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ABSTRACT

We present an automated procedurs that interfaces with
SIMSCRIPT II.5 simulation experiments to derive point and
interval estimators for steady-state parameters of stochastic
simulations, The procedure combines the nonoverlapping batch
means method of output analysis and the control variates
variance reduction technique. Batch size and control variates
are selected automatically,

1. INTRODUCTION

Variance reduction techniques (VRTs) are used to reduce
the population variance of estimators from stochastic
simulation experiments; see Nelson and Schmeiser (1986) for a
review of well-known VRTs, Most VRTs are designed for finite
horizon (sometimes called "transient" or “terminating")
simulations for which the experimental design is to sample
independent and identically distributed (i.id) realizations of
the process, However, for infinite horizon (sometimes called
"steady-state") simulations a single long realization may be more
practical because of the need to model or delete an initial

transient period on each realization.

In simulation output analysis, the initial transient
problem has lead to the development of single realization
methods for point and interval estimation of the steady-state
mean of a process, The primary advantage of single realization
methods is that more of the simulation budget can be allocated
to generating usable outputs, since only one initial transient
period must be deleted, Nonoverlapping batch means (Schmeiser,
1982) is one of these methods, and it is simple enough to be
almost entirely automated (see for example Mechanic and McKay
(1966), Fishman (1978), Law and Carson (1979), and Schriber and

Andraws (1979)), Similarly, it is desirable to apply VRTs in single
realization designs to further improve the statistical efficiency

of the experiment, and to do it automatically.

In this paper we present an automated procedure called
BMCV that combines the batch means method of output analysis
and the control variates VRT for simulation experiments
written in SIMSCRIPT IL5 (C.A.C.l, Inc). The procedure’s design
is based on results in Nelson (1985). Section 2 reviews the batch
means and control variates methods. Section 3 outlines
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procedure BMCV and section 4 gives some preliminary
experimental results. We close by discussing possible extensions
of BMCV in section 5.

2. REVIEW

This section, which is based on Nelson (1986), reviews
the theoretical basis for the batch means method and control
variates. Let the output of the simulation experiment be
represented by a sequence of identically distributed random
(column) vectors Z'; = [¥j, Xqj, Xaj, wy Xgil, 1 =4, 2, w, n,
implying that initial transient effects have been removed, Let
ElZ'1 =8, 1y, M3, v qu and CovlZ;] = Z where
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so that cyz = VarlY;l, 2, is the qxq covariance matrix of
X3, Xpid, §, m = 4, 2, w, q, and oyx is the gxi vector of
CoviY; X;i), d = 4, 2,.,, Q. Thus, the square of the multiple
correlation coefficient of ¥; on [Xy;, Xp;, ey Kqilis
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For our purposes, 8 is the unknown parameter of interest,
and Hyj, X3, m, Xgj are the g control variates, To be useful
as a control variate, ¥j; must be correlated with ¥;, and M
= ElXj;d, § = 4, 2, .., q, must be known, For later convenience,
define the column vector (X; - W' = [Xgi-py, Xoi-M2, m, Xqi~Mgl,
which has expectation (0, 0, .., 0] and covariance matrix 2y
Note that, for random variables, our convention is to use single
subscripts to denote column vectors and double subscripts io
denote scalar elements, with the exception of Y; which is a
scalar random variable.

The idea behind batch means is to transform the n
dependent vectors Z4, Zy, u, Zp, intc fewer (almost) independent
and (almost) g+i variate normally distributed batch vectors
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for j =4, 2, ., k; b = n/k is called the baich size, and k
the number of batches. Here vector addition is component-by-
component addition. We use the convention that any random
variable with a bar and argument (k) is a batch mean of b
= n/k observations; e.g. 73(10 is the jth batch mean of the
Yj with batch size b = n/k., We assume for now that the total
sampling budget n is fixed,

Given k batch means, the conirol variate estimator of

B8is

BCK,q) =Y = B/CK,q) (X—w 1)
where
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The quantities on the right-hand side of (2) are the sample
versions of Iy(k,q) = Covi¥;(k)) and oyxtk,a = Covi¥;), &0l
Confidence intervals for 8 are given in Nelson (1984).

Lavenberg and Welch (1981) considered the case when
k = n (b= 1), and the Z; are i.i.d, q+{ variate normal vectors.
They showed that Varléing)] = (i-RyxZ)(cyzln)(n-2)/(n-q-2). This
compares to Varl¥] = cyzln, showing that a variance reduction
relative to the sample mean can be achieved if Ryxz > q/in-
2). Schmeiser (1982) considered the cass when q = 0 (no control
variates) and there exists a number of batches 2 £ k* £ n
such that for k £ k* the dependency and nonnormality of
the k batch means ¥ k), § = 4, 2, u, k, is negligible. He showed
that there is little additional benefit in terms of point and
interval estimator performance from k > 30 batches, provided
k¥ > 30,

Nelson (1986) examined the joint effect on variance
of
simultaneously applying control variates and batching, so that

reduction and confidence interval performance
the results of Lavenberg and Welch and Schmeiser are special
cases. He found that as the number of control variates
increases from q = 1 to 5, 30 £ k £ 40 batches assure good
point and interval sstimator performance, provided k* > 40,
Also, at least 30 batches are needed to guard against serious

deterioration of estimator performance due to selecting
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ineffective control variates, This is an important result for
BMCV, since BMCV automatically selects control variates using
statistical procedures. If Z;, i = 1, 2..., n cannot be partitioned
into at least 30 acceptable batches, then Nelson recommends
increasing n.

Up to this point we have besn implicitly assuming that
the simulation output process can be represented by Ij, i =
i, 2,.,, n, as defined above. In some simulation experiments it
may be the case that the output process has a continuous
time index. Batching by time, rather than by count, is necessary
to obtain an output process of the form considered here, For
example, if we have a continuous-time process Z(1), 0 £ t £

1, then
- ib
20 = b1 J 2t dt
¢j-1>b

where b = 1/k and 1 is fixed, rather than n. Since we have
both discrate and continucus-time outputs in general simulation
experiments, procedure BMCV batches all output variables by
time. While this makes the number of ocutputs per batch a
random variable for discrete-time outputs, the expected number
of outputs per batch is the same for all batches.

3. PROCEDURE BMCV

In this section we briefly outline how procedure BMCV
works. Complete details are given in ARonuevo (1984). BMCV
interfaces with SIMSCRIPT IL5, which is a general purpose
programming language containing featurss thai support
discrete-event and process-interaction simulation models, Ses,
for instance, Russell (1983), Procedurs BMCV is written in

SIMSCRIPT IL5.

The following declarations are required by BMCV: the
output variable(s) of interest (¥;) and the potential control
variates (Xi;, Xpj,m, Xgi), the expecied values of the potential
control variates (g, po., uq), and the maximum number of
batches (kp ). During program execution BMCV collects outputs
and manages batching. When program sxecution ends, tests of
independence (Fishman, 1978) and multivariate normality
(extended Shapiro-Wilk test due to Malkovich and Afifi, 1973
are applied. BMCV is designed to use sequences of iid. input
variables as control variates, so that only dependence within
the Y; sequence is a concern. It is important to note that,
even if passed, these tests do not guarantee iid. multivariate
normal batch vectors, nor, if failed, do they prove that iid.
multivariate normal batch vectors were not obtained, Thus,
BMCV computes point and interval estimates aven if the tests
fail, but it reports that they failed, A stepwise regression
procedure sslects what appear to be the most effective control
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variates from the q potential contrals. Point and interval
estimates are computed and reported in the results,

An algorithm presentation of BMCV follows, BMCV has
a routine for clearing statistics after an initial transient
periad, which is not shown in the algorithm, A listing of BMCV
is in Afionuevo (1986).

Procedure BMCV

0. Daclarations: Yj; Xyju Ko Mg Mgi Kmay (default 60) Bagin
with a batch size of b ¢ 1 time unit.

1. Collect and batch ¥k, Kg 5k, 8gik) by time. If the current
number of batches is 2 kp,y, then double the batch size (b
€ 2b), combine the batches collected so far, and continue,

2. If conditions for snding the simulation are satisfied, then
perform "clean-up”" procedures to insure that Y and X have
common batch size, by,

3. Perform the test of independence on ¥ (k) § =4, 2, ke
If the test fails, then reduce the number of batches, k, as
follows: k ¢ n/mbg, m = 2, 3,.., where m-1 is the number of
times the test is performed. Recompute the batch means and
repeat tha test. Report if 10 £ k £ 30 but continue, If k <
10 then there are insufficient batches, sc stop,

4. Perform the test of multivariate normality on 7500, &y (K.,
Rq 'K, J = 4, 2,u, K, where k is initially the number of batches
that passed the test of independence, Use the same procedure
as step 3 if the test fails,

5, Perform stepwise regression of Vi(k) on Ry (k) ~ py,m, Rq Gk
- My to select g’ £ § control variates from the q potential
control variates,

6. Compute and report the results: point estimates é(k,q'), Y;
90% and 95% confidence intervals for 8; estimated Var[ﬁ(k,q’)],
Varl¥; estimated percentage variance reduction.

Note that if the number of acoeptable batches is less
than 10, the current version of BMCV stops. 1deally, it should
restart the simulation and increase the total sample size.

4. EXPERIMENTAL RESUVLTS

To test procedurs BMCV, we simulated the closed
machine-repair system that Wilson and Pritsker (1984ab) used
to test their standardized control variates. This experiment
was chosen for two reasons: First, the parameters of interest
can be determined analytically, so the performance of the
confidence interval procedurs can ba evaluated. Secondly, Wilson
and Pritsker’s sxperimental design used multiple independent
raalizations, deleting an initial transient period on each one,
which is an alternative to the single long realization approach
of BMCV.
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The machine-repair system operates as follows: There
are initially 5 machines in operation and 2 idle spares. The
time to failure for an operating machine is exponentially
distributed with mean py = 10.0 time units. When a machine
fails it needs a major overhaul with probability .25, in which
case it waits in a FCFS queue for a single repairman, The
time required to do a major overhaul is exponentially
distributed with mean gy = 1.5 time units. Those failed machines
not requiring a major overhaul receive minor repair on a FCFS
basis from a different repairman whose repair time is
exponentially distributed with mean pg = 1.0 time unit. Finally,
all repaired machines are inspected by a single inspector. Those
machines that pass inspection (probability .9) return to the
queue of spares if 5 machines are currently operating, or
directly intoc service if less than § are operating. Machines
that fail inspection are returned to the minor repair facility.
The time required for inspection is exponentially distributed

with mean yy = .5 time units.

We are interested in estimating steady-state parameters
such as the average number of operating machines, the average
utilization of the repairmen and the inspector, the expected
waiting time for repair and inspection, and the expected number
of idle spares., All of these parameters can be determined
analytically; see Wilson and Pritsker (1984b) for details, Here,
we report results for estimating 84, the average number of
operating machines, and 83, the average utilization of the
repairman at the minor repair facility. These represent the
typical and the best results obtained by BMCV, respectively.

Our basic experiment was to simulate the machine-repair
system for 7400 time units, deleting outputs from the first 1000
time units. This leaves 6400 time units of usable output. Wilson
and Pritsker generated 30 independent realizations of 250 time
units each, deleting outputs from the first 50 time units of
each realization. Thus, they had a total of 7500 time units,
of which 6000 were usable. This illustrates the advantage of
a single realization method: out of a smaller total budget (7400
vs. 7500 time units) we were able to allacate more effort to
removing the initial transient period (1000 vs, 50 time units
per realization) while still obtaining more usable output (4400
vs, 6008 time units), Had we allocated only 50 time units to
the initial transient pericd then the increase in usable output
would have been even greater,

As in Wilson and Pritsker (1984b), we replicated the
entire experiment 50 times to estimate the average performance
of the procedure and the confidence interval coverage
probability, The potential control variates were the time to
machine failure, Xyj, the time to do a major overhaul, Xp;, the
time to do a minor repair, X3;, and the time to inspect a machine,
X4i. The index i represents the ith realization of each random
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variable, and for fixed j, X;jj, i = 4, 2,.. is a sequence of ii.d.
random variables. The expected values of these random
variables were given above, Note that, unlike Wilson and
Pritsker who used all four control variates on all raplications,
the particular control variates selecte? by the stepwise
procedure in BMCV can and did differ over the 50 replications.

Tables 1 and 2 present a portion of the results for
estimating 84 and 87, "Crude" indicates the usual batch means
estimator and "CV" indicates the contral variate estimator, Both
estimators are based on the same number of batches, Our results
compare quite favorably to Wilson and Pritsker (1984b),
obtaining almost identical variance and confidence interval
(e.d) half width reductions, and confidence interval coverage
probabilities. The variance reductions are still worthwhile
after taking the extra computational burden of BMCV into
account. For complete results see Afionuevo (1986),

Table i: Average performance of BMCV over 50 replications of
the machine-repair system for estimating 8y,

Crude cy

variance 000249 000153
% reduction 437
0% c.i.

halfwidth 027329 020600
7% reduction 25%4
probability
of coverage .82 .90

Table 2: Average performance of BMCV over 50 replications of
the machine-repair system. for estimating 85,

Crude cV

variance .000117 .000032
“ reduction 734
0% c.i.

halfwidth 018121 .009384
7. reduction 487
probability
of coverage . P4 .86
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5. DISCUSSION

The experimental results in the previous section, and
others in Afionuevo (1984), show that BMCV implements a
competitive method for estimating steady-state parameters.
However, to be more general BMCV should include a run length
conirol procedure to determine the initial deletion amount and
the total run langth based on the available budget. In addition,
since it is possible that no batch size passes the test of
multivariate normality, a procedure to form Jackknife
estimators (Bratley, Fox and Schrage, 1983) could be included.
Nonnormality causes 8(k,q) to be a biased sstimator, and
Jackknifing is a procedure io reduce this bias, Finally, results
in Nelson (1986) indicate that basing the selection of control
variates on the change in the multiple correlation cosfficient

Ryx? might be better than stepwise regression.
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