Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

THE FLEXIBLE ADA SIMULATION TOOL (FAST) AND ITS EXTENSIONS

Michael L.

Samuels

James R. Spiegel
Ford Aerospace and Communications Corporation
4920 Niagara Road
College Park, MD 20740, U.S.A.

ABSTRACT

piscrete-event simulation is often
considered the method of last resort
because of the excessive time needed to
develop and debug models, as well as run
experiments and analyze results. The
Flexible Ada Simulation Tool (FAST), is
designed to alleviate these problems
through - extensive use of aAda design
methodology (Ada is a registered trademark
of the U.S. Government, Ada Joint Program
Office). Object-oriented design permits
rapid expansion of language features,
including interfaces to data base systems,
statistical tools, and graphics packages.
Ada exception handling greatly improves
the user interface and debugging
environment, while Ada tasking provides
the user with control of the computer
resources. How these features contribute
to the reduction of major simulation
bottlenecks is explored in this paper.
The ease in which FAST has been extended
to encompass all facets of computer
simulation, from creating models to
generating reports, is also demonstrated.

1. INTRODUCTION

Computer models are commonly used
during the Design Phase of the Project

Life Cycle to analyze the logic and
proposed system

performance of
architectures. Because of its
flexibility, discrete-event simulation is

ideal for such analysis: alternatives can
be readily compared without resorting to

many of the simplifying assumptions
required by other modeling techniques.
Unfortunately,

present the results.

The Flexible Ada Simulation Tool
(FAST), currently under development at
Communications
Corporation, College Park, Maryland, is
designed to meet the time constraints
imposed by various 1life cycle deadlines
while maintaining the inherent flexibility
simulation. The
features of FAST contributing to this

Ford Aerospace and

of discrete-event
increase in productivity are discussed.

First, the bottlenecks
simulation development will be summarized.

simulation is often
considered the method of last resort
because of the excessive time needed to
create and validate the model, implement
and debug the program, and analyze and

hindering

175

The key features of FAST, including the
design of the user interface, will be
described in terms of these modeling
barriers. The use of Ada software
engineering techniques will be discussed
in terms of the FAST design, demonstrating
how easily Ada permits extensions to the

modeling environment. These extensions
arise from a more global view of
simulation, incorporating problem
conception, model development,

experimental definition, output analysis,
and report generation into the modeling
framework.

2. BOTTLENECKS IN SIMULATION ENVIRONMENTS

Henriksen (1983) notes that two major
bottlenecks have plagued simulation
development from the outset:

1. the barrier between editing and
compiling;

2. the barrier between compilation
and runtime support.

Developing a syntactically correct
simulation program can be tedious. A
typical scenario is to use a general
purpose editor to create the simulation,
submit the program to the compiler, and
then wait several minutes or even hours
until the program listing is produced.
This delay would be more acceptable if the
compiler flagged a majority of errors.
However, many simulation languages are
replete with awkward data structures and
program statements resulting from the
desire to provide English-like code while
maintaining compatability with previous
versions of the language (Bratley, Fox and
Schrage, 1983). The lack of strong typing
hides many syntax errors until runtime.

The second major barrier is even more
problematic. Execution errors are divided
into programming mistakes (e.g., division
by zero) and exception conditions raised
during a particular simulation run (e.g.,
a buffer overflow). Simulation errors are
often subtle; error messages may not occur
until long after the event causing the
problem. Since the usual approach to
debugging is to record the state of the
system at pre~defined "breakpoints", the
time needed to locate and correct runtime
errors depends on proper placement of
these print statements.

M.L.Samuels and J.R.Spiegel

While many PC-based simulation
packages have greatly reduced these
barriers, productivity has not been
increased to the extent needed for rapid
model development. Compilation remains a
slow process, and trace files continue to

provide the primary runtine support
mechanism. The result is that rapid
prototyping of alternative system

architectures remains an elusive goal. To
reach this goal, the Flexible Ada
Simulation Tool is designed to take
advantage of mainframe ©power while
improving the user interface along the
lines of PC-based simulation.

2.1. The Edit/Compilation Barrier

FAST reduces the bottlenecks between
editing and compiling in two ways: the
use of a syntax-directed editor and the
elimination of external program calls to
high~level languages.

Language Sensitive Editor. FAST has
been ~implemented under Digital Equipment
Corporation's VMS operating system and
takes advantage of the Language Sensitive
Editor (LSE). ISE provides verified
coding structures for every programming
statement, as well as on-line assistance
for specifying attributes of these
structures. The components of a
simulation model are defined as "tokens"
in the editor. The user requests help by

placing the cursor on the token and
pressing "CTRL-E". A pop-up window
appears, and the user selects the desired

option with the "UP" or "DOWN" cursor
keys. Pressing the carriage return
replaces the token with the properly coded
simulation structure or a lower-level
token (Figure 1). For example, the

GENERATE statement is used to create new
events. Three attributes are used for the
interarrival distribution, and a fourth
indicates the number of events that should
be created. If the use selects a constant
interarrival time, the editor indicates
that attribute 1 is designated by the
"FIXED" option, attribute 2 is the
constant interarrival time, and attribute
3 is given the value of "0". If a UNIFORM
distribution is desired, the editor
indicates that the second and third
attributes represent the lower and upper
bounds, respectively.

The Language Sensitive Editor follows
the conventions of the VAX EDT Editor so
that experienced users can develop models
without being burdened by the on-line
assistance capabilities described above.
As Henriksen (1983) points out, there is a
fine line between editors that provide
enough assistance to the beginner without
becoming a burden to the experienced user;
the Ilanguage Sensitive Editor achieves
this balance.

Fast Compilation. FAST provides a
user-friendly interface that guides the
beginner through program developnent,
debugging, and runtime execution without
constraining the experienced modeler. A
series of four menus ("Max", "Net Flow",
wLimits", and "State") provide on-line
assistance for every possible action,
including opening files for input and
output, modifying files, and transferring
control between these four levels of
control. These levels are discussed in
detail in Section 3. What is important to
note with respect to the barrier between
editing and compiling is that FAST
tcompilation” occurs during the transfer
from the "Net Flow Menu" to the "Limits
Menu". If a compilation error is found, a

4

W

A constant value
A uniformly random number

" {Uniform Distribution} :
User-defined distribution

{Other_Distribution}
(hoose_one_ot_press_HELP _key

[_-’ {Constant_Distribution}:

{Distribution_Declarations}

{Global_Declarations}

Path 1:
Locals:
1 SIZE = 0.0, --Size
2 PRICRITY =0.0; ~-Priority

End locals;
Generate:{Inter_ﬁlrival_Time}, {Number_of _Generates};
{Statement]...

BUffEIA_BUfFER.FLUU' __Uhite__dnsert____Forward

1 line read from file USERS: [MSAMUELS.PROJECTS]DEMO.FLOW;1
\. i,
FIGURE 1. ILANGUAGE SENSITIVE EDITOR.

Statements in braces and brackets are "tokens"
that expand to correct FAST structures. In this
example, CTRL-E was pressed with the cursor on
the interarrival token, opening the pop-up help
window for setting input distributions.

176

The Flexible Ada Simulation Tool (FAST) and Its Extensions

descriptive message is typed to the screen
at the point of the error; one command
places the user back in the editor. If no
errors occur, the user is automatically
transferred to the next level of control.

English-like nacros control all
aspects of the simulation. A parser
translates the Net Flow program into the
appropriate actions. Though FAST is
implemented in Ada, the modeler does not
use Ada to create simalations.
Nevertheless, FAST provides the user with
the basic constructs found in high-level
languages (Ghezzi and Jazayeri, 1982),
including sequential statements (e.q.,
"Assign"), logic statements (e.g.,
urf.,.Else...Endif"), and repetition
structures (e.g., "Loop...Endloop").
simulation functions are also provided
(e.g., "Request"), and statistical results
can be used to trigger events at any time
during the simulation (e.g.,
"AvgQueueLen") . An important design
decision made early in FAST development
was that this macro language would provide
all necessary programming constructs. In
many simulation languages, external calls
to FORTRAN and other high-~level languages
are needed to provide programming details,
This extra step greatly increases
compilation time.

2.2. The Compilation/Execution Barrier

FAST reduces the bottleneck between

compilation and runtime support in two
ways: interactive monitoring of
simulation statistics and interactive
control. These will be discussed in the
context of debugging and sensitivity
analysis.

Interactive Debugging. FAST allows
visibility into the "internal" structures
of a simulation. Every traffic entity is
assigned an identifier, or ‘"passport",
when it enters the system. A "“Active
Passport Summary" provides information
about the current status of each entity,
including the Path number and programming
statement currently being executed. The
"Future Events Queue" provides a list of
passports in order of execution, while
individual "Queue" displays 1list the
passports waiting for service from a
particular resource (see Figure 2).

FAST also includes a step mode, which
allows the user to increment the model one
event at a time. In conjunction with the
display pages described above, the step
mode lets the user observe the very fine
details of the system. One proven
debugging technique is to use the
"Set Duration" command to stop the
simulation Jjust prior to a simulation
error condition. A "Go" command will
cause the simulation to run to this point.
The user may now proceed with the "Step"
command, observing the Future Events Queue
and other displays, to determine exactly
when, where, and why the error occurred.
Clearly, such a capability is invaluable
to the debugging process.

Sensitivity Analysis. In addition to
the display pages mentioned above, FAST
provides the user with statistical

summaries of queues, global and local
variables, resource utilization, and
several other runtime parameters. The

user interface not only displays these
values throughout the simulation run, but
also allows the user to change values.
For example, if a communications network

7 N
Future Event Queue Page
Size = 4 Current simlation time is 856.2033
Passport Time Verb Path Box
24 856.2033 IF 1 176
25 860.7310 RELEASE 1 417
S 934.3093 GENERATE 1 1
4 952.6581 GENERATE 2 1
Execution suspended.
L_ State menu: ' J

FIGURE 2.

FAST INTERACTIVE MONITOR AND CONTROL.

The Future Events Queue is one of many runtime

displays available to the user.

Events are

listed in time order with an identifier

("Passport"),

the associated data flow ("Path"),

and the next statement to be executed ("Verb"

and "Box").

177

M.L.Samuels and I.R.Spiegel

is being modeled, the link bandwidths may
be represented by global variables. The
bandwidths can 'be changed during the
course of a simulation run to analyze the
effects of small changes in the vicinity
of particular thresholds.

In addition, FAST offers automated
monitor and control capabilities. Runtime
statistics can be assigned to global
variables, providing feedback within the
simulation. For example, if the size of
the queue exceeds a certain limit in a
bank teller model, a new teller can be
added automatically. In addition, the
user can set the threshold during runtime,
further tuning the model. Manual and
automated sensitivity analysis provides a
great deal of flexibility without the need
to re~compile the program.

These capabilities allow the user to
gain more insight into the actual behavior
of the network being modeled. Based on
the ability to easily and quickly modify
model parameters and cbserve the resulting
statistics, the user is encouraged to
experiment with a large set of
combinations of input parameters. The
feedback which the user receives regarding
the effects of different input values on
model behavior is almost immediate.

3. THE FAST ENVIRONMENT

Reducing the major bottlenecks to
simulation requires more than improving
the editor, compiler, and runtime support
mechanism. A modeler should be able to
focus his or her attention on analyzing
results, not coding. FAST provides a
user-friendly environment that guides the
beginner through program development,
debugging, and runtime execution without

MAK
Memory
Allocation G0
NET FLOWD
QUIT Simulation
Program
QUIT

FIGURE 3. FAST LEVELS.

constraining the experienced modeler. To
implement this environment, FAST follows
Zeigler's (1976) distinction between the
51mu1a@ion nodel and the experimental
frame in which that model is executed.

The FAST interface consists of four
levels of interaction, represented by four
menus:

1. Max

2. Net Flow
3. Limits
4, State

The Max and Net Flow menus are used to
create the simulation program, while the
Limits and State menus provide the
capab@lities needed to run several
experiments using a particular model
(Figure 3). Each of these menus is
discussed in detail below.

3.1. Max Menu

. The maximum sizes permitted for
various simulation data structures are set
in the first menu presented to the user.
The_ modeler either chooses a previously
defined ".MAX" file or enters the Digital
qu..upment Corporation's Language Sensitive
Edltgr (LSE) to create a new one. FAST
prov;des a template that 1lists all
pertinent data structures; the modeler
merely estimates the upper limits (Figure
4). These limits include modeling
constructs, such as the number of queues
and resources, as well as programming
structures, such as the size of the future
events table. Memory allocation can be
used most effectively by permitting the

GO
LIMITS
Input
Parameter Go
Data Base
STATE
QuiT Runtime
Support

Interactive FAST guides the user through four
levels of model creation and execution. The Max
and Net Flow menus pertain to program development,
while the Limits and State Menus control the

simulation experiment.

The Flexible Ada Simulation Tool (FAST) and Its Extensions

PARAMETERS :
DISTRIBUTIONS:
COORD INRTES:
GLOBALS :
LOCALS:

BE8noBsE8E8LNEY

Bulfer___DEMO.MAR

\.

Write__Insert___Forward
14 lines read from file USERS:IMSAMUELS.PROJECTSIDEMO.MAX;1

J/

FIGURE 4. MAX LEVEL.

Memory allocation for a FAST simulation is set

by user.

A default file is automatically

provided with all the FAST components that

need to be estimated.

user to set storage limits. For example,

a model of a data base system might
require very large gqueues, whereas an
automated teller machine would probably
have a small finite gqueue with customer
balking.
3.2. Net Flow Menu

Once memory has been allocated, the
user enters the Net Flow Menu to create

the simulation model. As mentioned, FAST
takes advantage of the Language Sensitive
Editor to insure proper programming
constructs.

All FAST program consists of sever
modeling components (see Figure 5):

1. Header

2. Queues and Resources
3. Marks
4. Gates

5. Distributions
6. Globals
7. Paths

The Header is a one-line descriptive
title for the program that identifies
different versions of a model.

Each simulated resource is associated
with a queue of the same name. Only the
names of different resource types must be
declared here. If more than one server is

available for each resource type, that
number is set in the "Limits Menu' (see
Section 3.3).

Marks represent user-defined
statistical collection points. A
simulated entity enters a mark, proceeds

through a series of queues and resources,

179

and then exits the mark. FAST
automatically tracks the accumulated time
spent between the "Mark" and "Endmark”

statements, as well as the number of
entities passing through this "checkpoint®
during the course of the simulation. For
example, a Mark structure would be used to
record the elapsed time between a user
regquest and the system vresponse in a
computer network.

Gates provide communication between
different parts of a model. For example,
a simulation of a computer center might
restrict hours for a particular set of
users. A Gate would be used to control
requests from those users during the
designated time periods.

Statistical distributions are listed
next. FAST provides the most commonly
used distributions, such as UNIFORM and
EXPONENTIAL, as well as permitting the
inclusion of empirical distributions. The
user creates a ".DIST" file containing the
cumulative distribution function from
within the Net Flow menu or with any
editor before entering FAST.

Globals refer to variables available
to all parts of the model throughout the
duration of a simulation run. In
addition, globals are also accessible to
the user at runtime. Not only are the
values summarized on a "Globals" display
page, but the user may change the value of
any global variable at any time.

Paths are the key to a FAST
simulation. Within each Path, the user
designates the sequence of events that
each entity encounters as it flows through
the system. For example, one path could
be used to model jobs flowing through a

M.L.Samuels and J.R.Spiegel

Queues and Resources:

1: SINGLE_SERVER;

Marks:
1: TIME_IN SYSTEM;

Gates:

Distributions:
0: FIX, FIXED,
1: UNIFORM, UNIFORM;
2: EXp, EXPONENTIAL;

Globals:
1. INTERARRIVAL_TIME;
2: SERVICE_TIME;

Path 1:
Locals:

Buiter __BUFFER.FLOW
LSE>

\.

DEMO SIMULATION - SINGLE SERVER QUEUE

54 lines read from file USERS: [MSAMUELS.PROJECTS]DEMO.FLOW; 1

. HWinte__Insert____Forurard

-~ 21 OCT 87

—— minutes
-- minutes

FIGURE 5.

NET FLOW LEVEL.

Sample FAST program illustrates the major

components of a simulation.

Note that

declarations are specified here, but values
are set at the Limits Level.

machine shop, while a second path could be
used to control machine availability. Or,
two jobs with very different sequences of
events could be modeled as two paths,
keeping the code more readable for later
modifications. This "process" approach is
widely used in the simulation world and
offers a clear, concise methoed of
presenting models to the customer.

3.3. Limits Menu

The "Limits Menu" lets the user set
the following parameters:
1. Simulation Duration
2. Resource Sizes
3. Queue Limits
4. Global Variables
Simulation duration refers to the length
of a particular run, while the other
limits assign values to simulation
constructs defined in the Net Flow. The

"Limits Menu' is similar to the "Max Menu"
in that the user is. provided with a
template that lists all of the parameters
requiring user input (Figure 6).
Different ".LIM" files may be used with a

given Net Flow; the wvalues in each,
however, must be within the restrictions
set at the "Max Level".
3.4. State Menu

The "State Menu" is the best

illustration of the inherent advantages of
the FAST design. Four windows provide

-

180

complete monitor and control capabilities
(Figure 7):

1. Display

2. Simulation State
3. Error

4. Input

includes
of modeling

The Display Window not only
statistical summary pages
constructs (e.g., queues and resources),
but also improves debugging capabilities
by providing access to all queues,
including the future events queue. The
Simulation State Window shows the current
status of the simulation (e.g., "“"Execution
Suspended"), while the Error Window
explains exception conditions when they
are raised (e.g., "Error: Maximum queue
size exceeded"). The User Input Window
accepts input from the user at any time
during the simulation.

4. THE ADA ADVANTAGE

As demonstrated above, FAST not only

reduces the bottlenecks to simulation
development by dimproving the component
parts of the simulation package (i.e.,

editor, compiler, runtime support), but
also by guiding the user through the steps
necessary for building and using computer
models. The key to reducing these
simulation bottlenecks 1is to create a
simulation tool with an underlying
structure designed for flexibility.
Design details have been described
elsewhere (Spiegel, 1987) and need not be

The Flexible Ada Simulation Tool (FAST) and Its Extensions

{ ™\
SIMULAT ION_DURAT 100 : 36000.0
QUEUE_LENGTH: SINGLE_SERUER 10.0
RESOURCE_S1ZE: SINGLE_SERVER 1.0
INTERARRIVAL_TIME: 1.0
SERVICE.THE: 2.0
Buffer__DEMO.LIM Write__insert___Forward
5 lines read from file USERS:[MSAMUELS.PROJECTSIDEMO.LIM:1
\. J
FIGURE 6. LIMITS LEVEL.

After compiling the Net Flow, FAST provides the
user with names of model components that require
Different limits files can be
used with the same Net Flow.

initialization.

repeated here. However, the requirements
for rapid prototyping have been achieved
because of several key features, unique to
Ada, that were essential to the design and
implementation of FAST, These are
discussed below.

4.1. Object-Oriented Design

Every simulation language uses
entities with assigned attributes, as well
as a small subset of permissible
operations on those entities (e.g.,
creating a particular instance of an
event) . Process-oriented simulation
languages minmic tasking, and some
languages even allow primitive forms of
message passing. These are essentially
object~oriented structures. Indeed, much
of the development of simulation languages
during the past twenty-five years can be
viewed as an effort to add object-oriented
constructs to procedural languages.

There are some continuing efforts to
implement more extensive forms of these
object-oriented structures to existing
languages (West, 1985). However, the
advantage of using Ada is that it provides
an object-oriented design methodology, in

addition to the necessary structures for
implementation.
4.2. Simulation Error Handling

In many simulation languages, runtime
errors cause the program ¢to terminate
prematurely, leaving the user with an
unreadable postmortem dump to locate the
source of the error. Simulation errors
are often subtle, requiring hours or days
to isolate and fix.

181

One of the advantages of using Ada to
implement FAST is the extensive "exception
handling" capability of the language.
Simulation errors, such as the buffer
overflow mentioned above, do not cause the
simulation to terminate. Instead, the
user is notified that processing has been
suspended, and the user can search through
the various runtime monitoring displays to
uncover the source of +the error. For
example, a queue overflow can be resolved
by changing the upper limit to the queue
with the "Set Queue Size" command, by
altering the number of resources available
with the "Set_Resource Size" command, or
by changing the processing time associated
with the resource using the "Set Global"
command. In all three cases, the
simulation can continue from the point of
suspended execution. In other words, a
queue overflow is not an error condition,
but an experimental result that teaches
the modeler something about the behavior
of the system.

4.3. Ada Tasking And Cpu Utilization

A major problem with executing a
simulation is the heavy burden such models
place upon the host computer processor.
Interactive simulation has long been
considered impossible for all but the
simplest models because of the length of
time needed to make each run.

Ada tasking provides the modeler with
control of host resources. The runtime
simulation is a separate Ada task from the
monitor and control facilities so that CPU
resources can be tailored to specific user

needs. For example, if the modeler does
not wish to examine statistics until
execution 1is suspended after a certain

M.L.Samuels and J.R.Spiegel

time period, the "Set Speed" command can
be used to allocate more host resources to
the simulation task. On the other hand,
debugging would require constant
monitoring of ' simulation progress. The
user would then divide host resources
among the simulation, monitor, and control
tasks to watch statistical updates more
carefully. In most simulation languages,
such monitor and control capabilities are
limited to a small subset of input
parameters visible just before the next
event is selected from the future events
gueue.

5. EXTENDING THE LANGUAGE

Once a model has been developed and
thoroughly debugged, the process becomes
more global in nature. The object is to
run simulations for a large number of
experimental cases and then present the
results in a format +that managers can
appreciate. This raises two points. The
first 1is the design of the simulation
experiment; the second is the capability
to search and present simulation results.

Figure 8 presents an overall
illustration of the automated global
environment. This shows how the entire

simulation project may be automated. The
key element which enables this concept to
be implemented 1is a simulation language
that is driven by a script. This was an
easy extension to FAST because it was
originally intended to operate
interactively. The implementation of
batch mode maintains the capability to
respond to commands. The only difference
with the interactive mode is that batch
FAST responds to commands provided by a
script, as opposed to the keyboard. This
pernits further extensions to the
language, as well as maintaining the
separation of the simulation model and the
experimental frame.

5.1. Experimental Data Base

Once a model has been debugged, the
usual course of action is to go into
"production" mode. This consists of
running a large number of simulations in
order to learn the effects which specific
input variables, or combinations of input
variables, have on the overall performance
of the system being modeled. The most
natural approach is to set up data files
which contain the values to be varied for
the different runs. A controller is then
instantiated to oversee the multiple

4 N
Help
Cuorrent simulation time iz 123.4343
Help —- Qisplay this help screen
Help Set_Page — display page selection belp
Help Print —-~ display print help
List — list all steate files.
Bow <file name> -— start a new state file
Open <filename> -~ gpen an existing state file
60, Stop, Step, Reset - contrel execution of simulation
Set_Speed <¢seconds [1..60] - Set display refresh rate
Set_Duration <time> -- Set duration of simulation
Set_Queve_Size <¥> <size> ~- set size of s buffer
Set_Resource_Size <#» <size» -- set size of a resource
Set_Global c<#{nama> <values -- set global by # or name
Flush - flush statistical counters
Save -- Save current state file
Save_As <filename> ~- sgye current state rfile
Revert — raevert to last saved file
Close — close a state file
Delete <file name> -~ delete a state file
Quit - return to limit menu
Ervor: Enecelbion sespesded. Erxor: Hax. Quewe Sixe Exceeded.
State menu:
\. /
FIGURE 7. STATE LEVEL.

Four windows.provide runtime support at the State
Level. The Display Window currently contains the

general Help Menu.

Two other help windows, as well

as more than ten different kinds of statistical
summaries, provide invaluable aid during execution.
The "Execution Suspended" message is in the System
Status Window, while the Error Window lists the
reason why the simulation stopped. The "State Menu:"
prompt is the Input Window, always ready to accept
requests from the modeler.

The Flexible Ada Simulation Tool (FAST) and Its Extensions

PN

€XPERIMENT DATA BASE /
EXPERIMENT
MODEL NAME OPIICAL DATA BASE
RUN TRACK PLAK AVG OISk
NUMBER SIZE DATA RAVE OATA RATE THROUGHPUT
(b} (Mbos) {Mbps) Mbps}
1} 8192 0 5 10
2 2192 20 H 0
3 292 20 5 30 SCRIPT
4 a9 0 n 0 PROCESSOR
s 192 0 AL} 0
6 2192 0 0 0
7 8192 0 18 w
L] 8192 20 15 0
9 89 0 15 30
1 892 300 100 30
n 8192 300 100 0 SCRIPT
” L114] 100 o 300
9 8192 300 200 0
A} 8192 300 200 100
15 8192 300 200 300
% 8192 300 00 k1 TRACK_SRRE - 3192
7 2192 n 300 100 PEAK__DATA__RATE - 20
1) 8192 00 300 00 AVG_DATA_RATE - s
9 16384 0 5 10 DISK_THRUPUT - n
20 16304 20 5 20 [
21 16384 0 5 30 PRINT OPTICAL 1
2 16384 20 0 10 RESET
23 16388 W 10 0 TRACK _SIZE « 8192
4 16384 20 1] n PEAK_DATA_RATE = 0
25 16184 0 5 10 AVG_DATA_RATE - s
% 16384 0 15 0 DISK_THRUPUT - 0
27 16184 20 (13 30 0
b:] 16334 300 100 30 PRINT OPTICAL_2
2% 16384 300 100 100 MESET
0 16384 n 100 300 TRACK _SIZE Ed 8192
3t 16384 EL) 0 30 PEAK_DATA_RATE - 20
» 16384 300 200 100 AVG_DATA_MATE - s
n 16384 300 00 00 DISK_THRUPUT - 10
34 16384 300 0 30 Go
kL 1684 300 200 100 PRINT OPTICAL_Y
36 16384 300 300 300 RESET
.
.
RESET
TRACK_S12E = 16384
PEAX _DATA_RATE - 300
AVG_DATA_RATE * 300
DISK_THRUPUT -« 300
[d+]
PRINT OPTICAL 36
NO
executions of the simulation and keep
track of the resulting output files.
The use of an experiment data base

extends this concept beyond the single
model approach. Simulation is often used
to compare alternative architectures. To
do this, separate models are built to
represent each of the architectures being
considered. The final analysis entails
analyzing the results of different models
in order to compare the performance of
each design alternative. In addition to
specifying input parameters and output
requirements for each run, the data base
also includes the particular architecture
to be wused for each run. The data base
may then be coordinated with the output
generator to automatically produce
comparisons.

5.2. Running The Experiment

FAST was originally designed to
operate interactively. As such, it
provides an inherent capability to respond
to command inputs. When FAST runs in
batch mode, commands are provided through
a script. The process of running an
experiment is reduced to translating the
experiment data base into a script to be

processed by batch FAST. The resulting
simulation outputs are stored in the
results data base as specified by the

experiment data base.

REPORT
GENERATOR

BATCH
FAST

MAXIMUM BUFFER SIZE
GIVEN TRACKSIZE = 8192 bits
PEAK DATA RATE = 20 Mbps

1000 ~
900 —

800 ~ = osk_nmuryT = 10

MAXIMUM

700 —4
600 —
500 =

REPORTS
BUIFER

RESULTS e

DATABASE = o1sx_THRUPUT = 20

400 ~
300 —
200 —
100

A~ Disk_THRUPUT = 30

L

5 LI H
AVG DATARAIL

OPTICAL SIMULATION RUN NUMBER |
FLEXIBLE Ada SIMULATION t00L

SIMULATION DURATION 10000 0000

STATISTICS FOR DATA SPONGE

NUMBER OF ARRIVALS
SHE Of ARRIVALS
HUMBER OF DEPARTURES.
NUMBER NO WAIT
MAXIMUM BUFFER SIZE

6097 0000

AVERAGE BUSFER SI2€
$D BUIFERSIE
MAKIMUM DELAY
AVERAGE DELAY 13625
5D DELAY 1

FIGURE 8.

EXPERIMENT DEFINITION FILE.
Batch FAST provides the user with data base

control of ‘production runs.

The data base

manager keeps track of input and output files,
running FAST through a script.

183

5.3. Report Generator
The significant advantage which is
achieved by providing this automated

environment is realized through the use of
the automated report generator. The
important design issue here is that the
data base is used to decouple the report
generation software from the simulation
software. An extremely friendly generator
could be provided which is able to produce
any number of user specified reports.
Through simple gqueries, the user can
request graphical displays which provide
information regarding relative performance
of alternative architectures. The report
generator is able to interpret the user
queries, analyze the input data base to
determine where the required information
resides, extract this information from the
results data base, and present the
information in graphical format.

6. CONCLUSIONS

Simulation provides many features
useful for prototyping real systems.
However, simulations are software projects
in their own right, often requiring as
much time to develop as the systems they
are to model. While recent additions to
the commonly used simulation packages have
greatly improved their capabilities, they
still require too much time to be used for
rapid prototyping. The Flexible BAda

M.L.Samuels and J.R.Spiegel

Simulation Tool was designed as a solution
to this problem. Through the use of the
Ada methodology and programming language,
a highly interactive simulation tool has
been developed. The two major simulation
bottlenecks, the interfaces between
editing and compiling, as well as between
compiling and executing, have been greatly
reduced.

Flexibility in simulation has not
only been demonstrated at the programming

level, but inh terms of the modeling
environment, as well. As a consequence of
the Ada design, an overall automated

simulation project environment has been
built which allows "global" flexibility.
An experiment data base is coordinated
with a results data base in support a
"smart" graphics interface. The resulting

system provides an extremely powerful

simulation system.

REFERENCES

Booch, G. (1983). Software engineering
with Ada. Benjamin/Cummings, Menlo
Park, California.

Bratley, P., Fox, B.L. and Schrage, L.E.

(1983) . A Guide to Simulation.
Sprlnger—Verlag, New York.

Ghezzi, C. and Jazayeri, M. (1982).
Programming Language Concepts. John
Wiley and Sons, New York.

Henriksen, J.0. (1983). The integrated
simulation environment (simulation
software of the 1990s). Operations

Research 31, 1053-1073.

Interactive
event simulation in Ada.
of the Joint Ada
Conference: Fifth National
Conference or Ada Technologx and

Washington Ada Symposium, March
16-19. pp. 121-125.

West, J. (1985).
Distributed Simulation.
California.

Spiegel, J.R. (1987).

discrete
Proceedings

Object-Oriented
C.A.C.I.,

Zeiglexr, B.P. (1976).
and Simulation.
York.

Theory of Modeling
John Wiley, New

AUTHOR'S BIOGRAPHIES

SAMUELS is a

Ford Aerospace
Communications Corporation in College
Park, Maryland. He received a B.A. in
the College Scholar Program at Cornell
University in 1977, focusing on models of
cultural evolution and human ecological
systems. He received an M.A. %n
Anthropology in 1981 and an M.S. in
Systens Engineering in 1°83 from the
University of Arizona, whlL re he used

MICHAEL L.
Engineer at

Systems
and

184

simulation technlques to investigate both
ecological and engineering problenms. He
has applied modeling techniques to network
management of the long~-distance phone
system, air-traffic control, and satellite
communications networks. At Ford
Aerospace, he is involved with the
development of FAST and models of computer
communications networks.

Michael L. Samuels

Ford Aerospace and Communications Corp.
4920 Niagara Road

College Park, MD 20740, U.S.A.

(301) 345—0250

JAMES R. SPIEGEL is a Systems
Engineer at Ford Aerospace and
Communications Corporation in College
Park, Maryland. He received a B.S.E. and
an M.S.E. in Systems Engineering from the

University of Pennsylvania in 1979 and
1980. At Ford Aerospace, he has been
involved in simulation of the Space
Station Information System, as well as the
development of future versions of FAST.
Currently, he is developing a model of
ground data handling system architectures
for processing, buffering, and archiving
high rate space station science data.

James R. Spiegel

Ford Aerospace and Communications Corp.
4920 Niagara Road

College Park, MD 20740, U.S.A.

(301) 345-0250

