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ABSTRACT

Techniques for implementing simulation
models in Pascal are discussed. Special
emphasis is placed on the development of
efficient data structures and random number
generators. Source codes for efficient but
not commonly available algorithms are
provided. A floppy disk containing all
procedures discussed in the paper is available
from the author.

I. INTRODUCTION

A significant number of new simulation
languages and subroutine packages are
introduced each year. Common for most of these
languages are the facts that a) their usage
is (usually) well documented; and, b) their
internal design is not documented or explained
at all.This discrepancy may be one of the
reasons why there is such a proliferation of
"home made” simulation languages. The only
way to have a language that one understands
well enough to be able to modify it is to
write one's own language. Unfortunately,
language developers seldom have the time or
expertize to search out and implement state of
the art solutions from the variety of
different disciplines involved in the
implementation of a sophisticated simulation
language.

A, Special features of simulation programs
Simulation programs have the unique
feature that at least 90% of the code in any
one application is general purpose code and
that at most 10% of the code is specific to
any one application. For example, the
Procedure shown in Prog 1 is (a simplified
version of) the user written model of a
simulation designed to determine the expected
weekly maximum queue size for a clinic lobby
in Madison Wisconsin. The remainder of the
simulation program (2300 lines) is general
purpose code, used by this and other
simulation models. Among the tasks performed
by this code are:

1. Time Keeping and Event Scheduling
2. Random Variate Generation

3. Set Management

4, Keyboard Monitoring

5. Data Collection and Reporting

6. Real Time Graphics

7. Error Checking

8. Management of Modelling Constructs.
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Procedure UserModel;

var
Client EntityPtrType;
InfoServers : Integer;
MeanInfoTime : Real;
MeanInfoInterval: Real;

begin

{ define arrival process}
MeanInfoTime := 1.00; {Minutes}
Recurrent ('A',MeanInfolInterval, 1) ;

Inquiry booth }
MeanInfoInterval:= 0.3;
InfoServers:=trunc (MeanInfoTime
/MeanInfolnterval) + 1;
MakeWorkStation(l,1,2,0,
InfoServers, 'Desk’);
SetlLabel(l, 'WS 1 Info Queue');
SetlLabel(2,'WS 1 Info Clerks');
ProcessingTime (1,1,MeanInfoTime, 2);

event scheduling}
Repeat
NextEvent;
case EventCode of
'A':begin
MakeEntity (Client,' *,1,nil);
EnterWorkStation(l,’',Client);
end;
end;
Until
end;

done;

Prog.l: Pascal based model of a simple queuing
system. Note the use of model
building blocks such as Workstations

and Recurrent Event Streams.

Linstrom and Skansholm(1981) discusses the
general problem of designing simulation
software. It is not reasonable to expect the
end-user to understand how these tasks are
being carried out. However, the end-user
should expect the system to implement these
functions correctly and efficiently (our
experience suggest that this may not always be
the case).

B. Special difficulties with Pascal.
Modern programming languages such as Ada and
Modula 2 include features such as separately
complied modules, initializors and static
variables that make it relatively easy to
implement general purpose simulation programs
(Thesen and Sun (1985), L'Eculier (1987)) and
systems (Livney(1987)). Pascal on
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Program S (input,output);

CONST {count of sets ,work stations etc}
TYPE (Entity records, event notices}
VAR Current time, trace flags,

urrent FEvent code, seeds}
Forward {all user callable routines}

{~—~——— USER MODEL - }
Procedure userModel; {user written}
User's definitions

Begin

User's code.
end;

{Everything beyond this point is unknown
to the user}

CONST {Count of graphic tokens,
multipliers etc}}
TYPE {Set headers, Node records, data

collection records etc
VAR fall variables not explicitly
needed by the user}

{Systems Procedures}

Begin
StartSimulation
end.

Prog 2: Structure of a Pascal based simulation
program. The user written model is
placed up front. Forward declarations
are used to give the user access to
systems procedures defined later in
the program.

the other hand was not designed with
large, multi programmer systems in mind, and
standard Pascal introduces many obstacles to
good (simulation) program design. BAmong these
are:

1. Only globally declared variables remain
defined through the simulation;

2. Separately complied subroutines are not
allowed.

3. Pointers to records of different types are of
different type;

4. Procedure calls must always have the same
number of parameters.

Many extensions to standard Pascal are
provided by different compilers. For example,
some Pascal compilers allow declarations and
definitions to be placed wherever procedure
statements can be placed. This feature can be
exploited to hide most systems variables from
the user. This is illustrated in Prog. 2
where we show the structure of a program where
those system variables and procedures that the
user should know about are defined before the
user written model, and everything else is
defined after this program. All systems
procedures follow the user defined model.
Global forward declarations are used to tell

the user about those language routines that
the user may call. Everything else is outside
the scope of the user model (and hence
protected from his/her intervention).

C. The rest of this paper

It is the purpose to this paper to assist
would-be language developers by presenting a
survey of current approaches to some of the
more important and difficult design problems
facing language developers. In doing the
research for this paper, we developed a
Pascal based simulation language S.PAS. This
language, which illustrates all the points
discussed in this paper (and many others such
as model building blocks (i.e. workstations,
recurrent event streams), additional random
number generators and separately compiled
modules using TurboParcal 4.0) . S.PAS is
not intended to compete with many of the
excellent Pascal based simulation languages
(e.g.Bryant (1980), Uyeno and Vaessen (1980),
Seila(1986), Barnett(1986), Mallroy, and Soffa
(1986) , O'Keefe and Davies (1986)) currently
available. Copies of S.PAS are available from
the author.

In section two of this paper we discuss
the problem of event set management. An
empirical evaluation of different approaches
is given and the code for an efficient
algorithm for tree structured set management
is given. In section three we present
efficient algorithms for the generation of
random variates from the uniform, exponential,
normal and gamma distributions. S.PAS also
illustrates the use of model building blocks
and real-time graphics . These subjects are
not covered in this paper due to space
limitations.

IXI. EVENT SET MANAGEMENT

A simulation program may be thought of as
a specialized data base management program.
Records are used to represent entities and
events, and pointers are used to link
together records of similar types such that a
logical ordering of records is maintained.
For example, as shown in Figure 1, records
representing event notices are linked together
by pointers such that event notices are
maintained in increasing order.

 J

Eveny Event] Next
Code | Time [Event

Event] Next
Time |Event

Event
Code

Event Notice 4 Event Notice 3 f

Event] Next

Event Event| Next-ifplEvent
Time [Event

code | Time [Event Code

Event Notice 1
Header

Event Notice 2

Figure 1: A simple data structure for the event
set
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A. Need for efficiency

A significant fraction of total computer
time and a substantial amount of computer code
is usually devoted to the maintenance of the
event set. The most time consuming part of
this task is to find the proper position in
the event set for insertion of new event
notices. If new events are equally likely to
be inserted in any position in the event set,
then, on the average, half of the set must be
searched for each insertion if the data
structure used in Figure 1 is used. This
searching can be extremely time consuming for
large event sets. (However, event notices are
not likely to be created in this fashion, and
a somewhat faster search scheme may be
possible if it is known if an event is likely
to be inserted towards the beginning or the
end of the set).

Given the expensive nature of event set
management using the data structure in Figure
1, most commercial languages use a more
sophisticated structure. Many such structures
have been suggested. McCormac and Sargent
(1981) analyzed algorithms available at that
time. Four algorithms performed well:

Binary Search indexed-List (Henriksen (1977))
Modified Heap, (two versions).
Indexed-List (Vaucher & Duval (1975))

Several additional approaches have been
suggested since that time (most notably
Kingston (1984) and Sleator and Tarjan(1985)).
The relative merit of these structures is
still open for debate. For example there is
no universal agreement on the battery of tests
to which algorithms should be subjected (see
for example Vaucher's (1986) letter to the
editor commenting on a recent paper by Jones
(1986)). The tradeoffs in selecting a data
stru-~cture are between simplicity (i.e.single
linearly linked list), presence of underlying
theory (i.e.splay tree ) and ease of
implementation. Common for all efficient
algorithms is the fact that they reduce the
length of the path being searched by
introducing a tree~like data structure. This
tree can be explicit (Section II.B) or it can
be implicit (for example Simscript II.5 uses
multiple lists, and a branching mechanism is
used to find the proper list).

B. A Tree structure for event sets

A fairly elaborate, but efficient data
structure for event set management is given in
Figure 2. This structure has the following
features:

~ Several classes of event codes are recognized
-~ User codes are conventional event codes
—— Systems codes are intercepted by the event
manager, and the corresponding events are
handled without user knowledge. (Used to
generate recurrent event streams, flush work
stations, graphics, etec.).

Three classes of records are used
-- The event notice

-~ The affiliated entity (if any)
-~ The node
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(Nodes maintain order using binary tree)

EventSetRoot

Node record

fos | [,

Event notices describe events and
point to nodes and entities

User| Syst| Eventj Sh | Mean| Af£flt
Code |Code |[Time |ape|Intvl| Entity
E',vent Notice Record
{CIR | 1.03]1[2.00{nil |
Recurrent customer arrival
a|E[246] |  [nil |
User defined end of service
[ Ipfoof [ | |
Systems event of type D
[ T 1]
Userdefined end of run

Figure 2: Structure of Event Set Data Base.
Note use of separate records to
maintain oxder

We use a separate node record to maintain
order in the set. Identical node records are
used to maintain order in other sets (such as
queues etc) .This enables us to user the same
code and data structure to maintain order in
all our sets.

C. Using rotations to balance event trees
A problem with the data structure proposed
above is that the resulting binary tree may
evolve in an unbalanced fashion. In fact it
is theoretically possible for the tree to
degenerate to a linearly linked list (although
this is extremely unlikely in practice).
Several techniques have been proposed for
making adjustments in the tree such that it
remains balanced at all times. A particularly
attractive approach involving automatic
rotations following each insertion is
suggested by Sleator and Tarjan (1985). Their
approach is roughly a three step procedure:

1. Insert the new event notice as a leaf
at the proper place in the tree.

2. Determine if rotations are required
(they are if the new node is more that four
levels from the root).
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3. Recursively
the subtree starting at the new node's grand
parent according to the rotation rules given
in Figure 3.

R
®C N T &
A B A

Case 1: New node (N) is left child of parent
(P) . Parent is left child of
grandparent (G).

(G)
T T w3,
A YN (Py (G
B  C A BC D

Case 2: New node (N) is right child of parent
(P). Parent is left child of
grandparent (G).

<D,
~ ;ﬁ@
A B C D

]

(P
©.

B C D

Case 3: New node (N) is left child of parent
(P) . Parent is right child of
grandparent (G).

- < S,
T 3m g w
¢ D A B C D

Case 4: New node (N) is right child of parent
(P) . Parent is right child of
grandparent (G).

Figure 3: The effect of splay rotations on

the event set. Rotations are

intended to reduce the depth of the
tree. The applicable rotation
depends on the path from the newly
inserted node to the root.

An example of a single application of
these rotations is given in Figure 4 A
Pascal program performing the initial
insertion of an event notice and the
subsequent rotations is presented in Prog 3.

rearrange the structure of
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EventSetRoot

925 | 1]r]ele]

EXTEERRE

Event set after event at time 7.89 is inserted

[

7.89

EventSetRoot

925 |L[r[e]e]

EXXIPELE

1.03 |L|R|P|E 7 LIRIP|E

.89

Event set after single rotation

Figure 3: Effect of rotation on an event set

D. Evaluation

Some authors argue that the complexity and
high setup cost of elaborate set management
procedures cause them to be impractical for
applications with small event set. To develop
an understanding for these issues, we
measured the time required to insert events
into event sets of different sizes. The
results are Summarized in Table 1.

Size of Event set
Data structure

15

| L
| T 1 25 | 50 1 100 | 550 | 590 |
i Simple linked list i 8 i 19 i 31 i 57 i 132 j 230 i
i Circular List i 7 i 15 i 26 i 45 i 100 i 189 i
i Unbal. Binary Tree i 8 i 12 i 14 i 16 i 17 i 18 E
i Splay Rotated Tree i 9 i i 17 i 23 i 26 i 44 i

Table 1: Time in Seconds to process 2000
events.for a simple queuing
simulation using four different data

structures
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{ }

. 3:Begin
Procedure LinkNode (var RootPtr:
AR B :=NewNodePtr".left;
nodePtrT ; NewPriority : real): )
Tiype w Ly E )'_} C :=NewNodePtr”".Right;

NewNodePtr~.left :=p;
NewNodePtr”.Right api
NewNodePtr”.Parent := LocalRoot;

{ Attache the new node as a leaf in}
{ the binary tree rooted by root }

. . P~ .Right :=b;
VAR Temp : NodePtrType: o
NewNodePtr : NodePtrType; P~.parent :=NewNodePtr;
. . GP”.Left 1=C;
done : boolean:
. . GP".Parent := NewNodePtr;
P : NodePtrType; N . ~
ep : NodePtrType; }f b <> n}l then BA.Parent:=P;
LocalRoot : NodePtrType; if ¢ <> nil then C*.Parent:=gP;

- A if LocalRoot”.left = GP then
Rotate : integer; LocalRoot”.left := NewNodePtr
. lse
Procedure RotateRequired; & A D4 Y .
{ Determine direction of last two links} d.LocalRoot -Right :=NewNodePtz;
begin end;
P :=NewNodePtr”.Parent; . ,
gp :=p”.Parent; 4'Begln 1= P".Left;
LocalRoot := gp”.parent; N i cueLti
Rotate :=0; PA'left = GB;
if localRoot <> RootPtr then ZP;PaFeﬁE L i?calRoot;
if p~.left = NewNodePtr then GPA'glg t:: P(
if gp~.left = p then f b 2§en'i_th’
{p.left =NewNode; gp~.left = p} ir o ni en
Rotate:= 1 else 'fBL'PaientéiGiif _
{p.left =NewNode; gp”.right =p} * oca ROOA -left =GP then
Rotate := 2 else LocalRoot”.left :=p

else

if gp~.left = p then LocalRoot”.Right := p;

{p.right =NewNode; gp”.left=p}

Rotate := 3 ; end;
else end;
{p.right =NewNode;gp".right=p} Z?d;
Rotate := 4; {end: endi
Procedure DoRotate; begin i~ falses
Var a,b,c,d : NodePtrType; one := ralse;
Begin Temp := rootPtr;
if LocalRoot <> RootPtr then begin GetNewNode (NewNodePtr) ; .
Case Rotate of NewNodePtxr”.Priority := NEwPriority;
1:Begin repeat .
c 1= P~.Right; if NewPriority <= Temp”.Priority
P~. Right := GB; then begin
P~. Parent:= LocalRoot; if Temp~.left <> nil then
GP~.Parent:= P; begin .
GP~.Left := ¢; Temp:= Temp”.left;
if c<>nil then c*.parent:=GP; endl peqi
if LocalRoot”.left = GP then eise begin
LocalRoot”.left := p Temp”.left := NewNodePtr;
else done := true;
LocalRoot”.Right := p; end
end; end .
2 :Begin else begin
B := NewNodePtr”.left; if Temp”.right <> nil then begin
c := NewNodePtr".Right; Temp:= Temp”™.right;
D := P~.Right; :’llge pegin
NewNodePtr”. left := ; 5
NewNodePtz". Right:= g]?' Temp”.right := NewNodePtr;
NewNodePtr”.Parent :=LocalRoot; gone = true;
GP~.Right 1= B; 3’}
P~. Left 1= C; e‘}l'd .
if b <>nil then B~.Parent:=GP; until done ;
if ¢ <>nil then C*.Parent:= P; NewNodePtr”.Parent := Temp;
P~. Parent := NewNodePtr; {see if need rotations to flatten tree }
GP;.Parent c= NewNodePtr; Repeat{ determine access path}
if d<>nil then d~.Parent :=p; £ Rotateigqgﬁred;b ,
if LocalRoot”.left = GP then Rgtate ) then  begin
LocalRoot”.left:=NewNodePtr DoRotate;
else Rogate :=0;
A R4 - , end;
endI..ocalRoot .Right :=NewNodePtzr; until Rotate = 0;
! end; {link}

Prog 3: ?ascal procedure for-inserting event notice into a
binary tree using splay rotations.
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It is seen that the tree oriented
structures perform considerably faster than
linear lists for large event sets. Also, we
see that there is not a significant difference
between the structures for small (i.e. one
event) sets. Finally we note that the binary
tree structure without rotations was faster
than the structure with rotations. Apparently,
the unrotated tree remained balanced during
our test. Unfortunately we are not able to
guarantee that this always is the case. Since
the worst case performance without rotations
is identical to the performance for linear
linked list we recommend the use of
rotations.in all cases.

III. PSEUDO RANDOM NUMBER GENERATORS

A. Simple congruential generators

The basic pseudo-random number generator
used in almost all simulation programs is
the linear congruential generator (LCG)
defined as:

X(i+l)=a * X(i) + ¢ MOD M

Here the modulus M and the multiplier a
are positive constants and a < M. The role of
the additive constant ¢ is to protect against
degeneracy by making sure that X(i) is never
equal to zero. Note that generators using ¢
0 have the property that the initial seed
cannot be equal to zero as a stream of Zeros
will be generated if this is the case. This
is an annoying feature when using compilers
that automatically initialize all integers to
zZero. .

Setting aside for the moment the issue of
the quality of the resulting random number
stream, the main problem in implementing an
LCG in Pascal is to find a way to deal with
the integer overflow that frequently occurs
when a * X(i) is computed. Three approaches
are suggested:

1. Hope that your compiler does not
recognize integer overflows. Prog 4 gives a
TurboPascal implementation of an LCG that
relies on this "feature”.

2. Define the seed to be of an enumeration
type (i.e. [0..65536] and hope that the
compile does not check enumeration ranges
(this works for several main frame compilers).
Some compilers provide commands to disable
range checking, check, for example,

v {$rangeeck- " disables this check for the
Microsoft Pascal compiler. The resulting
procedure has the same restrictions as those
listed above.

3.Use a "portable" computational procedure
that avoids overflow. Bratley et al. (1983)
gives a procedure for portable generators that
avoids integer overflow if a*a < M. This is
achieved by breaking the computational
procedure into smaller steps each of which
involves wvalid arithmetic. Prog 5 gives a
portable generator adapted form L'Eculier
(1987)
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var s:integer;

Function rnnr:real;

begin
s 1= g *3993 +1;
if s < 0 then s := s + maxint +1;
ronr :=s*3.05185e-5;

end;

Prog 4: A linear congruential generator using
Turbo Pascal. This generator has a
period of 32768 for any initial seed.
Other good multipliers are suggested

in: Thesen et. al. (1984).

var s:integer;
Function Unif:real;
CONST

A = 162;

M = 32749;

Q = 202; {satisfies M=A*Q+r where r <A}

R = 25;

SCALEFACTOR = 3.05353e~5; { 1/M}
var

k integer;
begin

k = s div Q;

s = a * (5 - k*Q) -K*r;

if s < 0 Then s := s+m;

unif := s * SCALEFACTOR;

end;

Prog. 5: A "Portable" linear congruential
Generator using Turbo Pascal This
generator is degenerate for s = 0.
Adapted from L'Eculier (1987)

Writing a routine that works is only half
the struggle. We also must make sure that the
resulting stream of numbers pass reasonable
tests for randomness. This is achieved by
selecting "good" values of a, c and M, Among
the properties that can be achieved this way
are:

— Non-Degeneracy.

Properties independent of the initial seed

Passing battery of tests for randomness of sequence
Passing battery of tests for uniform distribution.

1

However it should be noted that there are
certain intrinsic properties of LCG generators
that will always be present in the resulting
random number stream. Among these properties
are:

~ Short cycle (32767) for 16 bit generators.

- Equal intervals between all like numbers.

- x-y plots of output pairs will form lines (with a
slope of a).

Thesen et.al.(1984) 1lists values of a
that results in reasonable performance for 16
bit generators with M = 32768 and ¢ =1.
Fishman and Moore (1986) presents an exhaustive
evaluation of all multipliers for 32 bit
computers.
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Function icombined: integer;

Var
z,k:Integer;
begin
k := sl div 206;
sl := 1587 * (sl - k * 206) - k * 21;
if 81 < 0 then sl := sl + 32363;
k = 52 div 217 ;
52 :=146 * ( s2 - k*217) ~ k * 45;

if s2 < 0 then s2 s2 + 31727;

k := s3 div 222;

83 := 142%* (s3 - k*22) - k * 133;
if 83 < 0 then s3 := s3 + 31657;
z = sl - §2;

if z > 706 then 2z := z - 32362;

z =z + s83;

if z < 1 then z := z + 32362;
iCombined := z ;

end;

Prog 6: A long-period, portable generator of
uniform integers on 0 32767 (Adapted
from L'Eculier (1987)

B. Combined Generators

Most of the weakness listed above can be
overcome by combining numbers from several
different independent generators. One of the
first combined generators was suggested by
Knuth (1982), referred to as a shuffle
generator, this generator maintains a table of
random variates. A random index is drawn, the
variate in this position is returned, and it
is replaced by drawing from the other random
number stream. The period of the resulting
stream is equal to the product of the period
of the two streams if these periods are
relative prime. A draw back of this approach
is the fact that a fairly large amount of
memory is required to store the required
table. Also, fairly substantial initialization
is required. A Pascal implementation of a
shuffle generator is given in Thesen et.al.
(1984)

A more recent combined generator is given
by L'Ecuyer (1987). This procedure exploits
the facts that:

1) (Ul + U2 + U3) Mod Ml is uniformly;
distributed between 0 and M if Ul is a
uniform variate between 0 and M, a d U2
and U3 are discrete random variables;
and,

2) The period of the combination Ul, U2, U3
is the least common multiple of the
periods of the three generators.

A sixteen bit implementation of this
generator is given in Prog 6. The coefficients
used in this implementation were extensively
tested, and the resulting performance on
spectral tests was shown to be exceptionally
good.

C. Constructing floating point wvariates.
Random variate generation is exceptionally
time consuming on micro computes without
floating point hardware. This is because at
least one floating point division is required
Var S1,S2:integer;
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Function uniform:real;
{ Fast generator of Uniforms on 0 -1}

{ From Thesen (1985) }
var
k integer;
ux: record case integer of
~1:( unif real );
2: (ex,ml:byte;
M4 :byte;
M3:byte;
M2 :byte;
M5:byte;

)i
3:(wl,w2,w3:integer);
end;

Function Rbytel:byte;

begin

sl := sl *3993 +1;

rbytel := sl shr 8;

if sl < 0 then sl := sl + maxint +1;
end;

Function Rbyte2:byte;

begin
s2 := s2 *2837 +1;
rbyte2 :=s2 shxr 8;
if s2 < 0 then s2 := s2 + maxint +1;
end;
begin
with ux do begin
ml := rbytel;
m2 :=rbytel;
m3 := rbytel;
m4 :=rbytel;
m5 :=rbytel;
m5 := m5 shr 1;
ex :=128;
if ml < 128 then begin
ml := ml +128;
ex := 127;
k := rbyte2;
while k = 0 do begin
ex := ex -8;
k := rbyte2;
end;
if k < 128 then begin
if k >= 64 then ex := ex -1
else if k >= 32 then ex := ex -2
else if k >= 16 then ex := ex -3
else if k >= 8 then ex := ex -4
else if k>= 4 then ex := ex -5
else if k>=1 then ex := ex -6
else ex := ex -7;
end;
end;
Uniform := unif;
end;
end;

Prog. 7: A Fast Generator of Uniform Variates
on 0 -1. This generator uses the
(non standard) floating point
notation adopted by TurboPascal.
slightly different version is
required when using the standard
notation. From Thesen (1985).

A
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to scale down a large random integer to the
range [0-1]. Thesen(1985) gives a method that
avoids this division by independently genera-
ting the floating point mantissa and exponent.
Different distributions are used for the
exponent and mantissa such that the resulting
floating point number is in the range [0-1].
The resulting program is given in Prog 7.

The period of the generator given in Prog
7 is unknown, but exceptionally long. The
advantages of this generator is its speed and
the good empirical properties of the resulting
stream of deviates. The weakness of the
procedure is the need to do bit-level
manipulations and the lack of a strong
mathematical theoxry.

D.Evaluation

A summary of the properties of four
different 16 bit generators is given in Table
2. It is seen that Prog 7 is the fastest
generator of numbers on [0 - 1] and that the
conventional LCG is the fastest generator of
integers. The combined generator (Prog. 6) is
relatively slow, however it has the dual
advantages of portability and good statistical
properties.

|ALGO- | | Range | Resol-| Period|Time for]
{RITHM |Prog] | ution | | 10,000 |
Fomm e g —— e ———— 4 + 4
|Basic | 4 10-32767| 1 | 32767 | 1.8sec]|
| LCG | [0.0~-1.0]3.1E-5 | | 16.9sec|
Fmm— ot + + + t
jPortab| 5 [1-32749] 1 | 32748 | 2.6sec]
|le LCGI {10.0-1.0[3.1E-5 | | 18.7sec]|
+-= f————+ o 4 + t
|Comb | 6 [1-32362] 1 | 8.1E12| 6.3sec]|
|ined | [0.0-1.013.1E-6 | | 22.6sec|
+ t + - + + et +
|Constr| 7 10.0-1.0]4.7E-10] <6.4E8| 8.6sec|
|uction]| | | | | |
+ ety ———te— + + ———t

Table 2: Relative performance of four
different pseudorandom number
generators for the IBM-EC.

IV. OTHER DISTRIBUTIONS

In this section we present efficient
pseudorandom number generators for variates
from the exponential, normal and gamma
distributions. The reader is referred to
Devroe (1986) and Rubinstein(1981) for
additional information and for generators of
variates from other distriobutions.

A. The exponential distribution

Exponentially distributed random variates
are most conveniently generated through the
use of inverse transformation:

X := -mean*1n (unif))

where unif is a random variate drawn from the
uniform distribution on [0 - 1] and mean is
the mean of the desired exponential
distribution. This approach has the advantage
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of being so simple that a separate
procedure may not be required. However, most
general purpose ln function use a Taylor
series expansion with a large number of terms.
Each of these terms require a multiplication
and a division. The use of the 1ln function
may therefor be quite time consuming.

In Figure 5 we suggest an other approach.
Based on an idea attributed to Marsaglia by
Knuth (1982), we decompose the exponential
density function into 13 other density
functions, most of which represent
distributions that are easier to deal with
than the exponential distribution. It is seen
that we have approximated the exponential
density function using 6 uniform density
functions, 6 triangular functions, and, only
on the tail, the exponential distribution.
The coefficients on Figure 5 were selected
such that the maximum error in the resulting
linear approximation of the exponential
density function is 0.001.

The resulting algorithm is a three stage
process:

1.Deternine which density function to use:
A. Select the distribution to be used:
i .Uniform { P{u)=0.7606 }
ii. Triangular { P(t)=0.2152 }
iii, Exponential { P(e)=0.0242 }
B. Select distribution parameters

2.Generate a random integer using this
density function.

3.Convert the integer to a floating point
number and scale down as appropriate.

Figure 6 shows the binary search tree that
is used in steps 1 and 2 to identify the
distribution to be used. Note that we use an
integer uniformly distributed on 0 - 32767
rather than a floating point number
distributed on 0 - 1. This increases
execution speed significantly when micro
computers are used.

A Pascal implementation of this procedure
is given in Prog 8. The expected level of
effort for Prog 8 quite low as the (fast)
uniform distribution is used 76.06 % of the
time while the triangular function is called
21.5 % of the times. (Two uniform variates are
required to generate one triangular variate).
The time consuming ln function is called only
2.42 % of the time. A comparison between the
performance of this algorithm and the
conventional inverse transformation algorithm
is given in Table 3. It is seen that Prog 8
is seven times faster than the conventional
approach.

| Method |

B et frmm e ————— +
| Inverse Transformation | 22 Seconds |
e + +
| Decomposition | 3 Seconds |
+——= + +

Table 3: Time to generate 1000 exponentially
distributed variates on an IBM-PC without an
8087 co-processor.
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CONST MULT = 3997;
var seed : integer;

{
FUNCTION Expo(mean :Real) :Real;
{ }

var x : real;

CONST
PUNIFORM = 24923;
PTRIANGULAR = 31975;
MULT = 3997;

var{in stead of comparing on 0.0 - 1.0,
we use ix to compare on 0 -32767}
ix : integer;

function irand:integer;

begin
seed :=seed * MULT +1;
if seed < 0 then seed:=seed+maxint +1;
irand:=seed;

end;

procedure UseUniform;

const
P03027 = 7329; ({pr(x<0.3027 =.2236 }
PO6619 = 13401; {pr(x<0.6619 =.4089 }
P10965 = 18157; {pr(x<1.0965 =.5541 }
P16554 = 21656; {pr(x<1.6554 =.6609 }
P24340 = 23892; ({pr(x<2.4340 =.7291 }
begin

1f ix < P06619 then
if ix < P03027 then
{ x 1 unif on 0 - .3027}
{ ix is unif on 0 - P03027}
expo:= irand*9.23795e~6
else{ x is unif on .3027 - .6619}
{ ix is unif on P03027- P06619 }
expo:= 0.3027 + irand * 1.09622e-5
{1.09622e-5 = 0.3592/maxint}
else
if ix < P16554 then
if ix < P10965 then
{ x is unif on .6619 - 1.0965}
{ ix is unif on P06619 - P10965}
expo:= 0.6619 + irand * 1.32633e-5
else{ x is unif on .10965- 1.6554}
{ ix is unif on P10965 - P16554}
expo:= 1.0965 + irand * 1.70568e-5
else
if ix < P24340 then
{ x is unif on 1.6554 ~ 2.4340}
{ ix is unif on P16554 - P24340}.
expo:=1.6554 + irand * 2.37617e-5
else { x is unif on 2.4340 - 3.7210}
{ix is unif on P24340~PUNIFORM}
expo:=2.434 + irand * 3.92773e-5
end;
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Procedure UseTriangular;

CONST
P03027 = 26152; {pr(x<0.3027=.0375 }
P06619 = 27384; {pr(x<0.6619=.0376 }
P1l0%65 = 28616; {pr(x<1.0965=.0376 }
P16554 = 29806; {pr(x<l.6554=.0363 }
P24340 = 32014; {pr(x<2.4340=.0351 }

var itriang,i2:integer;

u: real;

begin - .
itriang :=irand;

i2:=irand; {min(il,i2) is triangular}
if itriang > i2 then
itriang:=1i2;
if ix < P06619 then
if ix < P03027 then
{ x is triangular on 0 - .3027}
expo:= itriang*9.23795e-6
else
{x 1s triangular on .3027-.6619}
expo:= 0.3027 + itriang
*1.09622e~5
{1.09622e-5 =0.3592/maxint}
else
if ix < P16554 then
if ix < P10965 then
{ x is unif on .6619-1.0965}
{ix is unif on P06619~P10965}
expo:=0.6619+itriang*1.32633e-5
else
{x is unif on .10965~ 1.6554}
{ix is unif on P10965-P16554}
expo:=1,0965+itriang*1.70568e-5
else
if ix < P24340 then
{x is unif on 1.6554 - 2.4340}
{ix is unif on P16554 -P24340}
expo:=1.6554+itriang*2.37617e-5
else
{x is unif on 2.4340 - 3.7210}
{ix is unif on P24340-PUNIFORM}
expo:=2.434+itriang*3.92773e-5;
end;

Procedure UseExponential;

var x:real;

begin
x:=irand*7.38550e-7;
expo:=-1n((x));

end;

begin
ix :=irand;
if ix < PUNIFORM then
{use unif distr. with p= 0.7603}
useUniform
else
if ix < PTRIANGULAR then
{use triangular with p= .2155}
UseTriangular
else
UseExponential;
{get tail from expo with p = 0242}
end;

Prog 8: Fast generator of exponentially
distributed variates.
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1.0000
0.0375
0.7388
0.0376
0.5159 =
0.0376
0.3340 == 0.0363
=]
0.1910 = O 0.0351 0.0323 .0312
o | 0.0242
0.0877 =4 | 1853 e —
0.0242 wm ., 1425 .1063 0683 —
1 | ]
3027  .6619 1.0965 1.6554 2.4340 3.7210
Figure 5: Decomposition of exponential density function

into 13 other density functions.

Coefficients

are selected such that maximum error is less
than 0.001

3 63 o (28616) (32014 )
1425 1063 0683 .0312 .0375 .0376 < z < /f\2
O O O O
0376 .0363 .03510.0323
< »
UNIFORM LEFT TRIANGULAR
Figure 6: Binary search tree for exponential generator.

B. The normal distribution

Many programmers generate normally
distributed random variates by first adding 12
uniformly distributed random variates and then
dividing the answer by 12. This approach has
the advantages of being simple and of being
easy to implement. However it also is
computationally slow and it generates numbers
from a distribution that is a poor approxi-
mation of the normal distribution. Many other
approaches to the generation of normal
variates are available. Kachitvichyanukul and
Lyu (1986) presents an evaluation of 7 such
algorithms. A summary of their computational
results is given in Table 1.

The three decomposition procedures listed in
Table 4 are all quite fast. While the
Kinderman & Ramage(76) procedure performed
best on the Macintosh, similar tests using
different hardware (i.e.IBM-PC) and faster
uniform generators (i.e Thesen (1985)) cause
the speed advantage of these tree generatoxrs
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to be inverted (Kachitvichyanukul and
Lyu(1986)). We therefore hesitate to use
speed as the sole criteria for secting on e of
these generators. Instead, we consider
program size and program complexity. Based on
these criteria, we recommend the use of the
Kachitvichyanukul (86) procedure. A listing
of this procedure is given in Prog 9.

ALGORITHM REFERENCE RELATIVE TIME
Decomposition Kinderman & Ramage(1976)1.4 sec
Decomposition Deak (1981) 1.5 sec
Decomposition Kachitvichyanukul (1986) 1.8 sec
Logistic Majorizing Tadimakalla (1978) 4.4 sec
Sum of 12 uniforms Folklore 4.4 sec
Polar Method Box & Mueller(1958) 4.5 sec
Exponential Majorizing Tadimakalla(1978) 5.6 sec

Table 4:Time in seconds on an Macintosh to
generate 1000 normally distributed
variates using different published
algorithms.
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PROCEDURE Normal (VAR ISEED:integer;VAR X: TYPE
real); GammaDataType = Record
{NORMAT, GENERATOR by xLeftTail, XRightTail: real;
VORATAS KACHITVICHYANUKUL x1,%x2,%x3,x4,%x5:real;
INDUSTRIAL AND MANAGEMENT ENGINEERING Pl,p2,p3,p4,p5,p6,p7,p8,p9,pl0:real;
THE UNIVERSITY OF IOWA Fl,£2,£3,£4,£f5 : real;
modification suggested by Bruce Schmeiser Alpha, Beta : real:
December 1986 ) end;
{ Ref: Kachitvichyanukul, V. and Lyu, Jrjung GammaData : G Datalype;
On Computer Generation of Normal Random Variables, . 3
Research Report 84-1, Industrial and management Function Gamma(NewAlpha,NewBeta:real) :real;
Engineering, The Univ.of Iowa} VAR
X,V ,unifl, unif2 ireal;
CONST accept : boolean;
© A = 2.21603587 ;
Pl = 0.79913208 ; Procedure MakeGamma;
VAR ‘ var
Accept : boolean ; d : real;
U, V : real ; begin
BEGIN

with GammaData do begin
alpha := NewAlpha;
beta := NewBeta:;

Accept := FALSE ;
WHILE NOT Accept DO BEGIN
U := RAND ( ISEED ) ;

{ REGION 1 TRIANGULAR } X3 := alpha - 1;
IF (U <= P1 ) THEN BEGIN {IF ( U<=P1 )} d i= sqrt (x3); _
X := A * ( U/Pl - RAND(ISEED) ) ; if alpha <= 2. then begin
Accept := TRUE ; x2 := 0:0; £f1 := 0.0; £2 := 0.9;
END { IF ( U <= P1) } xLeftTails=—1;
ELSE BEGIN { ELSE IF (U > P1 ) } end
{ REGION 2 PARALLELOGRAM } else begin
V := RAND ( ISEED ) ; x2 = x3 - d; x1 := x2*%(1.-1./d):
IF (U <=0.97206652) THEN BEGIN{U <= P2} xLeftTail := 1. - x3/x1;
=A XV ; f1 := exp (x3*In(x1/x3) +x3-x1);
Vv := U/1.59826416 - V + 0.5 ; £2 := exp (x3* 1n(x2/x3)+x3-x2);
END end;

ELSE BEGIN {REGION 3 EXPONENT'L TAIL} x4 := X3 + 4
. ’

Vom Vx5 0138958 % ( 1.0 - T ) if d > 0 then x5 i= xd4*(L.+1./d);
END; xRightTail := 1 - x3/x5;
BEGIN (FINAL ACCEPT REJECT TEST) £4 := exp (x3* In(x4/x3) + x3 - x4);
IF(LN(V) <= ( -X *X*0.5))THEN BEGIN £5 := exp (x3* ln(x5/x3) + x3 ~ x5);
{ RETURN X OR -X WITH EQUAL PROB} { calc scaled cum.prob.of each region }
IF (RAND(ISEED) <= 0.5 )THEN pl = £2%(x3-x2);
X 1= =X ; P2 = pl + £4*(x4-x3);
Accept := TRUE ; p3 = P2 + f£1*(x2-x1);
END ; pé4 := p3 + £5*%(x5-x4);
END ; PS5 = pd + (1.-£2)*(x3~x2);
END ; P6 := p5 + (L.-f4)*(x4~x3);
END P7 i= p6 + (£2-£1)% (x2-x1)*0.5;
END P8 = p7 + (E4—E5)*(x5-x4)*0.5;
Prog 9:: A fast generator of normal variates gio =§g + E;;:ﬁ:;ﬁgg;ii,

Kachitvichyanukul and Lyu(86) .

c. The gamma distribution
Procedure AcceptForSure;

Schmeiser presents one of the fastest and begin
shortest algorithms for generation of gamma Accept := true;
distributed variates with shape parameters with GammaData do
greater than one (Schmeiser(80)). A TurboPascal if unifl < pl then x := %2 + unifl/£2
implementation of his procedure is show in else .
Prog 10.. Utilizing a decomposition principle if unifl p2 then x := x3+(unifl-pl)/£4
somewhat similar to the one shown in Figure 3 else .
for the exponential distribution, the if unifi<p3 then x:=x1+(unifl-p2)/f1
algorithm first computes the probabilities and else ,
ranges for the different regions for the ¥ 1= x4 + (unifl-p3)/£5
specified values of alpha (shape) and beta end;
(scale) parameters. These are then saved, . .
and reused for consecutive calls. To save Procedure RectangularRejection;
setup cost, simulations using several begin e
different gamma streams may therefore benefit unif2 := unif (iseed);
from the inclusion of independent gamma with GammaData do ,
generators for each stream. if unifl <= P5 then begin
X 1= x2 + (x3~%2)*unif2;
if (unifl-p4)/ (p5-p4)<=unif2 then

accept := true
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else
v :=£f2 +(unifl - p4)/(x3-x2)
end
else begin

x 1= x3 + (x4-x3)*unif2;
if (p6-unifl )/ (p6-p5)>=unif2 then
accept := true
else
v := f4 + (unifl - p5)/(x4-x3)
end;
end;

Procedure TriangularRejection;
var triangular: real;
begin
{ draw triangular random variabe}
Triangular := unif (iseed) ;
Unif2 := unif (iseed)
i1f Triangular<unif2
then Triangular:= Unif2;
with GammaData do
if unifl <= p7 then begin
x = x1 + ( x2-x1)*triangular;
v £1 + 2 * triangular *
(unifl-p6)/ (x2-x1);
if v <=f2*triangular then
accept:= true;

]

end
else begin
X := %5 ~ triangular* (x5-x4);
v := f£5 4+ 2.*triangular*
(unifl-p7)/ (x5-x4);
end;

end; {TriangularRejection}

Procedure Exponential;
begin
Unif2 := unif (iseed) ;
with GammaData do
if unifl <= P9 then begin
unifl := (p9-unifl)/ (p9%-p8):
x := x1 - ln(unifl)/xLeftTail;
if x> 0 then
if (unif2 < (xLeftTail*
(x1-x)+1 )/unifl) then
accept := true;
v = unif2*fl*unifl
end
else begin
unifl := (plO-unifl)/(pl0~p9);
x := x5 - ln{(unifl)/xRightTail;
if (unif2 < (xRightTail*
(x5-x)+1) /unifl) then
accept := true
else
v o=
end;
end;

unif2*£5*unifl;

begin
with GammaData do begin
if NewAlpha <> alpha then

MakeGamma
else
if NewBeta <> beta then makeGamma;
repeat
Accept := false;
unifl := unif (iseed) * p1l0;
if unifl < P4 then
AcceptForSure
else
if unifl <P6 then RectangularRejection
else

if unifl <p8 then TriangularRejection
else exponential;
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if not accept then
if x > 0 then
if In(v)<x3*ln(x/x3)+x3-x then accept :=

true;
until accept:
Gamma := beta*x;
end;
end;

Prog 10: Gamma Generator (Adapted from
Schmeiser (1980))

V. SUMMARY

In this paper we have attempted to fill a
void in the literature by providing efficient
implementations of important algorithms needed
in most simulation programs. Needless to say,
it has not been possible to provide a
comprehensive review of all available
algorithms within the page limitations of this
paper. Many additional concepts are
illustrated in the simulation language S.Pas
that we developed to evaluate the procedures
presented here. A floppy disk containing the
source code for this language is available
from the author..
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