Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

THE SMALLTALK SIMULATION
ENVIRONMENT, PART 11

Verna E. Knapp
Computer Research Laboratory, MS 50-662
Tektronix Laboratories
P.O. Box 500
Beaverton, Oregon

ABSTRACT

This paper discusses the use of Smalltalk as a discrete
event simulation environment, SimTalk, which is an
extention of Smalltalk, is also discussed. Smalitalk is
an object oriented language with interactive program-
ming support, multiple process support, and interactive
graphics. SimTalk adds queueing support, statistics
gathering, simulation oriented graphics, and an interac-
tive user interface which greatly simplifies modification
of running simulation experiments,

1. Simulation with Objects and Processes

The real world can be modeled of as a set of objects with
concurrent processes associated with them. The objects interact
with each other, and this can be modeled as communicating
processes, with the process communication taking the form of
messages sent to the objects together with the resulting replies.

In a simulation, objects of the same kind can be said to
belong to a "class" of objects which behave according to some par-
ticular protocol. Each object is an instance of the class. For exam-
ple, in a simulation of a ski resort, each skier would be an in
instance of a Skier class. All skiers would then behave according
to the same protocol. Each execution of the protocol would be a
process associated with a skier.

Time is modeled in such a simulation by maintaining a simu-
lated clock and a time queue, and suspending the execution of a
process until it reaches a place in the time queue which
corresponds with the current simulated time. When this occurs it is
removed from the time queue and execution of the process
resumes until the protocol requires it to wait until a later time.
Then the process is suspended and put back in the time queue ata
point corresponding to the time at which it will again be resumed.

Processes may also be suspended while waiting for other
types of events to occur. An example of this is queueing. For
instance, the skier joins a lift line. This is modeled by suspending
the skier process until the skier reaches the front of the line and is
picked up by the ski lift.

2. Smalltalk Simulation

In Smalltalk, everything is an object. There are one or more
processes, and at any given point in time, a process is associated
with one object. Communication takes the form of an object
sending a message to.another object, and receiving a reply.

Objects in Smalltalk are instances of classes. Each class of
objects has a set of methods associated with it which are invoked
by sending a message t6 the object, These methods would
correspond to the simulated object’s protocols.

Smalltalk supports class hierarchies and subclassing. This
means that a class can be defined as a subclass of another class, An

146

object which is an instance of a subclass understands messages
which invoke methods of its superclass as well as its own methods.

Smalltalk also supports multiple concurrent processes. A pro-
cess can be created, suspended, resumed, and terminated. Thus
Smalltalk needs only a time queue and other queueing with pro-
cess control to correspond to the real world model as described
above. SimTalk implements this additional support plus a large
number of user interface and simulation support features in
Smallialk.

3. Interactive Simulation

An interactive simulation environment would have graphic
displays of variables which are of interest in the simulation. It
would allow the user to suspend the simulation processes, modify
variables, add or delete simulated objects, and continue the simula-
tion. This allows the user to develop a better intuition as to what is
going on in the simulated system, and to experiment with the sys-
tem to quickly determine which ranges of the simulated variables
will be of the most interest. These features are also of use in
debugging a simulation, since abnormal results often show up very
quickly on the displays.

Smalltalk includes an interactive programming environment.
This means that it is possible to suspend a process in Smalltalk,
modify its variables, recompile some or all of the methods, and
continue execution of the process. It is also possible to use the
debugger to single-step through a program and examine the vari-
ables at each step if necessary.

Smalltalk also includes substantial support for graphic
displays, This graphic support has been extended in SimTalk to
provide graphs, gauges, and animation.

4. SimTalk

SimTalk defines a simulation control class which maintains
the time queue, the simulated clock, and a set of queueing points.
This class also acts as a central communication point for the simu-
lation, and controls the interactive user interface. This class is

called SimTalk.

SimTalk also defines an abstract simulated object class called
SimTalkObject. This class has methods for commonly required
simulation activities such as entering the time queue or one of the
other queues, communicating with the user interface, and creating
and scheduling other simulated objects.

A user of SimTalk will generally create a subclass of Sim-
Talk to represent the simulated world, and one or more subclasses
of SimTalkObject to represent the classes of objects to be simu-
lated in that world. Each SimTalkObject subclass will have an
actions method defined which defines the protocol for the simu-
lated object to follow when it arrives in the simulated world. The
user will write these subclasses and methods in Smalltalk.



The Smalltalk Simulation Environment, Part II

Normally these are the only two class in SimTalk for which
the user will need to define subclasses. There are a large number
of other classes in SimTalk which the user will normally use
without adding any subclasses or methods to them. These classes
include random number generators, probability distributions, sta-
tististics gatherers, statistics analysis, customer/server queueing
points for coordinating coprocesses, inventory queueing points for
the use of producers and consumers, boolean electronic gates, and
classes which provide graph display and animation functions and
an interactive user interface.

5. How to Write a SimTalk Simulation

5.1 SimTalk

SimTalk is the class which defines the simulated world. It
maintains the simulated clock and the time queue, and it controls
creating, suspending, resuming, and terminating processes. It con-
tains a list of queueing points other than the time queue. These
queueing points are known as "resources”. SimTalk also controls
the various windows which may be opened on a simulation. These
windows include an interactive user interface which allow the user
to suspend the simulation, modify it, and continue it quite easily.
There are also windows for graphs and gauges, animated display
of icons of the simulated objects, and interactive networks of
boolean gates. The user may wish to define variables which are
global to the simulated world in a subclass of SimTalk.

Smalltalk allows the user to group classes by category. The
interactive user interface uses this feature of Smalltalk by allowing
the user to interactively instantiate those subclasses of SimTalkOb-
ject which are defined in the same category as the subclass of Sim-
Talk which has been instantiated and is controlling the interface.

Thus, when the user subclass of SimTalk which will control the
simulation is defined, it should be defined in a user-defined
category which will contain all of the user-defined subclasses of
SimTalkObject which will pertain to this simulation, In our exam-
ple of writing a simulation, we have defined category SimTalk-
SkiResort-Interactive to contain all of these classes. The subclass
of SimTalk which is being defined is called SimTalkSkiResort.

5.1.1 Initialization

There are some standard methods which the user will supply
as needed to initialize a subclass of SimTalk. If the user does not
need a particular method, it may be omitted. They are:

e ipitializeVariables

o initializeObjectArrivals

o initializeResourcePool

® initializeOptionalViews

e initializeGatesOption

If the user has defined variables in the subclass of SimTalk,
the method initializeVariables must be defined to initialize these
variables, If other objects will require access to the contents of
these variables, the user must write methods to provide that access.
In our example, there are five variables. To keep count of the
number of lifts in the resort, there is liftCount. It is accessed by
skiers so they will know when they have reached the top. The
other four variables are probability distribution streams which
were centralized for efficiency’s sake. Each skier will get a pointer
to these streams upon arrival at the ski resort. Thus the method
initializeVariables looks like:

147

initializeVariables
"Initialize instance variables and create the probability
distribution streams which will be used by the skiers"

liftCount « 0.

bernoulli5 « SimTalkBernoulli parameter: 0.5.
bernoulli8 « SimTalkBernoulli parameter: 0.8.
uniform40100 < SimTalkUniform from: 40 to: 100.
uniform2080 ¢ SimTalkUniform from: 20 to: 80

The access methods for these variables are addLifts:, lifts,
bernoulli5, bernoulli8, uniform2080, and uniform40100.

If the user wants to specify the creation of simulated objects
under program control and at the beginning of the simulation, the
method initializeObjectArrivals would be used. Alternatively,
simulated objects may create and schedule other simulated objects
at any time, or the user may use the interactive user interface to
create and schedule the arrival of simulated objects. In our exam-
ple simulation, the ski resort creates a stream of skiers. The ski
lifts will be created interactively by the user. Thus the method ini-
tializeObjectArrivals looks like:
initializeObjectArrivals

"Create an arriving stream of new skiers"

self
queueCreationOf: SimTalkSkier
timeDistribution: (SimTalkExponential mean: 1)
startTime: self simTime + (SimTalkExponential mean: 1) next

If the users wants to specify a set of initial resources {queue-
ing points, discussed below), the method initializeResourcePool
may be defined. Alternatively the user may specify resources
interactively, or resources may be created at any time by simulated
objects. In our example program, each ski lift at its own initializa-
tion time creates the customer/server resource and the slope inven-
tory resource (count of skiers on that slope) which are associated
with it. Thus initializeResourcePool was not defined in this simula-
tion.

If the user wants views of the simulation other than the
interactive user interface lists, the method initializeOptionalViews
is used to specify what views will be required. For our example
only the graph view will be needed. The other options are a switch
view (for logic simulation and interactive switches), and an anima-
tion view (for icons of the objects in the simulation). In our exam-
ple initializeOptional Views looks like:

initializeOptional Views
"This simulation will require a graph view"
self initializeGraphView

If logic simulation is being done and the user wants to define
gates interactively, the method initializeGatesOption must contain
the statement "self initializeGates". Our example does not use
logic simulation.

5.1.2 Time Queue Access

The instance of SimTalk which controls a given simulation
maintains a queue of waiting processes which will resume execu-
tion at a specified simulated time. The queue is sorted according to
the simulated time at which the process is to resume. The SimTalk
object maintains a count of the processes which are in execution.



V.E.Knapp

This count is incremented when a process is resumed or created,
and it is decremented when a process is suspended or terminated.
‘When the count reaches zero, the SimTalk finds the first process in
the queue and sets the simulated clock to the simulated time at
which that process was to resume execution. Then it removes that
process from the time queue and resumes execution of that pro-
cess. It also resumes execution of all processes bearing the same
time stamp as that first process and removes them from the queue.
Having resumed execution .of all eligible processes, it then yields
possession of the processor to them. It will regain control when all
of them have either terminated or been suspended.

Any simulated object’s executing process can request to be
suspended and put into the time queue with a request to resume
execution at a specific simulated time. Any process can request the
arrival of any simulated object in the system at a specific simulated
time. When a simulated object arrives in the system, it receives the
message actions. The method actions must be specified by the user
for each class of simulated object, since it specifies the simulated
actions of the object. In addition to these normal scheduling activi-
ties, SimTalk also understands requests to reschedule queued
processes or to terminate them.

5.1.3 Queueing Points (Resources)

In addition to the time queue there are other queueing points
at which suspended processes may wait. These queueing points are
known as resources. There are two main classes of resources, Sim-
TalkCustomerServer, and SimTalkInventory. The user requests
SimTalk to create instances of the appropriate type of resource,
specifying a name for each instance. This may be done interac-
tively, or it may be done under program control. Simulated objects
request access to a resource either through the name, or through a
pointer to the resource. The SimTalk object keeps a collection of
resources and can provide a pointer to a resource if it is requested
by name. Queueing at resources is first-come, first served within
priority., A queued process may specify a time limit on how long it
will wait before being resumed with its request possibly
unsatisfied. A resource will also respond to queries as to queue
length, inventory size, and the position of a particular object in the
queue,

When a request is queued, the resource requests the SimTalk
object to suspend the process which made the request, and to
decrement the count of active processes. When the condition for
which the request was queued is satisfied, the resource requests the
SimTalk object to resume the process which was waiting and to
increment the count of active processes.

SimTalkCustomerServer, and its subclass SimTalkGroupCus-
tomerServer, coordinate coprocesses. A server process requests
access to one or more customers, and when the appropriate custo-
mers request service, the server process is resumed and given
pointers to the customers. The server may request parameters
which each customer has passed, and it may pass parameters to the
customers when it resumes the customer process(es). It may either
continue execution or suspend itself when it resumes the customer
process(es). Likewise, the customers may request and pass param-
eters to the server(s), dnd may either continue execution or
suspend themselves when they resume execution of the server
process(es). In general, one or more servers may be coordinated
with one or more customers in an extended conversation with
parameter passing if necessary.

SimTalkInventory, and its subclass SimTalkLimitedInven-
tory, maintain a count of an inventory, This count is incremented
by requests to create, and decremented by requests to consume.

148

Queueing occurs among consumers if the inventory is smaller than
the requested amount, and it occurs among producers if the size of
the inventory is limited and the produce request would cause the
inventory to exceed the limit,

In our example, a SimTalkCustomerServer resource is used
for each lift to coordinate the skiers with the lift in a customer
server relationship. A SimTalkInventory resource is used to count
the number of skiers on a ski slope. The skier produces 1 of the
resource when entering the slope, and consumes 1 of the resource
when leaving it. The resources are created when the lift, which is a
SimTalkObject as discussed below, is initialized.

5.2 SimTalkObject

For each class of object to be simulated, the user must define
a subclass of class SimTalkObject. This subclass will define the
behaviour of objects of that class in the simulation. Each SimTal-
kObject is created having a pointer to the SimTalk control object
which controls it. This pointer is in the instance variable "simCon-
trol". It also is numbered sequentially in the order of creation and
the number is stored in the instance variable "numbered". There
are also instance variables for the icon and its position if animation
is being used.

5.2.1 Initialization

There are two methods which the user may define to initialize
an instance of a SimTalkObject. If there are instance variables to
be initialized, use the method initialize. If animation is being used,
initializeIcon can be used to initialize the icon and sets its initial
position, and to tell the SimTalk that this object will appear in the
animation,

In our example, there are two subclasses of SimTalkObject,
They are SimTalkLift and SimTalkSkier.

When an instance of SimTalkLift is created, it must create its
own customer/server resource and its own inventory resource, It
also notifies the SimTalk that there is one more lift. Animation is
not being used in our example. Thus only the method initialize is
defined for our lift, and it looks like:
initialize

"Create a customer server resource to coordinate this lift
with its customers"

liftline ¢ self makeCustomerServerNamed: *Lft’ ,
numbered printString.

"Create an inventory resource to keep a count of the
number of skiers on the ski slope associated with this lift,
The skier will produce one item for this inventory when
he starts down the slope, and consume one item from this
inventory when he reaches the bottom of this slope."

self makelnventoryNamed: *slopeUser’ , numbered printString.
"Notify the control that another lift has been created"
simControl addLifts: 1
SimTalkSkier initializes a skier to start by going up on Iift 1.
It gets pointers to the probability distributions which the skier uses

from the SimTalkSkiResort control object. Thus the initialize
method looks like:



The Smalltalk Simulation Environment, Part II

initialize
"initialize instance variables, and get access to the
probability distributions"

atLift « 1.

lastDirection ¢ #up.

bernoulli5 - simControl bernoullis.
bernoulli8 < simControl bernoulli8.
uniform40100 <« simControl uniform40100.
uniform2080 « simControl uniform?2080

5.2.2 Actions

For each class of simulated object, its simulated actions must
be defined. This is done by defining a method called "actions",
which may of course call other methods as needed.

A SimTalkLift schedules itself to arrive in the simulation
with a pair of empty chairs at regular simulated time intervals.
Each time it arrives, it schedules the next arrival, picks up at most
2 skiers, holds onto the skiers long enough for them to reach the
top of the lift, and then resumes the skier processes. Thus the
actions method for a SimTalkLift looks like:

actions
- | skierCount skiers |

"Schedule the arrival of the next pair of chairs"
simControl queueArrivalOf: self afterWait: 5.0.
"Count the skiers in the line"
skierCount « self countCustomersAt: liftLine.
"Pick 0, 1, or 2 skiers without making the chair wait"
skierCount > 0
ifTrue:
[skierCount > 1
ifTrue:
[skiers « self findCustomers: liftLine count: 2]
ifFalse:
[skiers ¢ self findCustomer: liftLine].

"Hold the skiers in the chairs for 12 time units"

self waitFor: 12.0.

"Resume the skier processes when they get off the chairs at the top"

skiers resumeAllProcesses]

A SimTalkSkier arrives each time it leaves the top of a lift,
each time it arrives at the bottom of a slope, and when it arrives for
the first time at the ski resort. It must maintain the count of skiers
on the slopes by incrementing and decrementing the inventory
resources appropriately, decide whether to go up or down based on
its position on the slope and the length of lift lines, and decide
whether to go home, based on being at the bottom lift with the line
at that lift being too long. Thus the SimTalkSkier actions method
looks like:

actions

lastDirection = #down
ifTrue:
["remove self from slope user count
for the slope I just came down"

self consume: 1 ofResourceNamed: *slopeUser” , atLift printString.
lastDirection ¢ #up.

"Choose next direction to go. Consider line length at next lift
and at lower lift, and consider a preference for going to the
top most of the time."

bernoulli5 next = 0 & (atLift > 1)
ifTrue: [lastDirection « #down]].
atLift > simControl lifts
ifTrue: ["if at top, must go down" lastDirection « #down]
ifFalse:
[bernoulli8 next = 0 & (atLift > 1)
ifTrue: [lastDirection ¢« #down].

"Consider line lengths and choose direction”

atLift > 1 ifTrue:
[(self countCustomersAtResourceNamed: lift’ , (atLift - 1)
printString) > uniform40100 next
ifTrue: [lastDirection ¢« #up]].
(self countCustomersAtResourceNamed: lift’ , atLift printString)
> uniform40100 next
ifTrue:
["The line is too long"
atLift = 1 ifTrue:
["And I am at the bottom lift so go home"
Tself].
lastDirection « #down]].
lastDirection = #up
ifTrue:

["Going up, so I must wait in lift line"
self findServerAtResourceNamed: *lift’ , atLift printString,
atLift « atLift + 1.
simControl queueArrivalOf: self afterWait; 0.0]

ifFalse:

["Going down. Count myself as a slope user for that slope
and enter time queue at the time at which I will arrive at
the bottom of that slope”

atLift « atLift - 1.
self create: 1

ofResourceNamed: ’slopeUser’ , atLift printString,
simControl queueArrivalOf: self afterWait: uniform2080 next]

5.2.3 Interactive User Interface

In our example, the user has chosen to interactively specify
the creation of ski lifts, The user has the power to create new lifts,
to create additional streams of arriving skiers, to remove specific
skiers from the slope, to suspend the activity of a skier or a ski lift
and later to resume that activity, to display graphs of the lift lines
and the number of slope users, and to change the priority of a skier
in a lift line. This is all quickly and easily done using the interac-
tive user interface.

The interactive user interface creates a list view for the run-
ning simulation. There are popup yellow button (middle button on
the mouse) menus for each of the lists in the view. Each of these

149



V.E.Knapp

menus will contain a series of list specific functions, plus entries to
allow the user to suspend, continue, stop, or inspect the simulation.
Whenever the simulation is suspended, the lists are updated to
match the current values of the simulation.

The list view will contain a number of lists. The leftmost one
will be a list of all subclasses of SimTalkObject which are in the
same category as this subclass of SimTalk. A yellow button menu
may be popped up on this list. This menu is used to create new
objects of the classes in the list. These objects are numbered
sequentially as they are created. There is also a yellow button
menu selection to create a stream of new instances of the selected
object class. It will cause a view of a set of lists to pop up which
can be used to specify starting time for creation of the stream,
number of objects to be created (finite or infinite), how many times
each object will arrive in the simulation (once or infinitely many
times), and the probability distributions for the intercreation times
and the interarrival times of the objects in the stream. Another yel-
low button menu selection will allow the user to display all exist-
ing objects of the class selected. A yellow button menu can be
popped up on this resulting display and used to suspend, resume,
kill, or inspect the objects in the display. There is also a yellow
button menu entry to pop up a list of gates which can be created,
interconnected, and simulated. These gates are displayed in the
switch view. It is also possible to inspect any entry in the class list,

The second pane in the list view contains a list of the entries
in the time queue. A yellow button menu on this list allows the
user to reschedule or terminate processes which are waiting in the
time queue. A small pane below this list contains the current
simulated time when the simulation has been suspended.

The third pane in the list view contains a list of resources in
the simulation. A yellow button menu on this list allows the user to
create and name more resources and to create graph displays on
various aspects of the resources. These displays are automatically
placed in the graph view.

The fourth pane in the list view contains a list of the queue
elements for the resource selected in the third pane. A yellow but-
ton menu on this list allows the user to inspect, kill, or change the
priority of processes which are queued for a resource.

6. Other Simulation Services of SimTalk

6.1 Animation

Animation is done by scheduling an animation control simu-
lated object to arrive at regular intervals and update the animation
view by querying those simulated objects which have requested
animation. These objects return their current icon and current posi-
tion in the animation view. Simulated objects may send requests to
be animated or removed from the animation to the SimTalk object
in control of the simulation.

6.2 Random Number Generators and Probability Distribu-
tions

There are 5 pseudo-random number generators supplied with
SimTalk. One of them supplies 16 bit numbers, three supply 31 bit
numbers, and one provides 32 bit numbers. All of them can be
duplicated to provide antithetical variates. If none of them are
satisfactory to the user, it is quite easy for the user to add another
random number generator to the system and use it.

All probability distributions supplied with the system provide
standard and antithetical variates. The following distributions are
supported: bernoulli, binomial, exponential, gamma, geometric,

normal, poisson, uniform, and sample space. The user may easily
add any others which may be required.

6.3 Statistics Gatherers and Observers

Several classes of simulated objects have been defined to
gather statistics on the simulation. They can be scheduled to arrive
at fixed intervals of simulated time, at time intervals which are
drawn from a user specified probability distribution, or whenever
some user specified condition based on that statistic is met. When-
ever one of these objects arrives, it records or displays the statisti-
cal values it is monitoring, and it may schedule a user specified
process to be executed.

Statistics gatherers and observers may monitor a queue at a
resource, or the size of an inventory. Alternatively they may accu-
mulate numbers sent to them by the simulated objects using +, -,
setValue:, totalPlus:, totalMinus:, setTotalValue:, countPlus:,
countMinus:, setCountValue:, totalCountPlus:, totalCountMinus:,
and setTotalCountValue: messages. A single statistics gatherer
thus can monitor the value of total attempts, the value of success-
ful attempts, the count of total attempts, and the count of success-
ful attempts for a single variable of interest. Statistics gatherers
and observers also can report moving averages, rates, and time
intervals between conditions.

Output can be displayed as a graph or bar gauge, or written to
a file or a SimTalkSampleStream. The SimTalkSampleStream
expects to contain a series of values for a single variable, and it
understands requests for largest and smallest values, mean, vari-
ance, standard deviation, frequency distribution, and cumulative
frequency distribution.

7. Summary

Smalltalk, together with SimTalk, provides a very powerful
language supporting interactive discrete event simulation. The user
can write a small amount of code defining the simulated world and
the objects in it, and gain access to an experimental world which is
easily monitored and modified. This allows the user to quickly
zero in on the simulated variables which will be of interest. The
Smalltalk programming environment provides the user with very
powerful coding and debugging tools, leading to high productivity
in writing and modifying simulations. SimTatk provides powerful
queueing discipline support, extensive statistics gathering and
monitoring capabilities, graphic display and animation support,
and an effective interactive user interface, thereby saving the user
much time and effort when these facilities are required. Thus Sim-
Talk and Smalltalk allow a simulationist to quickly and easily
write, debug, and modify simulation experiments.

150



The Smalltalk Simulation Environment, Part IT

AUTHOR’S BIOGRAPHY

VERNA E. KNAPP is a Senior Hardware Software Engineer
in the Computer Research Laboratory of Tektronix Laboratories,
Tektronix, Inc. She received a B.S. in mathematics from the
University of Washington in 1969, and M.S. and Ph.D. degrees in
Computer Science from the University of Washington in 1970 and
1985 respectively. She worked as a systems programmer, perfor-
mance analyst, and capacity planner for Pacific Northwest Bell
Telephone from 1970 to 1982. She has worked for Tektronix as a
computer architect since 1982. Her current research focuses on
applying Smalltalk and modern workstation technology to interac-
tive discrete event simulation.

Verna E. Knapp

Computer Research Laboratory, MS 50-662
Tektronix Laboratories

P.O. Box 500

Beaverton, Oregon

151



