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ABSTRACT

A comprehensive guide to applying three well-known
variance reduction techniques is given, including point and
interval estimators, software requirements, and guidelines for
experiment design.

1. INTRODUCTION

Variance reduction techniques (VRTs) are experiment
design techniques that increase the precision of simulation-based
point estimators without a corresponding increase in computer
effort. However, increased analyst effort is probably the primary
reason that VRTs are rarely used in practice, especially if the
time needed to understand and select a VRT is included in the
"analyst effort.”

The goal of this tutorial is to provide a comprehensive
guide to applying a limited number of VRTs. The presentation
is comprehensive in the sense that it covers the mathematical
principles behind the VRTS, the software (in addition to what is
available in standard simulation languages) needed to apply the
VRTs, the output analysis methods used in conjunction with the
VRTs, and guidelines for sample size determination. The number
of VRTs, however, is limited to three: antithetic variates (AV),
control variates (CVs), and common random numbers (CRN).
These VRTs were selected because they are useful in many
simulation experiments, they are easy to apply, and they are not
likely to be counterproductive. Some commercial simulation
languages have built-in features that facilitate AV and CRN.
CVs usually require additional software support, but it is support
that is available on many computers.

Textbook treatments of the topics in this tutorial can be
found in Bratley, Fox and Schrage (1983) and Law and Kelton
(1982), where many of the terms and concepts defined loosely
here are defined precisely. Surveys of VRTs include Kleijnen
(1974), Nelson (1987a) and Wilson (1984).

The paper is organized as follows: Section 2 introduces
examples and notation that will be used throughout the tutorial.
Section 3 states the mathematical principles behind the three
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VRTs.
finite-horizon simulation experiments.

Section 4 presents the three VRTs as they apply to
Section 5 discusses
modifications for infinite-horizon experiments. Finally, section 6
offers some concluding comments, including references to more

advanced material.

2. EXAMPLES AND NOTATION

This section introduces two simulation problems that will
be used as illustrations throughout the tutorial, and also defines
the mathematical notation that will be needed. We distinguish
between finite-horizon simulation experiments, in which the
unknown system parameters of interest are defined with respect
to fixed starting and ending conditions for the simulated system,
the
parameters are defined as limits as the length of the simulation

and infinite-horizon simulation experiments, in which
run goes to infinity, limits that are independent of the starting

conditions.

Example 1 (finite-horizon experiment): A cardiovascular
risk reduction program runs risk screening in the morning hours
beginning at 9 am. Thirty patients are scheduled per day at five
minute intervals, and daily screening ends when the last patient
leaves. Arriving patients first complete a questionnaire with the
help of a Clerk. Risk screening tests are then administered by
two Medical Technicians working in series. Those patients with
high blood pressure must be examined by a Nurse. All patients
make an appointment with the Clerk prior to leaving. A
simulation experiment is conducted to find a good division of
duties between the two Medical Technicians. Performance
measures of interest include the average number of patients in
the facility, the average time for a patient to complete risk
screening, and the utilization of the Medical Technicians.

Example 2 (infinite-horizon experiment; see Law and
Kelton (1982), p. 281): A computer manufacturer wants to test
several proposed operating systems under prolonged periods of
peak loading, periods long enough that the effects of the initial
load on the computer has no impact. In particular, long-run
expected job response time and device utilization are of interest.
Notice that such prolonged peak periods may never actually
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occur in the real system, but simulating alternative operating
systems under these conditions provides a basis for comparison.

Since section 4 presents VRTs for finite-horizon

simulations we define notation with respect to example 1.

Let ¥, represent a simulation output of interest from the
jth replication, j=1,2 ---,k, of the Ith system design,
1=12, ---
and a subscript or superscript in () represents a system design
alternative. Frequently, Y/ is itself an average of outputs within
the jth replication. For example, Y{ might be the utilization of
a Medical Technician on the third day (replication) of simulated
risk screening under the first proposed system design, or it might

be the average time to screen patients on the third day of

,r. Thus, a subscript represents a replication number

screening under the first design.

Let 6% represent the unknown parameter of interest for the
Ith system design. We assume that replications provide
independent and identically distributed observations of system
performance, and specifically that E[Y"]=6® and Varl¥] = oy
for all j. Thus, if Y§ is the utilization of a Medical Technician
on the third day under the first system design, then 8@ is the

expected utilization under the first design.

Two statistics that will arise frequently are the sample
mean and sample variance, which are, respectively,
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In addition to simulation outputs, we define simulation
inputs as data generated from experimenter-specified probability
distributions. Let X =&, XD, -+, XY represent a column
vector of ¢ (not necessarily all) simulation inputs on the jth
replication of the /th system design; the  indicates the matrix
transpose operation. For fixed ! the inputs are assumed to be
independent and identically distributed across all replications j.
Examples of inputs in the risk screening simulation are the
patient arrival times, the time requiréd by the Medical
Technicians to administer tests, and the number of patients that
must consult with the Nurse, if these quantities are modeled as
random variables with known distributions. the
distributions are known, the expected value of X® is also known
and is denoted by p®@ = @{®, .-, pdy.

Since
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3. SOME PRINCIPLES OF VARIANCE REDUCTION

Before discussing any particular VRT or how to apply it,
we state some basic results that underlie the VRTs. This section
is based on Nelson (1985).

Suppose we estimate 8 with the point estimator ¥ as
defined above (we drop the superscript here and consider only

one system design). Then if (Y, ---,¥,} is covariance
stationary
a2, 25k
Varlfl= 2+ ¢ B0 -9 16)]
where v, =Cov[Y;, ¥;1 when T -jl=k. If the (¥;} are

independent, as they are for independent replications, then (1)
reduces to o%k.

Now let {X,X, --+,X;) be a sequence of identically
distributed scalar random variables. Let Z; =Y; + bX;, where b is
a constant. Then

Var[Z;] = o® + b%6? £ 2b CoviY}, X;) @

where o? = Var[X;].

Result (1) shows that there are three components that
determine the variance of a sample mean: o2 v, and k.
Decreasing o® and v,, or increasing k, reduces Var[¥]. Result (2)
shows that the combination of ¥; with another random variable
X; may yield a random variable with smaller variance, provided
the covariance between them is large enough and has the correct
sign. Variance reduction is achieved by designing a simulation
experiment to take advantage of these results. It is important to
stress that variance reduction refers to reducing the population
variance of an estimator of 6, where & may be a variance.
Variance reduction does not necessarily affect the variability of
the simulated stochastic process; e.g. > may not be changed.

4, THREE VARIANCE REDUCTION TECHNIQUES

In this section three VRTs are presented in detail. We
consider finite-horizon experiments, and subdivide the section
into two cases: (1) When 8 is the parameter of a single system
design (r = 1), and (2) when we are interested in determining the
system with the largest 6" for I =1, - - -, r 22 different systems.
In each subsection we define the standard or "crude" experiment
and then present the VRT experiment. In all cases point and
interval estimators are specified, implementation instructions are
given, and experiment design issues are discussed. The interval
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estimators are confidence intervals based on the t distribution;
see any introductory statistics text for a discussion of the
assumptions behind these estimators. If, as is typically the case,
there are several performance measures of interest for each
system design, then the estimators presented here can be applied
individually for each parameter, perhaps using a Bonferroni
procedure to achieve a specified overall confidence level. We do
not consider multivariate procedures in this tutorial.

4.1 Absolute Parameter

The purpose of the experiment is to estimate 6, a
performance measure for a single system. For example, 6 could
be the expected utilization of the first Medical Technician over
+++, Y} could be the
utilization of the Medical Technician on & simulated days of risk

the course of a day in example 1, and {¥,,

screening.

For the purposes of this section the "crude" experiment is:

number of independent replications: &
point estimator: ¥
interval estimator: ¥ * to,(k-1)sNk

where 14,(k—1) is the 1- w2 quantile of the t distribution with
k -1 degrees of freedom and s is the square root of the sample
variance s2. The interval estimator is often referred to as a
(1 - 0)100% confidence interval, and « is traditionally .10, .05 or
.01.
the available time and/or budget allows.

We assume that the experimenter will make & as large as

4.1.1 Antithetic Variates

AV exploits (1) by inducing favorable covariance terms v.;
all the v, =0 in the crude experiment. The required covariances
are realized indirectly by inducing dependence between
previously independent simulation inputs. There are two major
problems: First, it is not possible to make all of the covariances
negative. Thus, AV often settles for inducing negative
covariance between pairs of
{(Yoj1, Yo} j = 1,2, + -+, k12, leaving different pairs independent;
this is the only form of AV considered here. The second

replications

problem is that inducing negative covariance between inputs does
not guarantee negative covariance between outputs. We discuss
this issue under Implementation below.

AV Experiment. To define the AV experiment, let
P = (Vg + Y52 for j=1,2, -+-, k2. Let ¥ be the sample
mean of these outputs, which is algebraically the same as Y.
Then the simulation experiment is:
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number of independent replications: k/2
point estimator: ¥
interval estimator: ¥ % tq(k/2-1)3V2ik

where the sample variance of the {7, )} is

2.1 o
S=troT 2

ja

7y
Implementation. Inducing negative covariance between
pairs of simulation outputs {Y,;;,Y,) depends on being able to
induce dependence between pairs of simulation inputs. Suppose
X4 and X5; are inputs corresponding to replications 2j-1 and 2j,
respectively, both having cumulative distribution function (cdf)
F(x). For example, X, and X, might be the time required to draw
a blood sample from the first patient on simulated days 1 and 2,
respectively. Then if U is a sample from the uniform
distribution on the interval (0, 1), denoted U (0, 1), setting

Xoja =FU)
Xg =F1-0)

vields values of Xj.4 and X, with the correct marginal
distributions and minimal achievable covariance. This method of
random variate generation is known as the inverse transform. If
the simulation code maps the inputs (X5, Xz} into {Yy, Y3)
monotonically, then the negative covariance between the inputs
is preserved in the outputs. Of course, the outputs from each
replication are usually functions of many inputs, so this
procedure must be applied to each input random variable in
replication  2j-1 2j
Jj=1, < ki2,

and corresponding replication for

Many commercial simulation languages have antithetic
sampling of inputs built in to the random variate generators.
Typically, specifying a negative random number stream causes
the antithetic values of the uniform random variates to be used;
1-U instead of U. However,
generators do not use the inverse transform method to generate X
from U, and in those cases the antithetic sampling procedure is

ie. some random variate

not guaranteed (or likely) to produce negatively correlated inputs.

The reason that the inverse transform is not always used is
because it may be computationally slow and/or because no
closed-form expression for the inverse exists. However, the
variance reduction from AV can more than offset the
computational cost of slower approximate inverse transform
methods, and the approximations can be quite accurate. Bratley,
Fox and Schrage (1983, Chapter 5) emphasize inverse transform
methods of variate generation and give variate generation code
that could be used in place of the routines contained in a
simulation language.
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Even when dependence can be induced between pairs of
inputs, there is no guarantee that the dependence will be realized
in the outputs where it is needed. Monotonicity of the input-
output mapping can be enhanced by synchronizing the random
numbers in antithetic replications. The idea of
synchronization is to ensure that if, say, U is used to generate
some input in the first replication of the antithetic pair, then
1-U is used for the corresponding input in the second
replication. One standard trick is to use a different random
number stream (sequence of U(0,1) values) for each input
process in the simulation. In example 1, for instance, one stream
might be used to generate the testing time at the first Medical
Technician, another for the second Technician, and so on.
Bratley, Fox and Schrage (1983) discuss approaches for
synchronization at some length.

used

Design Issues. Let p=Com{Y,q, Y], the induced
correlation between antithetic pairs of replications. If p <0, then
the AV point estimator ¥ has smaller variance than the crude
point estimator ¥. However, the performance of the AV interval
estimator relative to the crude interval estimator is not as certain.
The performance of the interval estimator depends on the number
of replications, k, the magnitude of the achieved negative
correlation, p, and the confidence level «. Unfortunately, p is
never known. However, Nelson (1987b) showed that if &£ =20
then p as large as -.12 gives the AV interval estimator better
expected performance than the crude interval estimator in terms
of the length of the confidence interval (a shorter interval is
better). On the other hand, if & <8 the corrélation requirement
for improved performance is p <-.3, going rapidly to p <-.92 for
k =4. Achieving such correlations is optimistic for practical
problems. Thus, if the budget is very tight and the interval
estimate is important, then the AV experiment may not be
superior to the crude experiment. However, if there is sufficient
budget to obtain 20 or more replications (10 antithetic pairs), then
interval estimator performance is likely to be improved by AV,

4.1.2 Control Variates

CV exploits the covariance between the simulation output
of interest, ¥;, and a ¢ x 1-vector of (usually averages of) input
random variables X; via (2). Suppose ¢ =1, meaning X; is
scalar, and p=E[X;). For example, ¥; may be the utilization of
the Nurse and X; the number of patients that consulted with the
Nurse on the jth simulated day of screening. The expected
value of X; is known if the percentage of patients with high
blood pressure is specified by the experimenter. The CV

estimator is

Z=Y-bpX -p
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For any constant b, Z is an unbiased estimator of 6. The
variance of Z can be minimized by setting b = Cov(¥}, X;)/VarlX;1.
This value is seldom known, but it can be estimated; see
Implementation below. The CV estimator readily generalizes to
control

controls and a multiplier

-+, b,Y. The variance of Z can be reduced substantially

g>1 g x 1-vector
b=,
by using more than one control, but some deterioration in

performance is also possible; see Design Issues below.

From the jth replication of the
we observe (¥;,X;, -+-,X,). Let
-, X,Y, the sample averages of the control variates.

CV Experiment.
simulation experiment
¥= (jfh ..
Then the control variate point estimator is

Z=7-5'&-w

where b is the estimated control multiplier. The simulation
experiment is

number of independent replications: &
point estimator: Z
interval estimator: Z * tyy(k—q—1)5

where the computation of 5% is discussed below.

Implementation. Computing the CV point and interval
estimators can be viewed as estimating the intercept term in a
least-squares regression of ¥; on X; —p. This means that any
available software for regression can be used. The regression

model is
q
Yj =0+ Eb,(Xl‘ - )+ €
i=1

for j=1, -+, k. The point estimator Z is just the least-squares
estimator of @, and 3% is the estimated variance of Z; both are
computed by standard regression packages.

Unlike AV, CVs do not affect the execution of the
simulation experiment, they only affect the calculation of the
point and interval estimators. Since selecting control varjates
from a set of potential controls may be necessary, data base
capabilities for storing the simulation output and the potential
control variates may be useful. Then the regression routine can
be used to select the CVs and compute the estimators without

complicating the simulation program.

Design Issues. The variance of the CV estimator Z
depends on three factors: (1) the number of replications, &, (2)
the number of control variates, ¢, and (3) the square of the
multiple correlation coefficient of ¥; on X;, R% The magnitude
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of R? depends on both ¢ and the particular control variates that
compose X;. Mathematically,

lc2(1

S
5 U = RAVarl¥)

Var(Z] =

The factor (k-2)/(k—q-2) is nondecreasing in ¢, while (1 -R? is
nonincreasing in q.

Since almost any input random variable is a potential
control variate, most simulations have many potential controls.
Selecting a subset of controls that balances the above factors is
difficult.
procedures to select the control variates that appear to make the

Some researchers have suggested stepwise regression

most significant contribution to variance reduction. However,
since many regression packages automatically calculate R? an
approach suggested by Nelson (1986) that accounts for the
performance of the CV point and interval estimators can be used.

Suppose that at some stage in the control variate selection
process g controls have been chosen. The decision is whether or
not to add another control. Let Rk, ¢) be the square of the
multiple correlation coefficient for an experiment with %
replications and a fixed set of ¢ controls. For the remaining

potential controls compute the marginal improvement ratio

1—R2(1c,1+1)' 3)

1-R%, q)
This is the ratio of the unexplained variation in ¥ after adding
the (g + 1)st control to the unexplained variation before adding it.
Table 1 gives bounds such that if (3) is less than or equal to the
bound the additional control variate will not degrade point and
interval estimator performance; if (3) is strictly less than the
bound then performance is improved (smaller point estimator
variance and shorter expected interval length). Notice that as the
number of controls increases each additional control is more
difficult to add. However, large k& makes it easier to add
controls. Of course, Rk, ¢) is never known, so we can only
estimate the marginal improvement ratio. Stepwise regression
procedures based on R? are discussed in Neter and Wasserman

(1974).

Table 1: Marginal improvement ratio for adding a control variate

kigel 1 2 3 4 5
10 78 76 JI5 73 .69
30 96 95 .93 93 .93
60 97 97 97 91 97

4.2 Relative Difference

Suppose that there are two competing system designs and
in 60— e®

corresponding parameters of the two systems.

we are interested the difference between
This situation is
common in simulation experiments. For example, consider
estimating the difference between the utilization of the first
Medical Technician under two different allocations of tasks in

example 1.

LetD; =y -y@P forj=1,2, ---,k,and let D =¥ - 72,
If 6%y = o4, then define the pooled sample variance

2. 0 _ gunz
5 2k—2 §,§(Y Yoy

The crude experiment is
number of independent replications: & from each system

point estimator: D
interval estimator: D # top(2k—2)sp N2k

If the variances are not known to be equal, define the difference
sample variance

s2=-1 d
=7 Z=)
The crude experiment in this case is
number of independent replications: & from each system

point estimator: D
interval estimator: D # toy(k—1)sp VE

We assume an equal number of replications from each system,
which can always be guaranteed in simulation experiments.

4.2,1 Common Random Numbers

CRN exploits (2) -- where we identify v with v,, ¥®
with X;, and set b = 1 -- by inducing positive covariance between
the pairs of outputs (¥, v®),
independent. Again, the covariance is induced by inducing

leaving different pairs

dependence between simulation inputs.

CRN Experiment (- =2). The simulation experiment is

number of independent replications: &
point Estimator: D
interval estimator: D # top(k—1)sp/VE

Implementation. As with AV, the inverse transform
method of variate generation is still the method of choice for
inducing dependence between corresponding simulation inputs.

However, instead of using antithetic (U and 1-U) random
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number streams on pairs of replications, the same ("common")
random numbers are used on pairs of replications from each
system design. Synchronization is also important to ensure that
dependence induced between inputs is realized in the outputs.
Unlike AV, positive correlation may result even if the inverse
transform in not used; e.g., if the distribution of an input is the
same under both system designs then precisely the same inputs
will be generated for each system no matter what variate
generation method is used.

Design Issues. Let p=Conly® Y®. If the crude
experiment does not assume equal variances then both the CRN
point and interval estimators dominate the crude estimators when
p > 0. However, if the crude experiment uses the pooled variance
estimator then guidelines similar to AV apply. If we obtain
k 210 replications from each system (20 total), then the CRN
interval estimator is likely to be better than the crude estimator
even if p is small. However, if £ <4 then superior performance
is not as certain unless p is known to be large.

We next consider the situation when there are r > 2 system
designs and we want to identify * such that

i) = mlax(e(l)]

That is, we want the system design that has the largest
parameter,
probability 1/r <p <1 of selecting the best system when the
difference between 6% and the second best 8% is greater than or
equal to 5. The constants p and § must be specified by the

The procedure we present guarantees a minimum

experimenter.

In the interest of space we do not present a crude
procedure; see Dudewicz and Dalal (1975) and the survey by
Goldsman (1983). The CRN-based procedure CY below is due
to Clark and Yang (1986). Their procedure assumes that
common random numbers are employed when sampling from all
r systems. The goal of CRN is to reduce the total number of
replications needed to ensure the specified probability of correct
selection.

CRN Experiment (r>2). The simulation experiment
proceeds in two stages, beginning with a sample of %,
replications from each system, and followed by a second stage of
sampling. The number of initial replications ko, must also be
specified by the experimenter. The system with the largest

sample mean is chosen as the best system.

Define the difference variance for system designs [ #i as

1 k . .
sBapy = ymcy %((Yl(l) ~ Yy - FO - 7z,
=
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Procedure CY
0. Select kg, 8 and p.

1. Sample k, replications Y{, ---,v#® from each system,

=1, ---,r, using CRN.
2. Compute ¥, I =1, ---,r.
3. Compute sfg; for I=1, --,r, i=1,---,r, I#i. For
I=1 ---,rlet
Sl?(z) = T:Jl([sg(u)]-
4, Let kgy=max(ke, [sfph%8® +12]} for 1=1, ---,r, where h

comes from Tables 2 or 3 below, and [a] is the largest
integer less than or equal to a.

5. Sample kg -k, additional replications from system ! and
compute

20}
0=-L sy
L =0

6. Select the system design * with the largest sample mean.

Table 2: Values of 4 for Clark and Yang’s Procedure (p =.9)

kolr 3 4 5 6 7 8
5 213 250 278 3.00 319 335
10 1.83 209 226 240 251 2.60
20 173 195 209 220 229 237
30 170 191 205 215 223 230

Table 3: Values of # for Clark and Yang’s Procedure (p =.95)

kol r 3 4 5 6 7 8
5 278 319 350 375 396 415
10 226 251 269 282 293 3.03
20 209 229 243 254 263 270
30 205 223 236 246 254 261

Additional tables can be generated by finding # such that
Pr(T(ko-1)<-h}=(1-p)(@ —1), where T(k-1) is a random
variable with a t distribution and ko - 1 degrees of freedom.
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Implementation. To implement a two-stage procedure
such as CY requires the facility to save the random number
seeds at the end of %, replications of each system so that the
simulations can be restarted for the second stage.

Design Issues. We recommend a minimum initial sample
size of k, = 10 to ensure reasonable performance of the first-stage
variance estimators. Empirical results in Yang (1986) suggest
that the procedure will be more efficient than the Dudewicz and
Dalal procedure in terms of total number of replications when

the induced positive correlation is large or the number of system
designs is no more than 8.

5. VRTS FOR INFINITE-HORIZON SIMULATION
EXPERIMENTS

In this section we describe modifications of the VRTs,
output analysis methods, and experiment designs in section 4 for
Recall that infinite-
horizon experiments estimate a system parameter defined as

infinite-horizon simulation experiments.

simulated time becomes infinite; see example 2 in section 2.

Let " denote the ith output from the jth replication for
the /th system design, with i =1,2, -+, m. In example 2, Y{}
might be the response time of the seventh job on the third
replication under the second operating system. The additional
subscript is necessary because output analysis methods for
infinite-horizon experiments are affected by the number of
replications and the length of the replications. The length of a
replication is not an issue in finite-horizon simulations because

replications have well-defined starting and ending conditions.

The outputs within a replication may be neither

independent nor identically distributed. Let 6® = ili_')“wE v be
the parameter of interest for the /th system design; e.g. long-run
expected response time in example 2. Due to initial conditions
(such as the number of jobs initially loaded on the computer),
E[¥{" may not equal 6% for any finite i/, and may be severely
biased for small i. This suggests an experiment design with m
as large as possible, even to the point of only & =1 replication.
However, for & #i, ¥{’ and ¥ are not independent, in general,
which makes interval estimation from a single replication
difficult. '

The problem of initial-condition bias is one of the most
difficult output The standard
recommendation is to discard some of the outputs from the

in  simulation analysis.

beginning of each replication. Let

- 1 0m
Y;d)= ?—_-EIYU
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where d <m, and we drop the superscript representing different
system designs. This is the truncated replication average. If we
treat {¥1(d), ¥5(d), - - -, ¥i(d)) as the basic data, then the VRTs in
section 4 can be applied directly to the truncated replication
averages. (We have ignored the difficult question of determining
d; see Law and Kelton (1982).) If the simulation budget is not
limited or 4 is very small, then the experiment design
recommendations above apply. If, however, the total available
budget is fixed at, say, km =n total observations and 4 is large,
then the tradeoff between the number of replications &« and
length of each replication m becomes more crucial. The larger &
is the more outputs are discarded and the shorter each replication
is. However, if & is too small the variance of the point estimator
may be large and there will be too few degrees of freedom for
the interval estimators.

Single-replication output analysis methods have been
developed for situations when d is large relative to the total
budget. We describe one method, nonoverlapping baich means,
and give guidelines for applying it in conjunction with the VRTs
in section 4.

Assume that initial conditfons have already been

eliminated. For & = 1 replication let
Jm

L3

Y,
M tm-1)j+1

Y;

be the jth batch mean of size m, for j =1, - -, k, where km =n.
The batch means partition a single replication of length » into &
nonoverlapping batches of size m. The idea behind batch means
is that there is an (unknown) number of batches &* (equivalently
batch size m*) such that for k <k* (m =m*) the batch means are
nearly independent. Thus, the batch means take the place of the
replication means in the VRTs described in section 4.

The most difficult design decision is selecting the batch
size. Batching algorithms that employ tests of independence
have been advocated (e.g. Fishman, 1978). In principle we want
k as large as possible, but not larger than *. Although the value
of ¥* is not known, Schmeiser (1982) showed that it is not
necessary to determine if k* >30 because interval estimator
performance is not improved substantially beyond 30 batches no
matter how large &* or » is, and the point estimator is unaffected
by the number of batches.

To estimate the difference between the performance of two
system designs, sample one replication from each system and
batch.
acceptable number of batches in the range of 10 to 30 from each
system, where we assume the same number of batches and batch
size for both systems. This recommendation takes into account
the number of batches needed to expect improved interval

If CRN is employed, we recommend looking for an
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estimator performance from CRN and the number required to
obtain nearly all the benefits from degrees of freedom. If a
minimum of 10 approximately independent batches cannot be
achieved with the given sample size, then the experimenter
should consider increasing the replication length, if possible. On
the other hand, no matter how long the replication is there is
little additional benefit from dividing it into more than 30
batches, and possible harm since £* is not known. For procedure
CY a minimum of 4,210 batches for the initial sample is
recommended.

In the case of CVs, both the outputs and the controls
should be batched together; Anonuevo and Nelson (1986)
describe one algorithm. When ¢ <5 controls are used, Nelson
(1986) showed that 30<k <60 batches protects
degradation in estimator performance due to selecting ineffective

against

controls, while providing nearly the maximum benefit from
degrees of freedom. Again, if a minimum of 30 acceptable
batches cannot be obtained then the experimenter should consider
increasing the replication length, but no matter what the length is
there is little benefit from dividing it into more than 60 batches.

6. CONCLUSIONS

The VRTs presented in this tutorial are versatile and
relatively easy to apply. The price of generality is that problem
specific VRTs will almost always be more effective. However,
the time needed to develop a problem specific VRT may be
considerable. Nelson (1985) proposes an algorithm for selecting
VRTs from among the many that have been developed.

CRN should be a standard VRT for all experimenters, even
if confidence interval procedures that take advantage of it are not
used. Remember that CRN reduces the variance of the
difference ¥ -7¥®, not the individual point estimators. For
experiment designs that take advantage of CRN see Schruben
and Margolin (1978) and Tew and Wilson (1985)

AV should also be applied routinely in practice. However,
it is important that the inverse transform method of variate
generation is employed. Because variate generation is such a
simulation

small part in dynamic

experiments, and because of the potential for variance reduction,

of the computation

we recommend that simulation language designers adopt inverse
or approximate inverse transform methods in commercial
languages.

Any stochastic simulation contains potential control
variates. However, the theory of CVs depends on multivariate
normality assumptions, and it is not yet known how robust the
theory is to nonnormality. Based on our experience, we

recommend CVs. The theory of CVs and multivariate extensions
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are discussed in Lavenberg and Welch (1981), Nozari, Arnold
and Pegden (1984), Porta Nova and Wilson (1986), and
Venkatraman and Wilson (1986).
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