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ABSTRACT

This tutorial paper provides information relevant
to the selection and generation of stochastic inputs
to simulation studies. The primary area considered is
multivariate but much of the philosophy at least is

relevant to univariate inputs as well.

1. INTRODUCTION

An important aspect of conducting simulation

studies is the selection of the stochastic inputs
(probability distributions and their parameters) and
their subsequent generation. This problem is par-
ticularly interesting and challenging in the context
of multivariate statistical simulation studies, and
differs in flavor and tactics somewhat from selecting
multivariate inputs in process simulations (which are
in the majority at the Winter Simulation Conferences).
This paper will concentrate on multivariate inputs but
much of the philosophy in this realm will carry over
to the univariate situation. A much more comprehen-
sive coverage of the multivariate simulation area is
given by Johnson (1987), so that in a sense, the cur-
rent paper can be viewed as yet another unabashed
advertisement for that book. As a token defense, let
me add that I am doing this job against my will at the

request of the program chair (just kidding, David).

2. UNIVARTATE PRELIMINARIES

Before delving into a superficial treatment of
multivariate simulation, the problem of univariate
distribution selection and generation must be ad-

dressed. The first difficulty involves uniform O0-1

generation, the essential component in generating ran-
dom variates. Previously, I have capriciously assumed
avay the problem in hopes that the recommended
generalized-feedback-shift-register generator (using

the primitive trinomial x98+x27+1) would stand the

test of time. Recently, I was delighted and relieved

to learn that Ripley (1987, p. 46) prefers this gener-

ator as well. Hence, until I discover some repugnant
aspect of the generator, I will continue to use and to
recommend it, and let others pursue new, improved
uniform generators. I must add that I have yet to
encounter a situation in which the uniform generator
was the culprit in producing anomalous results in a
simulation.

For non-uniform generation, my two favorite
sources are Devroye (1986) and Bratley, Schrage and
Fox (1983).

univariate generation and also has approximately sixty

Devroye offers an encyclopedic account of
pages on multivariate generation. This book is an es-
sential reference for graduate students interested in
variate generation research, as it is a source of many
clever ideas. The Bratley et al. book is notable for
considerable coverage of univariate distributions and
includes FORTRAN listings for many of these distribu-
tions. I am grateful for both books in that I can
comfortably refer them to readers needing univariate
help,

generously paraphrase (1lift) material from

and I can avoid the overvhelming temptation to
these

sources.
3. UNIVARTATE MODELING ASPECTS.

As a statistician, I cannot help but admit some
disquiet in the distribution fitting process as
espoused in some undergraduate simulation texts. The
usual cozy paradigm goes something like this:

1. Hypothesize a distributional model (e.g., if

arrival times, assume that the Poisson
process holds).
2. Estimate parameters.
3. Apply goodness-of-fit tests.
4. Proceed on our merry way.

My objections are many-fold (distinguish from

manifold). The data collection aspect is restrictive

in that the distributions may arise under less than
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jdeal conditions. For example, a system badly in need
of

times (bad morale on the part of the serverg) and ar-

improvement may yield poor estimates of service

times (perhaps many more customers would arrive
Although one of

rival
if the service vere not so pathetic).
the most compelling arguments for simulation is its
ability to handle potentiaf system configurations, I
rarely see this data-collection concern addressed. A

question that could be asked that could lead to mean-

ingful simulation runs is what arrival rates can be
tolerated before the system produces unsatisfactory
performance. Also, what service rates are necessary

to accommodate some specified arrival pattern.

Another objection to the paradigm is the reliance
on goodness—of-fit tests to substantiate the distribu-
It
tests will alwvays pass or that the practioner will be
able find
positive (not
tests are presently being carefully scrutinized in the

tions. is not a forgone conclusion that these

to some model for which the tests yield

negative) results. Goodness-of-fit

statistical literature and many results are being pub-
lished which are relevant to this situation. Diaconis
and Efron (1986) have addressed the situation in which
from the baseline are we?

a test fails--how far

Adapting this approach to fitting continuous data,

Pederson and Johnson (1987) note necessary adjustments
to chi-square to account for varying numbers of bins
to allow comparison of data sets of different sample
sizes. The bottom line in this diatribe is the recom-

mendation to consult your friendly neighborhood

statistician in data fitting situations.

4. MULTIVARIATE STORIES

In contrast to the univariate realm where there

are many standard distributions which can be used

(provided you believe the goodness-of-fit tests), the
multivariate arena is not so well characterized.
There are a variety of distinet distributions with

of parameter estimation capability,
The

following annotated list of my favorite ought-to-be-

varying degrees
but the list of reasonable candidates is short.
included multivariate distributions is offered:
a. Multivariate Normal. Of course, here I mean the
mysual® multivariate normal distribution. In n dimen-

sions the distribution can arise as follows: start

with n independent normal variates (n calls to one’s
normal generator) and apply an affine transformation,
say Ax+b, vhere x is the vector of generated noxrmal

variates, A is an mxn matrix and p is a location vec-
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tor.
that

Frequently, A is a lower triangular matrix so

the product AA’ is the covariance matrix of X.
It is thus very easy

to generate this multivariate

normal distribution.

b. Normal mixtures. In keeping with the robustness
crowd, probabilistic mixtures of multivariate normals
are easy to generate and of interest especially in

such statistical applications. For the simplest case,
generate from one multivariate normal distribution
with probability p and from another multivariate nor-
mal with probability 1-p. This one is easy, also.

c. Johnson’s

translation system. This system con-

sists of the usual multivariate normal distribution
augmented with the possible component transformations:

exp(x) yielding lognormal variates
[1+exp(x)]_1 yielding logit-normal variates

sinh(x) yielding sinh_l—normal variates.
This system of distributions introduced by Johnson
(1949, no relation) has had an enviable track record
both in empirical modelling and in some multivariate
About the only difficulty

the system in simulation work is that there are

simulation studies. in
using
many parameters to specify so it takes some thought to
design a gtudy (this is a much better "problem" than

being stuck with little or no flexibility).

d. The Pearson
Type II and Type VII (including

Cauchy) distributions

Elliptically contoured distributions.
the multivariate
are useful representatives of
An unlabeled
the density function for a bivariate Pearson
that

this class of distributions. contour
of

Type II or VII is indistinguishable from

plot
for a
bivariate normal. A difference can be detected if one
considers the distribution of X'X, which of course is
chi-square with n degrees of freedom for X multi-
variate normal with =zero mean vector and identity
The touted Type II and VII are

the distribution of X'X is

covariance matrix.
easy to generate once
derived, but this is easy.

back

useful distributions in the

e. Anisotropic distributions. Getting to
robustness applications,
simulation context are those that are painless to gen-
erate and yet capture some interesting departure from
If we

ponder multivariate distributions that are not spheri-

a baseline distribution (usually the normal).

cally symmetric (a special case of elliptically

symmetric) but which bave X’X as chi-square vith n
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d.f., we are led to anisotropic distributions intro-
by Nachtsheim al, (1987). These
distributions have considerable flexibility and are

duced et

easy to generate.

£. This class of

distributions is being pushed by two camps.

Burr-Pareto-logistic distributions.
One group
recognizes the distribution as arising from a general
survival model from which results can be obtained
(see, for example, Hougaard, 1986). Another group
(Cook et al., 1981 and 1986) has been exploiting a
particular parametric to fit
The case with normal

form from the class
uranium mineralization data.
marginal distributions has some nice features (non-
conditional variance) which implore its use

by

constant
in simulation applications. As you might expect

now, this distribution is again easy to generate.

5. CRYSTAL BALL EXTRACTIONS

The 1list given in the previous section was

provided to introduce the multivariate (continuous
type) distributions I have found most useful in
simulation applications. The details have been

glossed over but honestly, the mentioned distributions
How will list 1likely
change in the next few years? The current "hot" topic

are easy to generate. this

in constructing multivariate distributions involves
the so-called copulas, a basic functional component
leading to many distributions including some disparate
ones. For references
MacKay (1986, 1987).
are not yet

Johnson (1987).

on this topic, see Genest and
that
can be found in Chapter 11 of

Other research directions

obsolete
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