Proceedings of the 1987 Winter Simulation Conference
A. Thesen, H. Grant, W. David Kelton (eds.)

A "DISPOSABLE' GRAPHICAL EVENT SYNTHESIZER
FOR TEACHING SIMULATION MODEL BUILDING

Lee Schruben

School of 0.R.I.E.
Cornell University

Ithaca, NY
ABSTRACT
This article describes an easy to use
graphical simulator specifically designed for

teaching the fundamental concepts of discrete event
simulation modeling. The simulator permits
students to have the satisfaction of building
working models early in a course without having to
learn a specific commercial language. The
simulator is ‘''disposable’” in the sense that
students can replace the various components of the
simulator with their own routines as they progress
through the course. It is thus possible for the
students to customize their own personal
graphically oriented modeling 1language. Models
built on this simulator are also easily implemented
in higher level simulation languages making the
simulator a useful modeling aid even for simulation
courses that are built around a specific language.

1. INTRODUCTION:

We who teach discrete event simulation must
make the important decision of whether to structure
our course around a specific simulation language or

to design a general course that is language
independent. The main advantage of a language
oriented course is that students have the

satisfaction of building working simulation models
relatively early in the course. They also gain
experience and develop a loyalty to (or distaste
for) a particular commercial language. Proficiency
in a simulation language may also improve a
student's short-term job prospects. The merits of

having students develop language loyalty in a
university course is a continuing subject of
dispute among simulation educators and language

vendors [1].

Unfortunately, students vwho approach
simulation through a specific language might not
learn some of the fundamental simulation techniques
and concepts. To illustrate: the main distinctions
between simulations and other types of computer
programs are the modeling of time and randomness.
A course that is tied to a language may not
emphasize methods for pseudo-random number
generation or mechanisms for managing the simulated
clock. Since most commercial languages insulate
the user from these tasks, students are not likely
to gain a real understanding or control of these
basic ideas. The attitude too often is, "why learn
it if the computer can do it?" PFurthermore, if a
specific language is used then modeling approaches
that do not fit comfortably within the language
viewpoint may not be introduced to the class.

taught (and
language

taken) both language
independent simulation

I have
oriented and

72

14853

courses. The language oriented courses are much
easier to teach and more fun for the students.
Teaching a rigorous course on simulation modeling is
hard work and the students are easily discouraged
during the early part of the course as they learn
fundamentals. It is not until relatively late in
the course, when they start assembling the concepts
and techniques into actual simulation models do
they start to enjoy the course.

The graphical simulator described here is
designed to make learning (and teaching!) discrete
event simulation enjoyable without adopting a
particular language. Students can build working
simulation models of virtually anything (see the
appendix) in the first week, but they do it at a
fundamental level. There is a heavy reliance on
personal computer graphics.

The simulator is '‘disposable’ in the sense
that students can replace the various components of
the simulator with their own routines as they
progress through the course. VWhen students study
such topics as pseudo-random number generation or
event list management they can write their own
algorithms (in FORTRAN, C, PASCAL, or ASSEMBLY...)
to replace the algorithms used by the simulator.
It is thus possible for the students to build their
own personally customized graphically oriented
modeling language as part of a course.

Using the simulator it has been possible to
design a simulation course to be both fundamental

and fun. Without being tied to a particular
language, students can experience simulation
modeling early the course. They can better

appreciate how the parts fit together as they 1learn
simulation fundamentals. This permits a reversal
of the usual progression of a typical non-language
oriented simulation course where students would
first learn about modeling components in isolation
and then later assemble these components into
models.

The simulator is a useful modeling aid even
for models that are eventually going to be
implemented in a high level simulation language.
The simulator can be used in simulation courses
that are built around a specific language.

2. THE SIMULATOR:

The current version of the simulator requires
an IBM PC compatible computer with at least 120K of
free memory and a graphics board. The simulator is
written in C but is self-contained and does not
need a compiler or special graphics software. 1In
this section we present an brief overview of the
simulator. All commands are selected from menu
trees. Only the top level menu is described here.

A "Disposable" Graphical Event Synthesizer

A more detailed tutorial is handed out to the

simulation class.

2.1. Events and their Relationships:

The elements of a simulation model are the
state variables, the events that change the state
variables, and the relationships between the
events. The simulator represents the simulation
model as a graph [2]. This graph is a structure of
the objects in a discrete event system that
facilitates the development of a correct simulation
model. Events are represented on the graph as
vertices (balls or nodes); each is associated with
a set of changes to the state variables. Each
vertex of the graph is a pointer to string of
system state change expressions that occur when a
particular event happens.

For example, in a single server queue one of
the state wvariables might be the number of
customers in the system; assume that the user calls
this variable ''mumber'. A ''customer_arrival' event
will cause this state variable to be increased by
one; hence, the vertex points to the string ''number
= number + 1. The window for such an event might
read as follows;

Event Vertex #1

A new customer arrives
FEvent Name: customer_arrival
State Changes: (number = number + 1)
Parameter variables: queue

Priority: 6

Description:

This event would have a parameter of ''queue'
telling perhaps at which queue in the system the
customer arrives. The event has an execution
priority of 6 to break ties in simultaneously
scheduled events.

Between the vertices are directed edges (or
arrows) that point to the logical and temporal
relationships between events. Basically, the edges

define under what conditions and after how much of
a time delay one event will cause another to
occur. Associated with each edge is a set of
conditions that must be true in order for the
originating event of the edge (tail of the arrow)
to schedule or cancel the termination event (the
head of the arrow). Also associated with each edge
is a delay time that tells how long until a
scheduled event occurs. Finally, there are a set
of attribute values that can be passed from the
scheduling event to the scheduled event. All event
vertices and edges are numbered on the graph.

To illustrate: suppose the following edge is
displayed on the screen as part of a simulation

graph,
0

3
6
assume the user calls up the window

In addition,
for edge 3 and is given the following;

73

Edge #3
Scheduling/Cancelling: Scheduling
Originating Event: 6 "end_service"
Destination Event: 7 "queue_up”
Condition: (QUEUE > 2)

Delay Time: (time.fnt)
Passed Parameters: 8,MACHINE+1

This would indicate that each time event 6 (here
called an 'end_service" event) is executed: if
QUEUE is greater than 2 then event 7 (here called a
"queue_up' event) will be scheduled to occur
time.fnt time units later using parameter values of
8 (maybe a part type) and MACHINE+1 (maybe the next
machine).

The delay time, time.fnt, may be a function
(say a theoretical random variate), or a value in a
data file (for trace driven models), or value from
a table (say of an empirical distribution). It is
not necessary to change the model in any way to
accommodate different types of input streams. The
conditions, delay times, and the attribute 1lists
can contain any valid expressions.

There can be multiple edges between any pair
of event vertices in the model; these edges can
point in either direction.

2.2. Top Menu:

The top level menu of the simulator has thirteen
command selections; here we present only a brief
description of each logically related group of
commands. On computers without a mouse, the user
presses a key of a letter that is capitalized in
each command.

CREATE, EDIT, and DELETE: These commands allow

the creation, editing, and deletion of state
variables or arrays, event vertices, and event
relationship edges in the simulation graph. Each

command will bring up an appropriate menu.

READ, FILE, and APPEND: These commands allow
the students to read a previously saved model, file
the current model for future recall, or to append
another model onto the current working model. The
append command permits the students (or teams of
students) to create separate parts of a simulation
model and then easily connect them together into a
larger simulation.

MOVE and 700M; These commands allow the graphs
to be moved and viewed from various windows.

PRINT; This
documentation for the
their homework reports.
rules that indicate

gives hard
students to
Their are

copy model
hand in with
several simple
when two event graph
representations of a simulation are equivalent
[R]. This pgreatly helps in grading homework;
instructors and teaching assistants never look at a
single line of computer code! (I think this is the
main benefit to the instructors in using this
system... I hate trying to find out what is wrong
with a students code)

RUN: This evokes a series of run control
selections for the student. They can control the
initial conditions (state, event list, random

L.Schruben

number stream,etc.). They can control the 4. "END" fThis is the event where the server
termination conditions (time, event count, or state finishes service on a customer. The service times
dependent). They can determine which variable are in the function (or data file) named
values to monitor and the disk file that will service.tim.
contain the multiple output series. Finally, they
can select one of three run modes. 3.1. The Nodel:

The three run modes are "high—speed” which The event graph displayed on the screen is as
simply gives the output file on a disk, follows:

"interactive' which allows the user to change the
states and event 1lists while running in single
event steps. Finally, there is the ''default' run
mode. In the default run mode graphics are used
extensively to illustrate the dynamics of running
the simulation model. Edges between events are
highlighted (or change color) when their conditions

are true, event vertices 'glow" when they are
scheduled and flash when they are executed. On a
color monitor with EGA or better graphics, this

gives the effect of a liquid flowing through a
network from event vertices that are executed to
the event vertices that they schedule.

DOS and EXIT: The DOS command allows the user
to toggle back and forth from the simulator to the
operating system (say to check directories or edit
an output file). An interesting feature that I do
not tell the students about is that one may have
several layers of different simulation models
called up simultaneously on the same PC... it is a
credit to the operating system that this does not
seem to confuse the computer...The exit command
allows one to leave the simulator and return the PC
to the state (modes, paths, etc.) that it was in
before the simulator was invoked.

2.3. The Output Files:

The output files contain an entry for each
event that is executed. The event name, a count of
the number of times the event has been executed,
the clock time and the values of the user selected
trace variables. The student can then call data
analysis and plotting routines of their choice with
this file as input. This is where the students
have been quite creative and makes reading their
reports very interesting. Under development is a

set of default output analysis and plotting
commands but I am not sure that this is really a
good idea. Maybe giving them the raw data file is

really the most instructive?

3.0. AN EXAMPLE:

The following is an example of a multiple
server queueing system simulation as developed on
the graph simulator. The events are as follows:

1. "START_RUN" Here we initialize the state
variables and start the simulation run. The state
variables Q (number of customers in line) and FREE

(number of free servers) are set through the
parameters of this event. Values for these
variables are requested from the user during run
initiation.

2. "ARRIVAL'' This event
customer to the system.

is the arrival of another
The time between scheduled

arrivals is given in the function (or . data file)
arrive.tim.
3. "BEGIN'" This is the event where the server

starts service on a customer.

74

G O=>0

Note that the bold face edge between event #3
(start) and event #4 (end) is a multiple edge
(edges 4 and 5 are between these two events). The
elements of the graph are described in the windows
that follow.

To save space only an abbreviated form of the
windows are given helow.

STATE VARIABLE WINDOW
Yariable Name Description
Q Number of customers waiting
FREE Current number of idle servers

EVENT VERTEX WINDOWS

Event vertex #1

Name: INITIAL .
Description: Initialize run with FREE and Q
State Changes:
Parameters: FREE,Q
Priority: 0

Event vertex #2
Name: ARRIVAL :
Description: Customer arrival to the system
State Changes: Q@ = (@ + 1)
Parameters:
Priority: 1

Event vertex #3
Name: START
Description Start service on a customer
State Changes: FREE = (FREE-1),Q=(Q-1)
Parameters:
Priority: 0

Event vertex #4

Name: END

Description End service, freeing a server
State Changes: FREE = (FREE + 1)

Parameters:

Priority: 0

EVENT RELATIONSHIP YINDOWS

Edge #1
Scheduling yes
Origin: 1
Destination: R
Condition: (1) - always true
Delay:)
Attributes:

Edge #2
Scheduling
Origin:
Destination:
Condition:
Delay:
Attributes:

Edge #3
Scheduling
Origin:
Destination:
Condition:
Delay:
Attributes:

Edge #4
Scheduling
Origin:
Destination:
Condition:
Delay:
Attributes:

Edge #5
Scheduling
Origin:
Destination:
Condition:
Delay:
Attributes:

Edge #6
Scheduling
Origin:
Destination:
Condition:
Delay:
Attributes:

yes

2

R

(1)
(Jarrival.tim})

yes
2

3
(FREE > 0)
(0

yes

3

4

€))
(§service.tim})

yes
4

3
Q> 0)
@

yes
3

3
((Q>0) and (FREE>0))
(0)

3.2. The Output:

The above

simulation was run for 3 servers
(initially FREE = 3) starting with an
initial queue size of 10 customers (initially Q

10). The first few lines of
the output file are as follows.
OUTPUT FROM RUN WITH =10.0, FREE=3.0

A "Disposable” Graphical Event Synthesizer

Time Event Count Q FREE
0.000000 START RUN 1 10.000 3.000
0.000000 ARRIVAL 1 11.000 3.000
0.000000 START 1 10.000 2.000
0.000000 START R 9.000 1.000
0.000000 START 3 8.000 0.000
0.077096 ARRIVAL 2 9.000 0.000
0.217215 END 1 9.000 1.000
0.217215 START 4 8.000 0.000
0.827738 END 2 8.000 1.000
0.827738 START 5 7.000 0.000
0.967278 ARRIVAL 3 8.000 0.000
1.012833 END 3 8.000 1.000
1.012833 START 6 7.000 0.000
1.412778 END 4 7.000 1.000
1.412778 START 7 6.000 0.000
1.737114 END 5 6.000 1.000
1.737114 START 8 5.000 0.000
2.246239 END 6 5.000 1.000
R2.246239 START 9 4.000 0.000
2.431257 END 7 4.000 1.000
2.431257 START 10 3.000 0.000

75

4. SOFTWARE AVAILABILITY AND CURRENT DEVELOPMENTS:

The latest version of the software described
here is available at cost to instructors of
university simulation courses.

5. APPENDIX:

The claim that anything that can be simulated
on a computer can be simulated wusing the graph
simulator described here is based on the Church-
Turing thesis [3] and the fact that a Turing
machine can be simulated using an abstract form of
the simulation graph presented here and in [R]. A
rigorous argument will not be presented. We will
need the abstraction of a semi-infinite '"tape'" or
array just as in the description of M.

The Turing machine described on page 148 of
[3] is known to be able to simulate random access
memory. That machine is denoted as M =
(Q,E,F,&,qo,B,F). To simulate such a machine with

a simulation graph in the most straightforward
manner let everything be the same as in M and
define two vertices to represent the left move and
the right move. These vertices can schedule
themselves and each other and have identical state
transition functions given by 5.

¥hile the ability to simulate a Turing machine
may seem trivial, it does have some important
implications; eg. cancelling edges are never
necessary and are merely a convenience, this simple
description of a simulation with the above graph is
all that is necessary.

Acknowledgements: Many people have helped in
the development of the graphical simulator
described here. In particular the work of
Christian Outzen of DEC is appreciated. Comments
freely offered by David Briskman, Arnold Buss,
Chris Read, Steve Roberts, Paul Sanchez, and Robert
Sargent have also stimulated the author to further
develop the ideas presented here. David Tate of
Cornell suggested simulating a Turing machine with
the graph simulator.

REFERENCES

[1] Various Past Panels on Simulation Education at
the Winter Simulation Conferences.

[2] Schruben, L. "Analysis of Simulation Event
Graphs'', Comm.A.C.M. Vol. 29.11.

[3] Hoperoft, J. and J. Ullman,
Automata Theory, Languages,
Addison-Wesley, 1979 Chpt. 7.

Introduction to
and _Computation

AUTHOR'S BIOGRAPHY

LEE SCHRUBEN is on the faculty of the School
of Operations Research and Industrial Engineering
at Cornell University. He received his
undergraduate degree in engineering from Cornell
University and a Masters degree from the University
of North Carolina. His Ph.D. is from Yale
University. Before going to graduate school he was

L.Schruben

a manufacturing systems engineer with the Emerson
Electric Co. in St. Louis, Mo. His research
interests are in the statistical design and
analysis of 1large scale simulation experiments.
His consulting activities have been primarily
focused in the area of manufacturing systems
simulation. He is currently the chairman of the
TIMS College on Simulation and serves on several
the editorial boards for several journals.

Prof. Lee Schruben
School of 0.R.&I.E.
Cornell University
Ithaca, NY 14853
ph: (607) 255-9133

76

