Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

DISTRIBUTED DATABASE QUERY SIMULATOR

Raju Kocharekar
The World Bank
Washington, DG 20007

ABSTRAGT
This paper discusses a design methodology for a
Query (DDQS). A

distributed database query consists of two different

Distributed Database Simulatox

types of sub tasks; One, the tasks pertaining to the
relational database manipulation language, such as
project and joins on different files, and two, the
tasks of file transfers. A given query can have any
number of subtasks of both the types. These tasks are
interrelated to each other, and parallel operations
can be performed provided the required serialization
The

resources with subtasks

is maintained. subtasks compete for common

from other queries being
evaluated at the same

the subtasks

time, or to some degree, with

from the same query, if performed

parallel. The purpose of the DDQS is to evaluate the
performance of a given query algorithm in terms of
the total query processing time, in a given workload
The

and network architecture. DDQS uses transaction

oriented GPSS language to simulate the query, while
pascal is used to pgenerate the GPSS source code
relevent to the query. The DDQS design is highly

modular and simulation of any communication protocol

layers or database access methods can be changed

without affecting the higher level modules.

1. INTRODUCTION

1.1 What Is A Distributed Database Query?

In a relational database system, users can

extract the information from the database in a non
procedural vrelational calculus language, or a
procedural relational algebraic language, or a hybrid
of the both. 1In

conceptually views the database

accessing the data the user

in a tabular form,

irrespective of the individual file structures. The

same concept is even further generalized in the

distributed systems, by accessing the data from

~1

o

different locations without the user awareness. A

database dictionary is used for the mapping of

logical and physical structure and location of the
data files. The file locations are decided statically
at the database design time, or dynamically based on
the statistics collected on the database queries for

file accesses.
1.2 Distributed Query Processing Algorithm

A distributed database query processing algorithm
is a procedure of tasks or operations, which if and
when executed, results in the output data fulfilling
the user requirement.

There are two main types of

tasks in the query processing algorithm.

i. The Relational Data Manipulation
language (DML) tasks

. The file transfer tasks

The relational data manipulation language tasks
perform relational operations on one or more database

files generating a unique ouput file. For example, a

‘select’ relational operation - performed on an

employee file with the selection criteria of

'Employee LastName = Smith’ will result in a database

output file with all employees with lastname 'Smith’.

A ‘'join' relational operation performed on the
employee file and the department file on the
department number (where both the files have

department number as a field in the recoxd formats),

will result in a file with each employee record

having information about the department of the

employee, such as the department name.

Note that most of the relational DML tasks are

similar for the centralized as well as distributed

data base system, except for the few, such as

'semijoin’ or ’‘union’ which are especially beneficial
in case of distributed database systems. The reader

is requested to refer to Date (1986) for further



Distributed Database Query Simulator

details.

The output of a DML operation is a relational

table, similar to the original relational database

tables used in the operation. Depending on the query
processing algorithm, the output can be used in the
subsequent processing, or can be directly taken as
the result of the query, if this DML operation is the
last step in the algorithm.

The file transfer tasks are integral part of the
distributed systems. In the beginning,
query,

location to process the query.

or at any

later point in the a data file must be

accessed at a remote
For example, in the bank database, information
pertaining to a particular customer is most likely to
be found at the branch 1location, where the customer
and must be transferred over the

if

has the account,

communication 1lines required at any other

locations.

Along with the data file transfers, a distributed

data base system also incorporates the control
message  transfers. The control messages are
instructions to the receiving site. 1In the banking

database example, a message must be sent to the

customer account site to request for the customer

data. These messages, 1in general wutilize the same

communication lines as the regular data files.

1.3 Query Optimization

A typical user query can be fulfilled in many

different ways. Two different criterias are used to
evaluate the query performance; the cost of the query
and the response time. Many methods are proposed in
the literature to find the optimal way of processing
the query, based on either the cost or the response
time, with an assumption of proportionality between
the two measurements. Unfortunately, finding an
absolute optimum algorithm of query processing is a
computationally explosive problem (n-p complete). The

solutions therefore are heuristic.

The query processing costs can be split into two

types of costs, mainly the DML processing costs, and

the communication costs. The

two costs can have

various proportion of the total cost, depending on

the network architecture and the database management

system used. These costs are dependent on the total

733

execution time of the

the time the task

individual tasks, but not on

is performed. e.g. the cost of a

join of two relational files depends on the total
processing time  required for the  operation,
irrespective of when the join is performed.

Similarly, the cost of sending a file depends on the
size of the file, and not on at what time the file is

sent.

The total response time for the query depends not

only on the execution time required for each

individual task, but also on the time of execution.

The overall response time of the query executed by

different tasks is lower
of the

concurrantly running many

than the response time quexry executed

serially. It is essential, however to know that not
all the tasks in the query alogorithm can be executed
in parallel. The syncronization needed in performing

these parallel operations is explicit in the given

query processing algorithm, and has to be maintained
The methods to find

in the execution of the query.

the minimal response time query algorithms try to

maximize the number of parallel tasks and minimize

the individual task execution times.

1.4 Simulation Of A Distributed Database Query

It is possible to measure the cost of the query

analytically, but it may not be easy to determine the

response time, especially under different varying
workloads. The analytical methods to calculate the
response time may even be misleading under low

workload. A query processing algorithm executes a few

DML, operations in the

of mnext DML

parallel, and transfers

resultant files for the preparation

operations at subsequent host nodes. The cycle is

repeated until the final datafile is available at the

user query initiation site. The host processors in

turn are busy at certain time, while communication
lines are relatively idle, and vice wversa. It is
incorrect therefore to calculate the host processor

or communication 1line access time based on the

overall average wait time, in a low workload. A
( DDQS ) can be
effectively used to determine the response time under
The DDQS

underlying vresources. The power

Distributed Database Query Simulator

varying workloads. also determines the

utilizations of the
of the DDQS lies in its use in determining the query
responses under varying network and host computer
architecture of the

architetures, when the initial



R. Kocharekar

distributed base is designed, or when new resources

are ‘to be established, or the current ones to be

relinquished.

Distributed database queries can be broken up

into a few number of classes, depending on their

nature such as the frequency, lodation, and the

underlying processing algorithm. These classes of

queries can then be simulated combined, or the few

can be
The

simplify the model by grouping the queries.

interested classes simulated against the

background workload. advantage here is to

The DDQS has to be flexible enough to test under
different database and network architectures, and yet
specific enough to simulate any query algorithm. This
requirement necessitates a moduler design of the
The DDQS follows the ISO/0SI network
In the 1IS0/0SI ‘network model, distributed

falls

simulator.
model.
database query processing in the
application layer. To

of the

topmost
simulate the top layer, the
1S0/0S1I model have
required extents, should also be

the inner layer simulations without

inner layers to be

simulated to One
able to change

changing the interface to the higher layers.

2. DDQS DESIGN

2.1 Distributed Database Query Representation

A distributed query algorithm can be represented in

intermediate data structures, before finally

many
converting into an output ‘object code’; but the most
commonly used format is a tree representation of the
leaf nodes represent

while

to be performed. The

query. In this representation,

the original data base files, inner nodes

represent the DML operations

nodes at the bottom-most inner layers are executed

first. Each tree node produces an ouput file to be

used by its parent node. The root node produces the

result. In some cases, it is also possible that the

intermediate representation is an acyclic graph,

indicating that the same file is wsed for two

different DML operations. These cases are beyond the
scope of this paper.
The file transfer operations are not explicitely

represented in the tree structure, but the location

in the network the DML operation is to be performed,

734

is stored at the tree nodes. The resultant file
characteristics are also stored at the tree nodes. A
pascal data type for a tree mnode is shown in Figure

1.

DMLtasktype = (join, semijoin, ... ,
project);

attributetype = record

attr name : array [1..10] of char;

attr_mode : (integer,real..char);

nextattr ptr : ~attributetype;
end;

filetype = record
filenumber : integer;

filesize : integer;
attribute : attributetype;
end;

treenodetype = record

DMLtask : DMLtasktype;
Leftson : ~treenodetype;
rightson : ~treenodetype;
location : integer;
ouputfile : filetype;

end;

Figure 1: Tree Node Data Type

It should be noted here that all the query

optimizing algorithms try to estimate the DML

processing required at each tree node, as well as the
intermediate file sizes. This information therefore
is available in the query tree representation, and is
the DDQS for the

to the actual execution

of vital importance not only to
simulation purpose, but also
process for The actual

scheduling the resources.

conversion of the intermediate query to the ‘object
code’ is done by traversing the tree, and generating
each mnode

This

translation is wvery much alike

the relevent code as is visited at some

point during the query. syntax directed
translation in the
language compilers and the reader is reffered to any
Aho and Ullman(1977). The

for the distributed database

compiler textbook, such as
ouput query object code
is a set of executable programs equal in number to

the nodes involved in the query processing.

The query is executed in two phases. In the query
initiation phase, the query processing programs are
sent to the respective nodes over the communication
lines (except for the query initiation node program).
In the query execution phase, the programs are
bootstrapped and executed at node sites. The programs
of the database

the DML tasks,

consist access  primitives

corresponding to and communication



Distributed Database Query Simulator

the file transfer

tasks. Syncronization among the subtasks is achieved

access primitives pertaining to

by establishing critical regions within the host node
programs, or by simply waiting for the particular
resources, which in these cases are relational files.
For example, if a query processing program at a
network node site mneeds a relational file for the
‘join' operation to be performed, and the file is to
be sent from a remote host mnode in the network, but
has not arrived yet, the program waits until the file
if the file has

been sent from the remote host node even before the

is received. In the reverse case,
reached to the
point in the execution where the file is utilized (
), file

network node site and stored temporarily.

query processing mnode program has

join in this case the is received at the

2.2 DDQS Design Methodology

The distributed queries are executed as parallel
This

asynchronous nature of tasks is dependent not only on

asynchronous tasks as described earlier.

the type of the query asked, but also on the query
optimization method used.

the

Since many algorithms are

possible to process same the

query,
can not be hardcoded

query
transactions process in the
simulation model.
Unfortunately, the existing simulation languages
can not handle complex data structures like trees
effectively. An attempt has been made to store the
entire query algofithm in the GPSS transaction
parameters in Wnek and Roth(1984)

the

in a linked list

form., However, model  allowed only serial
execution of the query processing through the linked
list form. The model later was modified to allow for
parallel transaction processing in Wnek(1985), but
these transactions have to be initiated at the same
time, and the processing could not be continued until
all the generated parallel transactions are complete.
In the intermediate tree .

structure for the query

processing algorithm, only the parent or ancsestor
tree nodes operations have to wait for the operations
of the children nodes to be complete, and not the

others.

An alternate method could be wused to store the
query algorithm tree in GPSS matrix savevalue form.

The matrix representaion of a tree consists of rows

for each tree mnode, (DML operation), with columns

indicating the node number, its left and right sons,

its parent node and the other specific information,

such as the the kind of the DML operation at the

node. The nodes with no left or right son have zero

values in the respective columns. Similarly the root

node has a zero value in the parent column.

In the matrix savevalue representation, seperate

GPSS transactions are generated for each row for

which no left or right son exists. At the end of any

transaction the matrix xrow 1is accessed to find the

parent node of the transaction. A zero wvalue is

placed in the corresponding son column entry at the

parent transaction node row. The parent transaction

is initiated if both left and right son entries are

zero. The query processing is complete when the

transaction with no parent tree node is executed.

The above approach is simple and easy to

understand. However there are drawbacks in the

two
model. First, the GPSS transaction processing in this
case is still data driven, and the model is difficult
to debug for programming or data input errors. The
second important drawback is that the algorithm uses
the matrix savevalues,
query

simulated at a time in this method because the matrix

which are global in nature:

Only one processing transaction can be

values can not be
This

grouping the queries into

changed by more than one queries.
of

classes, and modelling the

defeats the earlier mentioned purpose

class of queries.

A more elegant approach to the design (Figure 2)
is to generate a GPSS program source code specific to
the query, rather than encoding the query algorithm
in the data wvalues. This is possible because the
database queries are grouped into few classes and the
generated source code is

limited in size. Since the

DDQS structure is highly modular, most of the lower
level subroutines are copied from the libraries based
on the DBMS and network architecures used, while only
the top level block statements are generated from the
query algorithm, in the
By
method protocols in the

source code assembly phase.

storing the communication and database access

library, the library can be

enriched with as many protocol subroutines as

required.

The tree query data representation is used as an



input in the source gemeration. The tree
theé same way

object code generation.

R. Kocharekar

Database Configuration
Simulation Routines

Library
Database
Configuration
Type
Query DS GPSS GPSS
Algorithm Preprocessor Source

Network
Configuration
Type

Network Configuration
Simulation Routines
Library

Figure 2: DDQS System Flow-Chart

is traversed code

it would be traversed in the query

In fact, the query object

representation, thus

Resource
Urilization

can directly be used instead

of the

<>

J I/0 Host : Host I/0
Processol] Processor l Processor [Processof "
1 i
Comm | Comm
Node~1 Processol] ‘ Processol] Node=2
e T —\—,< hr —
Communication
Subnet
Node=4 Comm l Conm Node=3
Processox] ' | IProcessox]
1 | 1
SPJ I/0 Host I Host I/0
Processol Processor l Processor lProcessoi]
L= 1 . ,

tree
eliminating the duplication of

work, However, the database access primitives as well

Figure 3: Distributed Database Network Configuration

736



Distributed Database Query Simulator

as the communication access primitives in the query

object codes are not standardized.

3. DDQS Implementation

3.1 A Sample Query

Consider a relational database of Suppliers,

Parts, jobs as follows.

S S#, Sname, Scity, Status
P#,Pname,Weight,Pcity
J#,Iname ,Jcity

SPJ  S#,P#,J#,Quantity

The database has three entity relation files

pertaining to above entities, and an association

relation file describing quantities of parts required

Project

for each job and supplied by a unique supplier. The
distributed database mnetwork configuration is shown
in the Figure 3. Note that the relational tables
could be replicated at more than one node, depending
The

answered from the database.

on the database design. following query can be

"Print the names and cities of the suppliers,

that supply over 400 screws to the projects in

Athens, alongwith the weights and actual quantity of

screws supplied.®

As mentioned earlier, the query can be fulfilled

in various ways. Let us say that a particular query

optimization algorithm used on this query generated
the query processing algorithm described in Figure 4.

If the database access primitives and communication

routines are, as explained in Figure 5, then the

(S.Sname,S.Scity,P.Weight ,SPJ.Qty)

Node=2,file=12

I

Join (P.P# = SPJ.P#)

Node=2,file=~1l1

Project
(P.P#, P.Weight)
Node=2,File=2

Select
(P .Pname=Screw)
Node=2, FIle=1

Pro ject
J.J#)
Node=1,file=4

Select

Node=1,file=3

P J

Project
(SPJ .P#,S.SName,S.Scity,SPJ,Wt)
Node=3, File=10

Semi join
(J.J# = SPJ.J#)
Node=3,file=9

"\

Project

(SPJ .J#,58PJ.P#,S.Sname,S.Scity,SPJ.Qty)

(J.Jecity=Athens)

(S.5#,8.8name,S.Scity)
Node=3,file=5

Node=3,file=7

Join
(S.8# = SPJ.S#)
Node=3,file=6

Select
(SPJ.Qty>400)
Node=4 ,file=6

|

SPJ

Project

(P#,Pname ,Wt,Pcity) (J#,Jname,Jcity) (S#,Sname,Status,Scity) (S#,P#,J#,Qty)

Node=2 Node=1

Figure 4:

737

Node~3 Node=4

An Intermediate Query Tree Representaion



R. Kocharekar :

object code generated by traversing the tree in

postorder is shown in Figure 6. Note that there are.

four different programs for the four host computer
nodes participating in the query. Also note that the
communication routines are asynchronous in nature,
and can be executed parallel. i.e. if the host
computer allows multitasking, and the 'sendfile’
communication routine is invoked then the following
task in the program can be invoked without wai‘ting

for the sendfile operation to be complete. Similarly,

at the receiving site, the 'receivefile’
communication routine does not perform any operation
if the file is received even before the program
reaches to the current control point. Otherwise, the
'receivefile’ primitive makes the host program wait
until the file is received. Thus, the ’'receivefile’
primitive acts more like a logical switch in case of

multitasking.

Data maucpuration Language Instructions

Select <input file name> <output file name> (select criteria)

Project <input file name> <output file name> (file attributes)

Join <input file namel> <input file name2> <output file name>(join criteria)
Semijoin <input file namel> <input file name2> <output file name>

File Transfer Instructions

Sendfile <file name> <receiving node>
Receivefile <file name> <sending node>

Figure 5. Instruction Repertolre

Query Initiation Phase

Host 2:

Sendfile Program 1, Host 1

Sendfile Program 3

, Host 3

Sendfile Program 4, Host 4

Query Execution Phase

Host 1:

Select J, File 3 (J.Jcity = Athens)
Project File 3, File 4 (J.J#)
Sendfile File 4, Host 3

Host 2:

Select P, File 1 (P.Pname = Screw)

Project File 1, File 2 (P.Weight, P.P#)

Receivefile File 10, Host 3

Join File 1, File 10, File 11 (P.P# = SPJ.P#)

Project File 11, File 12 (S.Sname, S.Scity, P.Weight, SPJ.Qty)

Host 3:

Project 8, File 5 (S.Sname, S.Scity, S.S#)

Receivefile File 6,

Host 4

Join File 5, File 6, File 7 (S.S# = SPJ.S#)
Project File 7, File 8 (S.Sname, S.Seity, SPJ.P#, SPJ.J#, SPJ.Qty)

Receivefile File 4,

Host 1

Semijoin File 4, File 8, File 9 (J.J# =~ SPJ.J#)
Project File 9, File 10 (S.Sname, S.Scity, SPJ.P#, SPJ.Qty)
Sendfile File 10, Host 2

Host 4:
Select SPJ, File6

(SPJ.Qty > 400)

Sendfile File 6, Host 3

Figure 6: Query Object Code Representation

738



Distributed Database Query Simulator

3.2 DDQS Implementation For The Sample Query

Syntax directed code translations are done as

shown in Figure 7, at respective mnodes in the tree

traversal for the generation of application layer
simulation model.

Receivefile :

Gen-Label (sending node, file number,
receiving node)
Gen-Block(’ASSEMBLE 2’)
)

Sendfile :
{ Gen-Block('SPLIT 2,%+2')
Gen-Block(’TRANSFER, ')
Gen-Label (sending node, file
number, sending node)
Gen-Macro(’SEND’, sending node,
filesize, receiving node)
Gen-Block('TRANSFER,”)
Gen-Label (sending node, file number,
receiving node)
Gen-Label (sending node, file number,
sending node)
Gen-Block(TRANSFER,*+1')
}

Join :

{ Gen-Macro('JOIN’,
processing node,
number of input file 1 tuples,
input file 1 tuple size,
number of input file 2 tuples,
input file 2 tuple size,
number of output file tuples
output file tuple size)

}

where Gen
source code.

procedures emit the relevent output

Figure 7: Syntax Directed Translation Code
The GPSS source code generated for the
application layer of the sample query is shown in

Figure 8. The code translations for DML operations
are very similar to the query processing algorithm in

Figure 6, except for the macro input parameters.

GPSS SPLIT and ASSEMBLE blocks

simulate the parallel operations of the subtasks. For

are used to

example, a transaction simulating the program at Host
Node 1 is split into two transactions. One of the two
siblings simulate the file
then TRANSFERs the ASSEMBLE block statement at
lable ‘L010403’. By
transfer to the ASSEMBLE block, the synchronization

transfer for File 4, and
to
forecing the transaction to
is achieved between Host Node 1 and Node 3 prograﬁs
for the File 4 transfer. The SPLIT-ASSEMBLE mechanism
works because the transactions assembled are from the

same assembly set. In fact, since many assembly sets

739

can be active at the same time by an ASSEMBLE block,
more than one database query transactions of the same
1if

the other

query class can be activated at the same time.

the host processor allows multitasking,
sibling transaction can start processing, while the
file transfer is still

in progress. Note that the

application layer of DDQS is independent of the host

processor architecture.

- Unique block labels must be generated along with
of TRANSFER block
labels

displacement is known.

the usage statements. In most

cases, are avoided, if the relative block
In other cases, information
allowing the generation of unique label is used. For
example, in the TRANSFER following the simulation of
Node 3 is, a label

There is a possibility that

File 7 transfer from Node
'L050703' is generated.

5 to

more than one unique labels
block.
all labelled statements.

on to the same GPSS
A dummy TRANFER,*+l block is generated for
The DDQS

map

also handles the

simulation of the query initiation phase. For the

current example three initial file transfers are made

from the query initialization mnode to

processing nodes. Only when the query processing node

the query

receives its program.from the query initiation mode,

it starts the execution.

The last point to be made in the code generation

is the final ASSEMBLE block in the GPSS source code

for the query initiation node program ( labelled as
QEND, for query end ). At the end of the program at

each query processing node, except the query

initialization node, a TRANSFER is made to the QEND
ASSEMBLE block, though there exists no corresponding

file transfer. The only advantage here is the
automatic verification check. The QEND ASSEMBLE
block ensures that all the GPSS transactions

generated during the query execution process are
destroyed before the final transaction is terminated.
Even though the top DDQS modules are valid, the lower
level simulation library routines are error prone and

the consistency check may be useful for the

diagnosis.
3.3 Simulation Of DML And File Transfer Processes

As mentioned before, the

DML and file transfer
processes are the two main constituents of the query

processing algorithm, and the simulation of these

processes is equally important. Fortunately, a



considerable number of simulators

for both the processes.

and only issues pertaining to the overall DDQS model

are addressed.

R. Kocharekar

have been written

The approach here is brief,

the transaction parameters

GENERATE ,,,1,5000 *
#kkk QUERY INITIATION PHASE #scksssksssidsth
SPLIT 1,#+2 *
TRANSFER, 1021302
SEND MACRO 2,5,1
TRANSFER, 1021301
1021302 TRANSFER,%+1
SPLIT 1,%+2
TRANSFER,L021402
SEND MACRO 2,5,3
TRANSFER,L021403
1021402 TRANSFER,%+1
SPLIT 1,%+2
TRANSFER,L021502
SEND MACRO 2,5,4
TRANSFER, 1021504

% Ok ¥ % %

% % %k

Sstbt QUERY EXECUTION PHASE #ssbstsbstsbsobsspt:
L021504 TRANSFER,%+1

SELECT MACRO 2,1000,50,80

PROJECT MACRO 2,50,80,8,80

L031002 ASSEMBLE 2
JOIN MACRO 2,8,80,40,2000,44,16000 *
PROJECT MACRO 2,44,16000,40,16000

QEND ASSEMBLE 4

TERMINATE 1

P RS

*

Khdddd % PROG AT NODE 01 Feskdefedesesrdede ki dobsdob ot
1021301 TRANSFER,%*+1
SELECT MACRO 1,46,100,46,20
PROJECT MACRO 1,46,20,4,20
SPLIT 1,%+2
TRANSFER 1010401
SEND MACRO 1,10,3
TRANSFER, 1010403
1010401 TRANSFER,*+1
TRANSFER,QEND

% % % ¥ % E R X N R %R %

Akt PROG AT NODE 03 sestsbssbsdeskskstsbobaboboboboboiot
L021401 TRANSFER,#+1
PROJECT MACRO 3,50,50,46,50
L040603 ASSEMBLE 2
JOIN MACRO 3,46,50,16,1000,58,10000
PROJECT MACRO 3,58,10000,54,10000
L010403 ASSEMBLE 2
SEMIJOIN MACRO 3,54,10000,4,20,54,20000
PROJECT MACRO 3,54,20000,40,20000
SPLIT 1,%+2
TRANSFER,L031003
SEND MACRO 3,40,2
TRANSFER,1031002
L031003 TRANSFER,*+1
TRANSFER,QEND

XXXk k% PROG AT NODE (4 Sededestedestdrsedbsbobsbabobabottal:
1021504 TRANSFER,%+1
SELECT MACRO 4,16,2200,16,1000
SPLIT 1,%+2
TRANSFER, LO40604
SEND MACRO 4,100,3
TRANSFER, 1040603
L040604 TRANSFER,%+1
TRANSFER,QEND
P oo o oo ok st s ool b sttt ol st ot ok et bt obeo kel ke s sl o b e s o ot ook

% X R X R ¥ N R K N K% XN NN R KN

GPSS allows

subroutine calls. To make

the macro facility, but mnot the

an efficient wuse of it,

instructions to assign the input macro parameters to

are expanded first. The

QUERY TRANSACTION GENERATION

SEND PROG 1 TO NODE 01
JUMP TO LABEL 1021301

SEND PROG 3 TO NODE 03
JUMP TO LABEL L021403

SEND PROG 4 TO NODE 04
JUMP TO LABEL L021504

P.PNAME = SCREW

(P.WT, P.P#)

RECEIVE FILE 10 FROM NODE3
P.P# = SPJ.P#

(SNAME, SCITY, WEIGHT, QTY)
END OF QUERY PROCESSING

QUERY BEGINS AT NODE 01
J.JCITY = ATHENS
(J.J#)

SEND FILE 04 TO NODE 03
JUMP TO LABEL L010403

END OF PROG AT NODE 01

QUERY BEGINS AT NODE 03
(SNAME, SCITY, S#)

RECEIVE FILE 06 FROM 04
8.5# = SPJ.S#

(SNAME, SCITY, P#, J#, QTY)
RECEIVE FILE 04 FROM 01
J.J# = SPJ.J#

(SNAME, SCITY, SPJ.P#, QIY)

SEND FILE 10 TO NODE 02
JUMP TO LABEL 1031002

END OF PROG AT NODE 03

QUERY BEGINS AT NODE 04
SPJ.QTY > 400

SEND FILE 06 TO NODE 03

END OF PROG AT NODE 04

Figure 8: GPSS Program Source Code For The Applicaion Layer

Of Sample Query

740



Distributed Database Query Simulator

actual DML or file transfer
then invoked. The call

storing the return block address

simulation process is
interface is handled by

in one of the

transaction parameters.

3.3.1 DML process Model.

is a

A relational DML operation
of

simulation. One or more files are accessed using file

classical problem computing system

management system of the operating system or the

database management system, and an output file is
written on the disk. The number of accesses are the
function of the application dependent
characteristies, such as the number of input and

ouput tuples or attributes as well as the system
dependent characteristics, such as the file structers
used or the database access methods. Three different
access methods are common in the database management

systems.

i. nested loop
sort/merge

. hashing

In DDQS, the host processor, memory and channels
The model
through the phases

are modelled.

cycles a DML transaction

read-input, process and write-

output blocks.

3.3.2 File Transfer Model.
dealt with
1S0/0SI  communication
Tanenbaum(1981). The

File transfer protocols

are of the

in the application layer

model as described in

simulation model for the file
transfer can be detail by explicitly simulating many
of the

1S0/0S1 protocol layers. Simulation models

also differ for different architectures. Library
simulation routines can be written for local area
networks, point to point mnetworks or broadcast
networks.

Many of the communication protocol layer
algorithms are event driven. e.g. in a typical

network layer protocol, a communication processor is

invoked by the host if there is any data to be sent,

or by a remote communication processor attached by a
link. Once

invoked, the communication processor

the type of

invokation and the network configuration status. The

performs functions

depending on
processor may or may not disable itself for further

invokations until the current operation is complete.

741

The conventional GPSS world view is transaction
driven and may not be ideal for the simulation of
protocol layer algorithms. Instead a modified version
of the driven wview discussed in Henriksen

(1982) is employeed.

process

In this method, a process is
represented by a GPSS transaction in a continuous
loop. The transaction is controlled with the help of

GPSS storages. Note that the transactions controlling

the behaviour of the process transaction may
themselves be either process transactions or
transactions external to the model. Thus a hybrid

version of both transaction and process views is

.possible. For example, the application (top) layer of

the DDQS uses conventional GPSS world view in mapping

GPSS transactions to the database query transaction.

The inner layers wuse process view by mapping the
protocol processes to the GPSS transactions.
Additional benefits are the reduction of number of

active GPSS transactions and subsequent process cost.

4. FUTURE WORK

The current DDQS is wused to simulated only one

class of queries against a background workload.

Interesting results are anticipated from the

simulation of more than one classes of queries.

These experiments are typically of interest to guide

the research effort on intelligent query processing

algorithms based on the interaction of different

classes of queries. Typically, a knowledge base

could be built from the learned experience.

The current version of DDQS simulates only the

nested loop DML access methods and point to point

message switching network architecture. The DDQS

needs to be enhanced by incorporating simulation of

different database structures and network

architectures in the DDQS simulation library.

Note that any good database management system

tries to evaluate as many DML operations as possible

in one datafile access. For example, the Select and

Project on the JOB file at Node 1

are combined

together. Even further, some effeciency could be

achieved by receiving the communication files in the

main memory rather thanm on the disk, thus reducing a

number io operations to store temporary files.

However, this requires a distributed operating system
that mexges the communication functions with the on

site processing functions.



R. Kocharekar

The DDQS
distributed databases. In some databases updates and
This
the database

models only retrievals from the

retrievals are performed concurrently.

complicates the issue furthexr, since

integrity has to be maintained. DDQS could then be a
part of the simulator ehcompassing all areas of the

distributed database systems.

ACKNOWLEDGEMENTS

I am very grateful to Dr. C.S. Egyhazy, Virginia

Tech, Northern Virginia Graduate Center, Mr. Jim
Henriksen, Wolverine Software Corporation, and Mr.
Roy Wnek, Booz-Allen and Hamilton, for their

invaluable suggestions in the design and development
of the model.

BIBLIOGRAPHY

Date, . J. (1986). Introduction To Database
Management System, Vol I and II. Addison Wesley.

Henriksen, James 0. (1981). GPSS - Finding The
Appropriate World-View. Winter Simulation Conference.

Henriksen, James 0., and Crain,
User’s Manual, Wolverine
Annandale, Virginia.

R. C. (1983). GPsS/H
Software Corporation.

Tanenbaum, A.
Hall.

(1981). Computer Networks. Prentice

’ Aho, and Ullman, J. D. (1977). Principles Of Compiler
Design. Addison Wesley.

Wnek, R. M. and Roth, P. F. (1982). Simulation Of A
Distibuted Database System Incorporating A Routing
Optimizer. Winter Simulation Symposium.

Wnek, R. M. (1984). Extension and Application of a
Distributed Simulator. Virgina  Tech, Northern
Virginia Graduate Center (Unpublished)

AUTHOR’S BIOGRAPHY

RAJU KOCHAREKAR is a Software Consultant in the
IBM Facility Center at The World Bank. He received a
B.Tech. in Electrical Engineering from Indian
Institute of Technology, Bombay in 1981, and an M.S.
in Computer Science from Virginia Tech, Virginia in
1986. From 1981 to 1985, he was in Tata Burroughs
Ltd, Bombay as a Software Engineer.

Raju Kocharekar

The World Bank

1818, B street NW,
Washington, DC 20433
(202) 473-2153



