Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

A SYSTEM FOR MONTE CARLO EXPERIMENTATION

David Alan Grier
Dept. of Statistics/Computer & Information Systems
George Washington University

Washington, DC

ABSTRACT

A pnew computer system for Monte Carlo
Experimentation is presented in this thesis.
The new system speeds and simplifies the
process of coding and preparing a Monte
Carlo Experiment; it also encourages the
proper design of Monte Carlo Exzperiments,
and the careful analysis of the experimental
Tesults.

A pev functiomal language is the core
of this system. DMonte Carlo Experiments,
and their experimental designs, are program-
med in this nev languape; those programs are
compiled into Fortran output. The Fortran
output is then compiled and executed. The
experimental tesults are analyzed with a
standard statistics package such as 5, Isp,
or Minitab or with a user supplied program.
Both the experimental results and the cxperi-
mental design may be directly loaded into
the workspace of those packages.

The new functional language frees pro-
grammers from nmany of the details of program-
ming an experiment. Experimental designs
such as factorial, fractional factorial or
latin square are easily described by the
control structures and expressions of the
language. Specific mnathematical models,
such as arima(p,n,q) models, regression
models with specific collinearity properties,

tabular data generated by logit or log-linear

876

20052 U.S.A.

models are generated by the routines of the
language. Numerous random pumber generators
and many standard statistic routines are
included. It is easy to use standard vati-
ance reduction techniaques, such as common or
antithetic variables, conditional Monte
Carlo, veighted semples, importance sampling
or control variates.

1. INTRODUCTION

Since their introduction, computers |
have greatly helped statisticians snalyze
data. But in the last fifteen years or so,

they bave becn used by statisticians

(o

o
study the statistical tecbniques themselves.
A common way of studying a statistical pro-
cedure is the statistical simulation, often
called Monte Carlo Experimentation. To
study a statistic in a Monte Carlo Experi-
ment, the computer generates a series of
pseudo random data sets. It calculates the
value of the statistic for each of the data
sets in the series, producing a new data set
of the realized values of the statistic.
From the new data set, the computer can es-
timate the numerical properties of the sta-
tistic, such as the variance, the bias or
the rejection rate.

A new software system for Statistical

Monte Carlo Experimentation is presented in
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this dissertation. This system does for Monte
Carlo Experimentation what packages such as
SAS(SAS, 1979), Minitab (Ryan, Joiner, and
Ryan, 1975), and S (Becker and Chambers,
1984) do for statistical analysis. The
Monte Carlo System is a collection of numer-
ical and statistical subroutines joined in a
unified prograrmming environment with a high
level language. Using this system, a re-
searcher can prepare a Monte Carlo Experi-
ment, execute it and prepare the output from
the experiment for analysis.

There are three reasons for creating a
softvare system for Monte Carlo Experimenta-
tion. First, such a system would speed and
simplify the process of doing Monte Carlo
experiments. Most statistical Monte Carlo
experiments are done by custom programs,
written in languages such as PASCAL or FOR-
TRAN. These programs tend to be tedious to
vrite and take a long time to prepare and
debug. Function libraries can be used in
programming experiments, but they can only
provide routines to generate random numbers,
sort data and calculate basic statistics;
and these tasks are only the basic parts of
a Monte Carlo experiment. Researchers must
still write code to control the experiment,
describe the experimental design, accumulate
data and analyze the experimental results.

A software system would transfer some of
that work to the computer.

A second reason to create a software
system is to unify the field of statistical
Monte Carlo experimentation. Monte Carlo

Experiments are done by mathematical statis-

ticians, biostatisticians, psychologists,
econometricians, and physicists, as wvell as
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researchers ip other fields. They do their
vork by custom programs, and publish their
results in journals that ao not specialize
in Monte Carlo Experimentation. Hence new
techniques and ideas disseminate slouly
through the field. Over the years, these
researchers bhave developed many useful tech-
niques for reducing the variance of exzperi-
mental results, for reducing the amount of
computer vork and for generating random
quantities. Yet, most of these techniques
are rarely used. Researchers that could
utilize a new variance reduction technique,
for example, are often unaware of the exis-
tence of the techmique they need. If they
know of a good technique, they must often
code it themselves from scratch which may
not be a good use of their time. The Monte
Carlo system provides a medium for distribu-
ting new ideas about Monte Carlo experimen-
tation in a form that can be used by re-
searchers.

A third purpose for this software sys-
tem is to improve the quality of Monte
Carlo experiments. In a survey of published
statistical Monte Carlo experimentation,
Hauck and Anderson (1984) found several
weaknesses in the use of experiments. They
reported that researchers often use poor
algorithms for generating random numbers or
for calculating statistics. Sometimes re-
searchers choose bad experimental designs
and rarely do they analyze their results
properly. A Monte Carlo system would cor-
rect the problem of poor algorithms by in-

cluding a collection of carefully chosen

algorithms and by providing standards to

test them. Knuth (1982) and Marsaglia(1984)
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give a list of tests for uniform pseudo ran-
dom number generators. Including them in
the software, plus woutines for distribution
tests such as the test, the Kolomgorov-
Smirnov test, and the Anderson-Darling test,
would simplify the process of writing rou-
tines to generate random numbers, and would
encourage careful testing. The principles
of Experimental Design are well established
(Box, Hunter and Hunter, 1978). A simple
control structure would encourage research-
ers to design their experiments using these
principles. An interface with the major
statistical analysis packages that would
load data into those packages, would encour-
age the careful analysis of the experimental

results.

2. EXISTING SYSTEMS

There are numerous simulation computer
languages and some of these languages have
existed for over twenty-five years. A
recent catalogue of these languages in the
October, 1984 issue of Simulation (Vol. 43,
No. 4), lists over 400 different simulation
languages. Most of the languages are de-
signed for the narrow purpose of simulating
a specific physical model. There are some
general purpose simulation languages such as
Simscript (Kiviat et al., 1975), (Dahl and
Nygaard, 1967), Slam (Prisker and Pegden,
1979) and GPSS (Schriber, 1974).

There are also some simulation languages
that were originally general purpose compu-
ter languages to which some extensions have
been added.

These languages usually contain

nev random number generators plus procedures
.
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and data structures to handle queues, calen-
dars or networks. The languages GASP (Pris-
ker, 1974), based on Fortran, Simpas (Seila,
1981), based on Pascal, and Simpli (Rubip,
1981), based on PLI, are examples of this
type of language. They are often compiled
by preprocessors that translate language
statements into subprogram calls.

Virtually all of the simulation lan-
guages are concerned with the problems of
simulating a physical, economic or psycho-
logical system, instead of simulating the
mathematical problems of interest to statis-
ticians. These languages are concerned with
simulating events that occur over time and
use queueing models or network models to
control the timing of events and have special
syntaxes for bandling the queues or networks.
The special syntaxes and concepts can rarely
be used in statistical Monte Carlo Experimen-
tation and these languages have nothing more
than the normal computer language control
structures for handling either experimental
design or the standard form of most Monte
Carlo Experiment programs.

Another problem with the simulation
languages involves the fact that most
Monte Carlo experiments make very specific
distributional assumptions and the simulation
languages don't provide the routines to
support those assumptions. For example, an
assunption might be that data in a certain
stochastic model comes from a contaminated
Normal distribution. If the contamination
is small, it may take thousands of observa-

tions to verify that the data from a contami-

nated Normal distribution rather than a
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simple Normal distribution (Mosteller and
Tukey, 1977). Since they are designed to
simulate a physical system rather than a
mathematical one,the simulation languages
usually only provide generators for the uni-
form, poisson, normal and exponential and
often the normal generator will produce data
from a distribution that is omly approxi-
mately normal (Brately, Fox and Schrage,
1985). This lack of routines to generate
random data further limits the usefulness
of the simulation languages for statistical
Monte Carlo Experiments.

None of the simulation languages have
been widely used for Statistical lMMonte
Carlo Experimentation (Friedman and Fried-
man, 1984). 1lMMost statistical problems can-
not make use of the control structures for
queues and netuvorks. They need a greater
range of probability distributions for the
generation of random pumbers than is often
provided. In addition, many statistical
problems require mathematical software that
is not available to the simulation languages
and they could benefit from control struc-
tures to collect data and design the
experiments.

3. THE NATURE OF THE PROBLEM

Monte Carlo Experimentation is used to
study the properties of statistics. It is
most commonly used in cases vhere assump-
tions about the distribution of the data
make it difficult or impossible to compute
the probability distribution of a statistic.
A common example is the problem of finding

the small sample variance of an estimator;
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another example is the problem of finding the
true, small sample coverage probability of a
confidence set. Either of these properties
could be computed if the probability distri-
bution of the estimator or of the confidence
set wvere known. When the true distribution
of a statistic cannot be known because of
the distribution of data, it can be estimated
by generating random data sets, computing the
value of the statistic for each of those
data sets and calculating the empirical cu-
rmulative distribution function. Then the
researcher can estimate the expected value,
the variance, the true rejection rate or any
other numerical property of the statistic.
Consider a simple example. Suppose
that we wish to study the properties of the
nedian and the 10% trimmed mean as estimators
of location, both for distributions that are
somewhat heavy tailed and for small sample
Andreus et al.

sizes. (1972) studied this

type of problem in the Princeton robustness

study. We want to compare the variance of

our two estimators for samples of size 15;
and we will gemerate our data from the con-
taminated normal family of distributions.

(In the contaminated normal family of distri-
butions, a given data point comes from a
standard normal distribution N(0,1) with
probability l-y and from a2 normal distribu-
tion with variance o2 with probability y for
0<y<L. Since we arc interested in heuvy
tailed distributions, ve choose Y to be 0.2
and  to be 50. We will replicate this ex-
periment 10,000 times. The value of 10,000
vas chosen to nake the variance of our re-
sults, the variance of the sample variance,

small. In performing this experiment, the
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computer will generate 10,000 data sets from
the contaminated normal distribution of
length 15, compute the 10% trimmed mean and
the median of each of those 10,000 data sets
and then compute the sample variances of
those 10,000 105% trimmed means and 10,000
medians. The sample variances will be our
estimates of the variances of the 10% trimmed
mean and the rniedian.

The basic program for this experiment

is a simple, single loop program. Inside a

Grier

oop 10,000 Times

Generate Pseudo Random Data

!

Evaluate Median, Mean

[
L

Calculate and Write Variances

loop, we gencrate a contaminated normal data
set of length 15 and apply the median and
10% trimmed mean. We will execute this loop
10,000 times. After the execution of the
loop, we will calculate the variance of our
tvo estimators. The basic structure for
this kind of program is seen in Figure 1.

By expanding the experiment, we would
like to determine how the size of the data
sets and the heaviness of the tails of the
original distributions affect the variances
of our estimators. For this, we will have
to design a more complicated experiment. We
could look at sample sizes of 15, 25, 50 and
100, v's of 0.05, 0.1, 0.2 and 0.3, and o's
of 10, 50, 100 and 500. We will combine
these three different factors in a factorial
design, performing our basic experiment
10,000 times for each possible combination
of those factors.

The structure of the program ve will
need to write to produce the Monte Carlo
experiment would then be a double nested
loop program. It would have a outer design
loop and an inner replication loop. The

outer loop would loop over every point in

the design loop and an inner replication

830

Flowchart for Simple Monte Carlo Experiment
Figure 1
loop. The outer looﬁ would loop over every
point in the design. The inner loop would
be the simple Monte Carlo program pictured
in Figure 1 above. The program needed for
this experiment is pictured in Figure 2

below.

Loop over Design

oop 10,000 Times

Generate Pseudo Random Data

{

Evaluate Mean, Median

|
v

Calculate Variances

|
i

Write Variances

Flowchart for Typical Monte Carlo Experiment
Figure 2



A System for Monte Carlo Experimentation

Like the program in Figure 2, the gener-
al structure of the program for any statis-
tical Monte Carlo experiment will contain
two nested loops. The imner structure will
have to generate data by repeatedly produc-
ing random numbers and calculating statis-
tics. The outer structure will control the
design of the experiment. Some experiments
may lack either one of those loops and some
night invert the loops to take advantage of
a variance reducing swindle, such as a com-
mon variate swvindle. Others, such as a boot-
strap experiment, might require more than
two nested loops. However, the basic pro-
gram structure, seen in Figure 2, will handle
most Monte Carlo Experiments. The Monte
Carlo system, described in this dissertation,
will treat a slightly more general version
of the basic Monte Carlo program. This nore
general version is shown in Figure 3.

4. AN EXAMPLE

The following exampleé is based on a
Monte Carlo experiment by Bartels (1982).
In that article, the author compares the
small sanple power of the von Neumann ratio
the rank version

test for autocorrelation,

of the same test and a runs test. We will
restrict ourselves to the von Neumann test
and the rank version of the von Neumann test,
and perform an experiment to calculate the
power of these two statistics under various
deviations from the null hypothesis of no
correlation in the data. The tests will be
performed at the asymptotic .05 level.
Using a first order autoregressive

model, we will generate data sets with
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autocorrelation ranging from 0 to -.8. The
data will come from four different distribu-~
tions, the Normal, the Cauchy, the Scale
Contaminated Normal with contamination para-
meter .05 and contamination standard devia-
tion 10, and the double exponential. We
will compare these two statistics on data
sets of length 10, 20 and 50; and we will do
10,000 replications of the experiment, in
order that our results may be significant

to .01.

Initial Code

Design Loop

Model Preparation Code

Replication Loop

Generate Pseudo Random Data

i

Evaluate Statistics

|
y-

Collect Output Data

|
'

Write Qutput

General Flowchart for Typical Monte Carlo Experiment
Figure 3
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Loop over dist

Loop overn, cv

oop 10,000 Times

Generate AR(1) Data

!

Evaluate the Two Statistics

|
i

Calculate Power
e
Y
Write Output

Flowchart for Bartel's Example
Figure 4

The basic experiment is a factorial ex-
periment with three factors, dist, n and r.
The factor dist is the distribution; n is
the sample size; and r is the autocorrela-
tion. To simplify the programming, we will

introduce another factor, ev. The factor cv

is the critical values for the tests. 1t is
a function of the sample size and the criti-
cal values for the vank test differ from the
values for the conventional test. It could

be coded as an additional loop or a function.

Instead, we will progran it as a factor that

882

is blocked with the factor n, the sample
size. It wvill be an array of two values,
the first for the conventional test snd the
second for the rank test. To do this coding,
te vill use the block expression to block
the factor m and the factor cv together.

The buasic flow chart for this program is

seen in Figure 4.

We uvill also nodify the design the ve-
duce the arount of computer work and to de-
crease the variance of comparisops across
sarple sizes. We vill use the commop ex-
pression to reuse the random variables gen-
erated for the smaller samples for the
larger samples. The random data sets cre-
ated for the experiment with the factor n
equal to 10 will be reused vwhen the value
of n goes to 25 and later whep it goes to
50. This will save the work Tequired to
generate 35 random variables for each inter-
action of the experiment. It will also in-
troduce a positive correlation in the results
across factor sizes. This positive correla-
tion will reduce the variance of any compari-
sons across sarple sizes with common other
factors.

The code below presents tuwo versions of
the experiment. The first version is the
simple version of the experiment without
the extra code to reuse the random numbers.
The secord vercion is the more complicated
version in vhich random quantities are re-
used. The text following pound signs, #,
and continuing to the ends of the line are
comments. Reserved vords of the language

are written in bold.
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design(factor(
dist(n) = ({morm(a}},
{rcauchy(n)},
{rcnorm(n,.05,10)},
{rdexp(n)}),

rw {0, ~.1,-3,-.5,-8)),
block( n = (10,25,50),
cv = (¢(1.36,1.04),
¢(1.45,1.36),
©(1.59,1.54))
)

)
X

export() rep(mean,10000) {
x :w mkarma(disy(n),r,1);

vn ;= ifelse(sum(diff(x)**2)/ (var(x}- 1)
>cvil], 1,0);

v ;= ifelse(sum(diff{rank(x)y**2) /
((len(x)**2 - 1Y/12) > cv[2], 1, 0);
e(vn,rvn)}

}

# factorial design
# distributions for data

# autocorrelanon factor
# sample size and
# cridcal values

# end of block

# end of factorial design
# end of design

# 10,000 replications

# make data

# von Neumann

# rank von Neumann

# retun armay of results
# end of rep expression
# end of design loop

block to the design.

Bareel s Example (Standard Version}

Figure 5

The second example is identical to the

first except for the addition of a common

This

common block

reuses the pseudo random values.

design(factor(
dist(n) = ({morm(n)},
{rcauchy(m)},
{renorm(n,.05,10)},
{rdexp(m)}),
£=(c(0, -.1.-3,-.5,-8)),
common( blocs( a = (10,25,50),
cv = (€(1.36,1.04),
¢(1.45,1.36),
©(1.59,1.54))
)]

X
export() rep(mean, 10000} {
x = mkarma(dist(n),r,1);

v ;= ifelse(sum(diff(x)**2) / (var(x) - 1)
>ev(il, 1,0);

rvn i= ifelse(sum(diff(rank(x))**2) /
((len(x)**2 - 1¥12) > cv{2), 1, 0);
c(va,rva)}

}

# factorial design
# distributions for data

# autocorrelation factor
# sample size and
# critical values

# end of block and common
# end of factorial design

# end of design

# 10,000 replications

# make data

# von Neumann

# rank von Neumann

# retura armay of results
# end of rep expression
# end of design loop

Bartel's Example with Corumon Random Variates

Figure 6
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5. ANALYZING THE RESULTS OF THE EXPERIMENT
We shall look at the results from the
experinient described in Section B and attempt
to determine the circumstances that cause the

rank von Neumapn test to be more poverful
than the standard von Neumann test when for
testing for ncgative autocorrelation, and wve
shall use the data from Bartel's original
experiment (Bartels, 1982). To help analyze
bou the factors affect the power curves of
the two statistics, we shall fit two linear
additive models to the experimental results,
the Monte Carlo estimates of the power curves
of the two tests. The results from both
models show that the rank von Neumann test
has more power than the standard von Nuemann
test in situations vhere the data is both
heavy tailed and has small autocorrelation.
The standard test slightly outperforms the
rank test in situations vhere the data has

autocorrelation of -.8. The sample size had
the same small effect on the two statistics.
The first model fit to the

vas & simple lincaradditive model with only
main effects. The equation for the model is
shoun in Figure 7, a2long with a brief ex-~
planation of the parameters. The results
from fitting the model are shown in Figure §.
The values for the coefficients are the con-
tribution to the power curve made by each
factor over the baseline case of the Normal
distribution, sample size 10 and uncorrelated
data. The fitted value of the baseline case

i

©

given by the coefficient labelled "Inter-
just the estimated level of the
test for 10 data points from the Normal dis-

tribution.

For example, the coefficient for
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the sample size factor equal to 25 (labelled
"N=25" ip the figure), equal to .07591526
gives the increase of power over the baseline
case for changing the sample size to 25. The
factors labelled "diff", called the differ-
ence coefficients, give the difference be-
tveen a factor for the rank test and the
same factor for the standard test. A posi-
tive difference coefficient implies that
factor contributes more to the power of the
rank test than to the power of the standard
test. A negative value implies that the fac-

tor contributes more to the standard test.

P =t o+ By g+ M B T mp
i =norm, cauchy, cnorm, exp
j=10,25,50
k=0,-.1,-3,~5,-8
{ =0, rank
Pi Power of the statistic
n Level of the test for normal data of length 10
p Difference between rank and von Neuminn level
-
e =0
o Effect due to the distribution
o Difference in effect due to distribution
a3 =0 forall i
B; Effect due to sample size
BA" Difference in effect due to sample size
B&T =0 for ail j
% Effect due to autocorrelation .
i Difference in effect due to autocorrelation
i =0 forallx
& Unéxplained error term
var(e;y) is proportional to pju(1~p,u)

First Linear Model for Example
Figure7

(43
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Coef Sid Er t Value

Intercepe -0.04578855 0.03305038 -1.385416
cauchy -0.01509677 0.02684095 -0.5624531
chorm -0.006198847 0.02418737 -0.2562845
exp -0.001781554 0.01619159 -0.1100296
N=~2§ 0.09911107 0.03395068 2.919266
N=50 0.1549979 0.03275891 4,131475
r=.1 0.06713232 0.03802494 1.765481
™=-3 0.3785103 0.05344310 7.082491
=5 0.7698574 0.04166798 18.47599
=3 0.8915017 0.02752684 32.38663
diff -0.03891959 0.00388887 -10.00793
cauchy diff 0.03522234 0.00248226 14.18961
cnorm diff 0.01243551 0.00232291 5.353403
exp diff 0.007591526 0.00182823 4152372
N=25 diff 0.07063844 0.00398118. 17.74308
N=50 diff 0.05166333 0.00385107 13.41530
ra-.1 diff 0.05669427 000482690 11.74547
o3 diff 0.1157636 0.00604214 19.15935
r=-.5 diff 0.05890969 0.00431559 13.65044
o8 diff -0.02057531 0.00318795 -6.454082

Residual Standard Error = 03968147

Multiple R-Square = 0.978354

N =120

F Value = 237.8806 on 19, 100 df

Results of Fit of First Model
Figure 8

All the difference coefficients are posi-
tive, except for the factor "r=-.56" and the
factor labelled simply "diff" which indicates
the difference betwcen the baseline values
of the tvwo statistics. The negative value
of the "diff" coefficient indicates that the
standard test has a slightly higher level
than the rank test. The largest difference
coefficient is the "r=-.2 diff" with a value
of about .116. The next four larpest are, in
decreasing order of magnitude, ''N=25 dAiff",
"r=-.5 diff", Yr=-.3 diff", "r=-1. diff".
They are all bigger than the coefficient for
"diff", indicating, that for those factors,
the rank test has more power than the stan-
dard test.

However, this model does not fit the data
wvell. The value of the intercept, which
should be positive because it is supposed to
give the level fo the standard test for Nor-
nel data, sample size 10, is negative. A
quick glance at a rvesidual plot, Figure 9,

shows a clear trend in the residuals. There
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is more structure in the data than this model

can explain.
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Fitted Values

Residual Plot From First Model
Figure 9

The second model includes both main ef-
fects and first order interaction terms. It
points to the same conclusions, albeit more
specifically, implied by the first model but
it fits the data better. The equation for
this model is shoum in Figure 10. The re-
sults from fitting it are given in Figure 11
and a residual plot is given in Figure 12.
This residual plot has less discernible
structure than the plot in Figure 9, implying
a better fit than the first model. As an ad-
ditional check, the Intercept coefficient is
both positive and close to the theoretical

level of the standard von Neumanp test.
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P =B +B e+ 8+ Ly eny,
+u,‘"'+au“/'+ﬂ;“ T 50T LA gl ¢ e

T
"

5
5

e

T

&

i =norm,cauchy, coorm, exp
50

Power of the statistic

Level of the test for normal data of length 10
Difference between rank and von Neumann level
w =0

Effect due to the distribution
Difference in effect due to distnbution
o =0 foraili

Effect due to sample size
Difference in effect due to sample size
Bia¥ =0 forall j

Effect due to autocorrelation
Difference in effect due to autocorrelation
4% =0 forall k

Effect due to distribution and sample size
Difference in effect due to distribution and sample size
53 =0 for all i, j

Effect due to distribution and autocorrelation

Difference in effect due to disti and
L% —0forall i,k

Effect due to sample size and autocorrelation
Difference in effect due to sample size and autocorrelation
W4 =0 forallj k

Unexplained error term
var(e;) is proportional 10 pyu(l - piu)

Second Linear Model for Analysis
Figure 10

Intescept
cauchy

cnorm

exp

re-1

=3

ta5

r=-8

N25

N=50

(r=-.1 % cauchy)
(r~-.3 X cauchy)
(r=-5 % cauchy)
(rm-.8 % cauchy)
(r=-.1 X cniorm)
(r=-.3 X cnorm}
(r=-.5 X coorm)
(r=-.8 X cnorm)
(r=-.1 X exp)
(r=-3 X exp)
(r=25 X exp)
(r=-.8 X exp)
(re-.1 % Nu25)
(r=-.3 X Nw25)
(r=-5 X Na25)
(=8 x N=25)
(r=-.1 % N=50)
(re-.3 X N=50)
(t=-.5 X N=S0)
t-8 % Nee50)
(cauchy X N=25)
cnorm X Ne25)
(exp X N=25)
{cauchy X N=50)
cnorm X N=50)
exp X N=50)
diff

cauchy (diff)
cporm (diff)
exp (diff)

=1 (diff)
re.3 (diff)
r=-.5 (diff)
r=-.8 (diff)
Nw25 (diff)

Coef Std Err t Value

004566148 0.01569252 2.909760
-0,008863008 0.01929450 -0.4593540
-0.0152359% 0.01937728 -0.7862810
-0.007019783 0.02041993 -0.3437711
0.03427143 0.02181895 1.570718
0.09629255 0.02888086 3.334130
0.3170538 0.02835428 11.18187
0.6532093 0.02482697 26.31047
0.006643924 0.01907946 0.3482240
0.006415711 0.01856728 0.3455385
-0.02770493 0.02452011 -1.129886
0.05610760 0.03385195 1.657440
0.02949658 0.02694342 1.094760
0.02051979 0.01826561 112341
-0.01370912 0.02528103 -0.5422692
0.03323159 0.03437202 0.9668210
0.02419550 0.02637002 0.9175384
0.01303348 001824976 0.7141729
0.007321722 0.02655699 0.2756984
0.02958349 0.03529438 0.8381927
0.01463342 0.02684701 0.5450671
0.01546604 0.01785500 0.8662024
0.02812739 001998212 1.407628

0.2589798 0,02969102 8.722497
0.4014144 0.03060300 13.11683
0.2681467 0.02451935 1093612
0.06697737 0,02134691 3.137567
0.5567748 0,02816203 19,77040
0,5823371 0.02610882 22,30423
0.2937377 0.02347770 12.51135

-0.01785738 0.02183406 -0.8178684
-0.005245424  0.02208397 -0.2375218
-0.01143195 0.02272980 -0.5029500
-0.02174458 0.02111022 -1,030050
-0.003050006  0.02130844 -0.1431360
-0.008535272  0.02188685 -0.3899726
0.01336847 0.001825398 7.323594

0.003383649 0.002343732 1.443701

0.000824492 0.002292900 0.3595850
0.001191323 0.002402421 0.4958841
-0.03949700 0.002533177 -15,59188

003055829 0.003285929 -9.299742
-0.01559731 0.003221641 -4.341419
-0.009648632  0.002839378 -3.398149

-0.02498178 0.002200787 -11.35129

Results of Second Model Fit
Figure 11
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Coef Std Err t Value
N=50 (diff) -0.01344390 0.002158256 -6.229059
(r=-.1 x cauchy) (diff) 0.1563420 0,003130644 49,93924
(r=.3 X cauchy) (diff) 0.1915934 0.003825223 50.08686
(c=-.5 x cauchy) (diff} 0.04909303 0.002897434 16.94362
(r=-8 % cauchy) (diff) -0.01091001 0.002071304 «5.267222
(r=-.1 x cnorm) (diff) 0.05146074 0.003012369 17.08315
(r~-.3 % cnorm) (diff) 0.06291419 0.003937791 15.97702
{r=.5 X cnorm) (diff) 0.02599824 0.002944333 8.829927
(r=.8 X coorm) (diff) -0,01195592 0.002091582 -5.716208
{e=.1 X exp) (diff) 0.04132482 0.003133657 13.18723
(r=-.3 X exp) (diff) 0.07076290 0.004011545 17.63981
(r=-.5 x exp) (diff) 0.02618377 0.003009096 8.701542
(r=-.8 % exp) (diff) -0,01577092 0.002074789 -7.601218
(r=.1 x N=25) (diff) 0.03600698 0.002533349 14.21319
(r=.3 x N=25) (diff) 0.02173366 0.003457058 6.286678
(r~-.5 x N=25) (diff) 0.03205910 0.003439215 9.321634
(r=-.8 X N=25) (diff) 0.01998501 0.002799418 7.138988
(r=-.1 X N=50) (diff) 0.08699303 0.002720082 31.98177
(r=-.3 x N=50) (diff) 0.001257015 0.003214491 0,3910465
(r=-.5 X N=50) (diff) -0.005481657 0.002964340 -1.849199
(r=-.8 x N=50) (diff) 0.009562719 0.002713774 3.523771
(cauchy X N=25) (diff) 0.03920404 0.002560384 15.31178
(cnorm x N«25) (diff) 0.02986895 0.002553679 11.69644
{exp X N=25) (diff) 0.03032771 0.002621921 11.56698
(cauchy x N=50) (diff) 0.01759541 0.002482373 7.088144
(cnorm X N=50) (diff) 0.01674535 0.002466194 6.789961
{exp X N=50) (diff) 0.01487447 0.002530054 5.879110
Residual Standard Error = 0.0884716
Multiple R-Square = 0999483
N=120
F Value = 1308.284 on 71, 48 df
Results of Second Model Fit
Figure 11 (Continued)
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The biggest difference coefficients are
not the main effects but the coefficients
for the interactions. The six larpest dif-
ference coefficients, in decreasing order
of magnitude, are the "'(r= -.3xcaucby)(diff)?
"(r=0.1xcauchy)(diff)","(r=-.1xN=50Xdiff)ﬂ
"(r=-.3xexp) (diff)", "(r= -.3xcnorm) (diff)",

and "(r- -.2xcnorm) (¢iff)". The coefficients

for the main effect difference factors are
close to zero. These interaction coeffi-
cients dominate them aﬁd, again, indicate
that tbhe improvement in power of the rank
test over the standard von Neumanrn test is
greatest in the situations where the data

bhas both a low autocorrelation and a cones

from a heavy tailed distribution.

6. SUMMARY

The example given above shows how the
features of the Monte Carlo System speed and
simplify the coding of a Monte Carlo Experi-
ment as vell as the careful planning of the
experiment and the proper analysis of its
results. A complete description of the sys-
tem, including a formal definitiom of the
Monte Carlo Language, may be found in the
author's Ph.D. thesis (Grier, 1986), avail-
able from the University of Washington,

Department of Statistics, Seattle, WA 98195.
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