER LOOP 2
LET §COUNT=&COUNT+1 COUNT PRIMES
ENDIF END IF PRIME
ENDDO END INNER LOOP 1
*
ENDDO END OUTER LOOP
*
*
PUTPIC &COUNT PRINT OUT RESULTS
* PRIMES FOUND
END

273

R.C.Crain, D.T.Brunner and J.Q.Henriksen

APPENDIX B: SEMI-COMPREHENSIVE EXAMPLE

The following simple GPSS/H model illustrates a broad variety of the points discussed in the body of the paper. A data-driven model is
conditionally executed from an interactive run-control program with custom-tailored output.

SIMULATE

CHAR*1 &REPLY YES/NO RESPONSE GOES INTO &REPLY
**
* ONE-LINE, SINGLE-SERVER QUEUEING MODEL
**
*

GENERATE X (AMEAN) , X (ASPREAD) ARRIVALS

QUEUE JOEQ GET IN LINE

SEIZE JOE GRAB THE BARBER

DEPART JOEQ EXIT LINE

ADVANCE X (SMEAN) , X (SSPREAD) HATRCUT TAKES PLACE

RELEASE JOE FREE THE BARBER

TERMINATE 0 EXIT THE SHOP
kkkk
* TIMER SEGMENT
*kk ok

GENERATE ,r480,1 RUN FOR 8 HRS (IN MINUTES)

TERMINATE 1 SHUT DOWN
**
* INTERACTIVE DIALOGUE FOR INPUT DATA AND RUN CONTROL
**
kkkKk
* GET IAT DISTRIBUTION FROM THE USER
X

NEXTRUN PUTPIC
PLEASE ENTER MEAN INTERARRIVAL TIME AND SPREAD

GETLIST END=DONE, ERR=NEXTRUN, (X (AMEAN) , X (ASPREAD))
iF X (ASPREAD) >X (AMEAN)
PUTPIC X (ASPREAD) , X (AMEAN)
SPREAD (*) CANNOT EXCEED MEAN (*). TRY AGAIN.
GOTO NEXTRUN
ENDIF
*kkk
* GET SERVICE TIME DISTRIBUTION FROM THE USER
*kkk

GETSTIM PUTPIC
PLEASE ENTER MEAN SERVICE TIME AND SPREAD
GETLIST END=DONE , ERR=GETSTIM, (X (SMEAN) , X (SSPREAD))
IF X (SSPREAD) >X (SMEAN)
PUTPIC X (SSPREAD) , X (SMEAN)
SPREAD (*) CANNOT EXCEED MEAN (*). TRY AGAIN.
GOTO GETSTIM

ENDIF

START 1,NP WE DISPLAY RESULTS OURSELVES
*okkk
* DISPLAY RESULTS OF INTEREST
KKk ok

PUTPIC LINES=4,FC (JOE) ,FR(JOE} /10.0,QT (JOEQ)

JOE GAVE * HAIRCUTS AND WAS BUSY **,* PERCENT OF THE DAY
THE AVERAGE TIME IN QUEUE (INCLUDING ZERO-TIME ENTRIES) WAS *.** MIN.

* Kk kK

* SEE IF THE USER WANTS ANOTHER RUN
kkkk
ASKAMOR PUTPIC

DO YOU WANT TO MAKE ANOTHER RUN?

GETLIST END=DONE, §REPLY

iF (&REPLY='Y ') OR(&REPLY="'y"')
CLEAR
GOTO NEXTRUN

ELSEIF (&REPLY!='N"')AND (&REPLY!='n")
GOTO ASK4MOR RE-PROMPT

ENDIF

DONE HERE
END

274

Advanced Features of GPSS/H

REFERENCES

Fishman, G.S. and Moore III, L.S. (1986). An Exhaustive
Analysis of Multiplicative Congruential Random Number
Generators with Modulus 2*%31-1, SIAM Journal on Scientific
and Statistical Computing 7, 1, 24-45.

Henriksen, J. O. and Crain, R. C. (1983). GPSS/H User’s Manual,
Second Edition. Wolverine Software Corporation, Annandale,
Virginia.

AUTHORS' BIOGRAPHIES

ROBERT C. CRAIN has been with Wolverine Software since
1981. He received a B.S. in Political Science from Arizona State
University in 1971, and an M. A. in Political Science from The Ohio
State University in 1975. Mr. Crain is a member of SCS, SIGSIM,
and ACM, and served as Business Chairman of the 1986 Winter
Simulation Conference.

DANIEL T. BRUNNER received his B.S. in Electrical
Engineering from Purdue University in 1980, and his M.B.A. from
the University of Michigan in 1986. He has been with Wolverine
Software since 1986, and is a member of SCS.

JAMES O. HENRIKSEN is the president of Wolverine Software
Corporation, which he founded in 1976 to develop and market
GPSS/H, a state-of-the-art version of the GPSS language. Since its
introduction in 1977, GPSS/H has gained wide acceptance in both
industry and academia. From 1980-1985, Mr. Henriksen served as
an Adjunct Professor in the Computer Science Department of the
Virginia Polytechnic Institute and State University, where he taught
courses in simulation and compiler construction at the university's
Northern Virginia Gradunate Center. Mr. Henriksen is a member of
ACM, SIGSIM, SCS, the IEEE Computer Society, ORSA, and
SME. A frequent contributor to the literature on simulation, Mr.
Henriksen served as the Business Chairman of the 1981 Winter
Simulation Conference and as the General Chairman of the 1986
Winter Simulation Conference.

Robert C. Crain

Daniel T. Brunner

James O. Henriksen

Wolverine Software Corporation
7630 Little River Turnpike, Suite 208
Annandale, VA 22003-2653

(703) 750-3910

275

