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ABSTRACT

Multiplicities of perspective inherent
in modelling and simulation methodology are
enumerated and rationales given for their
existence,. Characteristics of futuristic
simulation environments which support flex-

ible adoption of multiple perspectives are
outlined. Finally, we discuss the construc-
tion of models which simultaneously embody

differing perspectives. Advances in modelling
methodology along these lines will constitute
a quantum Teap in tool sophistication which
can greatly extend the domain of simulation
application,

1.0 INTRODUCTION

The complexity of man's  environment
seems to expand with every technological suc-
cess. No longer threatened by cold and wild
animals, he 1is now threatened by exploding
complexity (Beer, 1975). 1In the past, adopt-
ing a single perspective was a useful way to
manage complexity. Pretending that only
certain factors count works well to a 1imited
extent: it delays dealing with the rebounded
consequences of those ignored. A model is a
"macroscope", a conceptual tool to "observe"
a complex system (Rosnay, 1975) from a par-
ticular point of view. Many such macroscopes
are needed to counterbalance the blinding
effects of a singlie one. A new level of simu-
lation environment is needed to encourage and
support the routine adoption of such multiple
perspectives.

Some concepts already exist for develop-
ing such simulation environments. Multifacet-
ted modelling methodology (ZeigTer, 198%)
signifies an approach to simulation modelling
that recognizes the irreducible complexity of
reality, while affirming that useful partial
models ¢an be constructed in the service of
Timited decision making objectives. Essential
to the methodology is its support of an or-~
ganized base of models whose partial perspec-
tives can be integrated to achieve a coherent
whole. Recently, the infusion of artificial
intelligence (AI) paradigms dinto simulation
has opened up a related source of multiple
paradigms for dealing with complexity.

In this paper, we explore the implica-
tions of the new concepts of multifacetted,
multiparadigm modelling and simulation,
First we analyze the various connotations of
the term "modelling perspective™: one can
adopt a single modelling objective, a single
level of aggregation, a single level along
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the behavior-structure axis, a single model-
ting formalism, or a single programming para-
digm. Or one can work in a simulation
environment which encourages the adoption of
multiple perspectives, hence supports the use

of multiple modelling objectives, multiple
Tevels of aggregation, multiple 1levels of
structure and behavior, multiple modeling

formalisms, and multiple programming paradi-
gms.. Thus, we outline the characteristics and
utilities of much an environment. Finally, as
models of cognizant systems (Oren and Zeigler,
1986) come increasing to the fore, they will
faithfully represent the multipie perspec-
tives needed for truly effective decision
making. Hence, we examine the construction of
models which embody multiplicities of goals,
structural change, and formalism.

2.0 MULTIPLE PERSPECTIVES

2.1 Multiple Objectives

Model1ling and simulation activities are
carried out to achieve a multiplicity of ob-
jectives which arise from the goals of either
gaining knowledge about a real system or of
exerting control, management or design inter-
ventions on it. Although many objectives may
have to be accomplished simultaneously in
such interventions, often a simulation study
is conducted only with a particular objective
in mind -- the other objectives may be con-
sidered by employing other analytic or intui-
tive means. Multifacetted methodology is an
antidote to this approach.

2.2 Multiple Levels of Aggregation

Models may be constructed at different
levels of aggregation (resolution, abstrac-
tion). The Tevel is jointly determined by the
objectives at hand, the available knowledge,
and the given resource/time constraints. The
objectives, including the accuracy desired of
the answers, dictate the minimal degree of
disagregation needed in the model to be able
to satisfy the objectives. Beyond this level
further disaggregation may be futile or even
counterproductive. The concepts of (generic)
experimental frame and applicability of frames
to models have been introduced to 1ink the
objectives with the models. Available know-
ledge places a lower limit on the aggregation
1imit -- 1in principle (from a reductionist
standpoint), one could always sink to the
level of basic physical particles in every
model provided that relationships were avail-
able to express the desired behavior of in-
terest. Likewise, since as resolution
increases, the complexity of the model almost
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always rapidly increases, time and money de-
termine how much disagregation can be consid-
ered.

2.3 Multiple Levels of Behavior and
Structure
Considering a real system as a black
box, there is hierarchy of levels at which
its models may be constructed ranging from

the purely behavioral in which the model
claims to represent only the observed input/

output behavior of the system, wup the
strongly structural in which much s
claimed about the structure of the system.
Simulation models are usually placed at the
higher 1levels of structure and they embody
many supposed mechanisms to generate the
behavior of dinterest. In contrast, behavior
descriptions obtained by curve fitting rep-
resent Towest Tevel models. High structural
detail usually implies a high degree of dis-

agregation in model variables needed to
express the relationships involved. However,

the converse is not necessarily true: one can
employ a high degree of resolution in defin-

ing variables and corresponding measurement
and still use only curve fitted relationships
to express the values of variables over time.

2.4 Multiple Formalisms

Simulation models can be specified in a
number of formalisms and simulated (i.e.,
have their behavior generated) in a variety
of corresponding simulation media. Formalisms
are set-theoretic short-hands for specifying
mathematical dynamic systems. Often, formal-
isms are associated with particular simula-
tion languages, so that for example, the
break down of discrete event formalisms into
event-based, activity scanning, and process
interaction subclasses, is mirrored by simu-
lation languages which support the correspon-

ding world views. Nevertheless, formalisms
have an independent conceptual existence.
Indeed, as in the case of modular, hierarchi-
cal DEVS (discrete event system specifica-

tions), the formalism was defined before any
simulation Tlanguages had been developed to
express it. No one formalism is best to rep-
resent the variety of behaviors in real
systems of interest; some formalisms are more
natural (correspond more directly with the
preceived operation) and (usually at the same
time) lead to more computationally efficient
simulation than others 1in certain domains.
The applicability of a formalism does not
depend so much on disciplinary area (physi-
cal, biological, industrial, etc.) as on the
level of aggregation indeed, the formalism
may alternate with level, going from continu-
ous change to discrete change and back as
successive layers of description are unfold-

ed

2.5 Multiple Programming Paradigms

Descending a 1level of abstraction from
models to their programmed implementations,
there are emerging distinct paradigms for
conveying instructions to a computing system.
In conventional procedural Tlanguages, the
programmer lays down an explicit sequence of
instructions. In logic programming of the
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PROLOG variety one provides sets of clauses
specifying goals and the preconditions neces-
sary for their satisfaction the Tanguage
interpreter itself searches through all pos-

sible sequences of clauses for those Teading
to satisfaction of the main goal. Expert
system shells provide media for rule-based
programming (rules, 1i.e., condition-action
pairs, are executed under the control of an
inference engine). Yet other programming
styles are being developed for parallel pro-
cessors, Finally, in contrast to convention-
al procedure-oriented ‘programming, modern
object-oriented programming encourages assoc-
ication of procedures and data structures
with the objects they relate to.

3.0 ENVIRONMENT SUPPORT OF MULTIPLE
PERSPECTIVES
3.1 Varied Objectives Within Environment

Although, when approached with differing
objectives, a real system may yield various
distinct models, there 1is nevertheless an
underlying unity that binds these models to-
gether -- namely, their common origin. Rather
than can consider each model as a distinct
entity, an environment can support the inte~
gration of models so that a coherent whole

emerges. With this support, the construction
of models to meet new objectives may be
fostered, since components already existing

in the model base may be exploited.
full advantage of the knowledge

To gain
in the model

base, there must be provided a strong cap-
ability of representing the components of
models, their variations and their intercon-

nection., To facilitate synthesis, models must

be readily dissembled into components, and
these must be able to be easily assembled
into new combinations, i.e., the environment

should support modular, hierarchical model

construction.

3.2 Varied Levels of Aggregation Within

Environment

As indicated above, models oriented to
fundamentally the same objectives may be con-
structed at different aggregation Tevels due
to tradeoffs 1in accuracy achievable versus
complexity costs incurred. An environment
can support construction of such aggregation
related models by facilitating elaboration of
models (constructing a new model related to
an existing one by adding new variables or
refining their ranges) and simplification of
models (constructing a new model by dropping
variables, coarsening their ranges, or group-
ing several together to form aggregated vari-
ables). Moreover, relationships among such
collections of models should form part of the
knowledge base of the environment and be
available for use in model validation
(against the real system) and cross-valida-
tion {against each other).

3.3 Varied Levels of Behavior and Structure
Within Evironment

While simulation models are, by nature,
formulated at high Tlevels of structure, an
environment may support the development of
other kinds of models at lower levels.
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Behavioral descriptions obtained by curve
fitting, statistical correlations, or induc-
tive systems modelling may complement the
simulation models by providing summaries of
real system behavior. Such summaries may
reptace the original extensive records and
therefore may be more economical to use in
such activities as validation of simulation
models of the same phenomerna. The same kinds
of techniques can be applied to simulation
generated behavior. For example, statistical
metamodels summarize the dependence of a per-
formance index on model parameters. Intro-
spective simutation employs artifical intel-
Tigence to discover causal relationships in
simulation records to form symbolic cause-
effect models (Reddy et. al., 1986).

3.4 Varied Formalisms Within Environment

An environment can support the use of
various model expression formalisms to lessor
or greater extent. At the least, it can make
available various simulation languages assoc-
fated with the different formalisms. More
satisfactory would be to provide a uniform
simulation language in which all other metho-
dological components remain the same, while
the formalism can be chosen at will. 1In this
way, incompatibilities arising due to differ-
ing conventions (unrelated to formalism dif-
ferences) are obviated. For example, the
methodologically desirable decomposition into
model and experimental frame segments is in-
dependent of model formalism and may be sup-
ported by a uniform simulation language. Still
greater support can be rendered by providing
tools to transform model spécifications from
one formalism to another. For example, models
expressed in non modular formalisms {associ-
ated with conventional Janguages, can be al-
gorithmically transformed into modular equi-
vatents. Likewise, continuous time models can
be transformed into discrete time and discrete
event versions which may be computationally
more efficient. Another alternative is to
provide a wuniversal formalism for initial
model expression, and tools to find the opti-
mal special formalism for a model, once
specified in the general terms. However, this
latter approach may encounter the problem
that modellers may not as readily be able to
formulate models 1in the universal formalism
as in the special formalisms, which may enjoy
canceptual advantages over it.

3.5 Varied Programming Paradigms Within
Environment

Environments which support the construc-
tion of knowledge-based simulations. should
provide a choice of programming paradigms to
implement various functional elements.
Object-oriented programming may be best to
develop the knowledge representation data
structures (system entity structures) for
model organization. Logic programming may be
most natural for model synthesis since such
programs can readily generate the hierarchi-
cal compositions spanned by an entity struc-
ture, filtering out those that do not satify
the coupling constraints. Rule-based program-
ming may be provided to conveniently-develop
expert systems to work in conjunction with
the simulation models.
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4.0 MULTIPLE PERSPECTIVES WITHIN MODELS
4.1 Varied Objectives Within Model
To achieve realism, models of intelli-

gent agents must be able to represent goal-
directed behavior. Humans can generate new

goals to strive for, prioritize goals, take
actions to achieve highest priority goals,
and guage progress in reaching them. Like-
wise, models of humans or other intelligent
agents may need to possess these features.
When intelligent agents employ models to help
achieve goals, they each set up what we re-
ferred to above as modelling objectives.
Thus, models of intelligent agents must to
some degree to able to represent not only
multiple and variable goal manipulation, but
also the generation of modelling objectives
and the synthesis of models to meet these
objectives.

4.2 Varied Levels of Aggregation Within
Model

Intelligent systems ought to be able to
change the tevel of aggregation in their ob-
servation of the system they are interacting
with. For example, intelligent control sys-
tems should be able to focus their attention
on a critical behavior of the controlled ob-
ject and to allocate resources to this be-
havior so long as it remains critical. Like-
wise, simulation models of intelligent sys-
tems ought to be able faithfully model such
systems, hence should have the capability of
controlling the level of aggregation autono--

mousty.

4.3 Varied Levels of Behavior and Structure
Within Model

Conventional simulation systems ade-
quately support only a single level at which
change occurs in the model, that of changes
in the model descriptive variables, viz. its
behavior. Although changes in the model
structure may be introduced, and to some ex-
tent, tracked in such systems, specific and
powerful suuport is not provided for such
activities. Biological, and other adaptive,
systems are most readily perceived as exhib-
itting changes simultaneously at structural
and behavioral levels. A new paradigm, struc-

tural simulation (as opposed to conventional
"trajectory” simulation) is needed to avoid

having to force structural changes down to
the same level as behavioral ones. Simulation
technology must be advanced to deal with the
problems of 1) specifying the intelligence
within a model to determine structure state
transitions, ii) handling behavior during the
intervals 1in which such structural changes
occur, iii1) providing experimental frames and
measurements sensitive to structural, as well
as behavioral change, and iv) enabling such
measurements to be employed within the model
itself,

4.3 Varied Formalisms Within Model

Since components of a model may be most
naturally expressed in distinct formalisms,
one should not be forced into a Procrustean
bed of a single, or small number of, formal-
isms by a model specficiation environment.



Multifacetted, Multiparadigm Modelling Perspectives

Certainly, differential equation components
(continuous change) should be interfaceable
with discret§ event and discrete time (dis-
crete change) components. Moreover, s¥mb011c
model components, representing intelligent
agents for example, should be readily cou-

pled with conventional simulation model
components.

CONCLUSIONS

The tendency among some simulation sys-
tem makers has been to "grope in the 1light"
(Oren and Zeigler, 1986), preferring to per-
fect the tools laid down decades ago, rather
than step out with bold new ones into the
unexplored. The success of Artificial Intel-
ligence, an alternative in knowledge repre-
sentation and utilization, in capturing the
public imagination and full scale commercial
interest shows the limitations in this con-
servative approach. The lesson is plain:
take the next step!
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