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ABSTRACT

This paper presents SAM, a computer aided design tool
for specifying and analyzing modular, hierarchical systems.
SAM is based on Discrete Event System Specification
(DEVS) and it uses generic components for specifying cou-
pling relationships among components. The objectives of
this design tool are to provide an environment for a user to
specify and design systems with ease, and to allow the reuse
of previously specified models to build new ones. The later
promulgates increased productivity and the applicability of
modular approach in the development of complex systems.
Furthermore, the design tool analyses a specified system for
interface errors which facilitates early testing of the
specification before the model is translated into a simulator.
The paper discusses how the objectives of SAM are achieved
and what are the implementation issues involved. It is
envisioned that the specification produced by SAM will be
used to map the model onto a network of processors for dis-
tributed simulation.

1. INTRODUCTION

Distributed computer systems (DCS) offer several advan-
tages over Von Neuman architecbure computer systems.
Among the advantages of DCS are sharing of resources,
increased reliability and concurrent execution of processes.
DCS encompasses many applications, such as the communi-
cation subnet, the distributed operating system and the dis-
tributed databases. Included in these applications is distri-
buted simulation (Stankovie 1984). Distributed simulation is
a form of distributed computation where the simulation pro-
cess is partitioned and the partitions are run on the DCS.
This area of research has generated a lot of interests due to
the availability of DCS. Examples of algorithms that
implement distributed simulation are the Time Warp
Mechanism (Jefferson et. al. 1985), the Asynchronous Distri-
buted Simulation (Chandy and Misra 1981), the Active Logi-
cal Processes (Reynolds 1983), and the Hierarchical Abstract
Simulator (Concepcion 1985a). Refer to Concepcion and
Ziegler (1985) for a complete survey of distributed simulation
algorithms and architectures.

However, the writing of distributed programs that carry
out simulation instructions is not an easy task. Where
different processes communicate and synchronize via message
passing, interface errors are common mistakes. Deadlock may
occur when there are no restrictions in the waiting and hold-
ing of processes. Computer aided design tools can help in
making the task of designing distributed programs for distri-
buted simulation easier.

Automated tools for specification of software design has
long been used to analyze the consistency and organization
of specifications. Examples are SREM (Davis and Vick 1977)
and PSL/PSA (Teichroen and Hershey, 1977). The HOS
specification language (Hamilton and Zeldin 1976), 2 metho-
dology based on formal axioms, is used to verify very large
software project against interface errors. A commercial ver-

sion of HOS (Mimno 1982) specifies the software via a graph-
ies interface and after verfication is done by the analyzer, the
code is automatically generated from the verified
specification. A more recent work is SARA (Estrin et. al.
1986) which provides an environment for modeling, analysis
and simulation of concurrent systems. The graphics interface
of SARA provides a powerful and helpful interface with a
user. Using formal graph model, SARA is able to derive
behaviors of concurrent systems in 3 domains: control flow,
data flow and interpretation. In modelling and simulation,
several software tools have been developed. The use of
graphics in simulation is a powerful interface which makes
the use of the simulation package easier to interact with and
its output more understandable. Simulation languages such
as SLAM (Pritsker and Pegden 1979) and SIMAN (Pegden,
Miles and Diaz 1985) make use of graphics to write programs
in block diagrams and depict output as animations for easier
analysis. GIST (Sinclair, Doshi and Madala 1985) is a per-
formance evaluation tool for the specification and simulation
of extended queueing network models of computer systems.
The software tool provides a graphical interface for specify-
ing a system pictorially and a. textual interface which pro-
vides the same modelling capabilities but uses menu-driven
and window approaches for non-graphic terminals. In
another approach, specification languages were developed to
aid in analyzing and developing simulation programs for
discrete event models (Melman and Livny 1984, Overstreet
and Nance 1985).

An area that has generated much interest is in the reuse
of software components. This improves software productivity
by using previously developed and tested software. An
approach was presented in Polster (1986) wherein partial sys-
tems were developed by reusing general software for a given
application area. Heuristics were used in selecting only those
program segments which can be used as building blocks.
Another approach is to maintain a database of information
of software components which might include the following:
code, documentation, specification, requirements and project
status (Goguen 19863. A language was developed on how to
use the database and interconnect software components.

This paper presents the Specifier and Analyzer Module
{SAM), 2 computer aided design tool, which provides an
environment for specifying, designing and analyzing discrete
event systems for distributed simulation. SAM is based on
Discrete Event System Specification (DEVS) which was
defined by Zeigler (1984) and extended to facilitate modular,
hierar)chical model specification (Zeigler 1985, Concepeion
1985¢).

The paper is organized as follows. A review of DEVS
and its generic components, which are used for coupling com-
ponents together under this formalism, is given in section 2.
Section 3 discusses the objectives of SAM. Then in section
4, the implementation issues of SAM are presented. This sec-
tion will contain the inter-relationships between the different
components making up SAM. In section 5 conclusions and
future work and the directions of the research are provided.
Finally, the appendix is included to illustrate system design
using SAM.
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2. DEVS AND GENERIC COMPONENTS

DEVS provides a fundamental set theoretic framework
for representing discrete event models via a composition tree
hierarchical specification. The following is a review of DEVS
as a formalism for model based distributed simulation; see
Zeigler (1985) for more detail.

The system to be specified is viewed as a modular mul-
ticomponent DEVS. Each component is affected by external
events produced by its environment (other components in
the system). In addition, internal events which are generated
within a component produce output that constitutes an
external event to other components in the system. Thus the
components in a modular multicomponent DEVS communi-
cate via message passing. The DEVS fomalism allows each
component to be further decomposed into modular mul-
ticomponent DEVS where each decomposition represents a
level of specification of the component. Therefore, the
structure of the specification is a hierarchy where leaf nodes
are the atomic (cannot be decomposed anymore) constituents
of the system to be specified and each nonleaf nodes are
coordinators of subtrees it manages. The subtree represents a
non-atomic constituent of the system to be specified. The
specification of a system using DEVS has the following
advantages:

e  the resulting specification can be proven to correctly
represent discrete event models.
e systems can be specified using either top-down or

bottom-up approach which facilitate modular hierarchi-
cal decompositions.

parallelism can be exploited in the translated simulator.

The multicomponent DEVS has been extended by Con-
cepcion (1985¢) to explicitly represent timing and delay. This
has been accomplished by introducing gemeric components
which obey the DEVS formalism. These components are
atomic and they perform the specific function of specifying
timing and delay constraints on the system. The generic
components also specify how the set of input events from a
component are collected to a single input to another com-
ponent or how a single output from a component is distri-
buted to each component that needs the output. These
definitions of collection and distribution of input/output
events establishes a basis for detecting interface errors in the
multicomponent DEVS. Generic components were derived in
Concepcion (1985¢) to perform the functions mentioned
above.

The following generic components are used for specify-
ing timing and delay aspects of multicomponent DEVS,

(a) Synchronizer, SYNG(XXymmX,,Y,Y. wYy), Whose function
is to wait for all incoming events, X, XXy to arrive.
When the last incoming event arrives, it produces
exactly the same incoming events on its output and
waits for the next set of incoming events.

(b) Delay, pELAX,Y,4), Whose function is to delay an incom-
ing event x by an amount of 4 time units.

The following generic components are used to specify
the collection and distribution of input/output events in 2
multicomponent DEVS,

(a) Abstractor, ABST(X,,X,,.X,,Y), Whose function is to com-
pute the cross product of the input events, X, X,,..x,, to
form a single output event .

Projector, PROJ(XX poroiX r Yy reo Y B e )y whose function
is to decompose a given input X into components Yy
The input x consists of XX and produces the out-

pllt, Yi =X eq"h""’El € (12...m}.
Selector, SELE(X,X,mX,;Y), Whose function is to select

one input event X; as its output v, where X; is the only

(b)

(o)
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one of the events occurring.

Replicator, REPL(X,Y ;Y ,E), Whose function is to dupli-
cate the input event x to each of the output events
specified by the parameter g, where E € {12,..n}.

(d)

The behaviors of these generic components are fully
specified by expressing them as models within the DEVS for-
malism (Concepcion 1985¢). Thus a multicomponent DEVS
consists of atomic and nonatomic components, generic com-
ponents, and couplings between these components. Using
coupling relationships (via generic components) among com-
ponents, synchronization and intercommunication can be
fully specified. Algorithms for the synchronization and inter-
communication between components were implemented on
the HEP computer (Concepcion 1985¢).

3. OBJECTIVES OF SAM

The objectives of SAM are as follows:

to provide a good interface for specification and design
of discrete event models.

to provide a facility to reuse previously specified model
components.

to provide a capability to perform interface error checks
on the specification.

The first objective is achieved by the implementation of
graphics and window interfaces. The specification via pic-
tures provides the user with the ease in performing his tasks.
Documentation is included to describe the component
together with its input/output specifications.

To provide the reuse of previously specified model com-
ponents, a file management system is implemented. The file
management system stores the specifications of a component
and its decomposition, if non-atomic. Then by a retrieval
procedure, a stored model component can be integrated into
the user’s working model. The user, therefore, has the abil-
ity to reuse components to build new omes. This facility
increases the user’s productivity.

Finally, the specified system can be tested for missing
parts and for interface errors prior to translating the model
to a simulator for execution. The missing parts may
represent unspecified components or unspecified connections
between components of the system. Interface errors are
errors whereby the type and structure of the message sent by
a component does not match the type and structure of the
message expected by a receiving component. SAM checks the
input/output specification of each component to see if these
match with the input/output specifications of the
component’s environment (other components).

4. IMPLEMENTATION ASPECTS OF SAM

SAM consists of three components: the Component
Building Unit, the File System Unit and the I/O
Specification Unit. Refer to Fig. 1 for an illustration of
SAM’s architecture. The tool distinguishes between two
kinds of components: atomic and nonatomic. Atomic com-
ponents break down further into gemeric (built-in) and
nongeneric (user supplied) components. It is the job of the
tool to allow the specification by the user of nongeneric
atomic and all nonatomic components.

The Component Building Unit of the tool was imple-
mented using the suntool/sunwindow environment on the
Sun microcomputer; it is responsible for the construction of
components graphically and it draws upon the underlying
File System Unit for its processing. The File System Unit is
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Figure 1: Architecture oj-.’ Specifier and Analyzer Module (SAM)

responsible for storing, retrieving, and deleting specified com-
ponents. The information pertinent to a component that is
handled by the File System Unit is keyed on the component
name and version number, thus allowing several different
versions of the same (generally) component. Also, a subcom-
ponent number is assigned to each of the subcomponents
that make up a nonatomic component, thus allowing the
same componen} to be used multiple times in the building of
another component. As a separate utility of the tool, the
I/O Specification Unit is provided to perform 2 recursive
error checking function, input/output specification calcula-
tion and I/O specification consistency check over a system of
components.

4.1. THE COMPONENT BUILDING UNIT

The Component Building Unit revolves around three
subwindows, the user interface through the keyboard and a
mouse and an interface through a pop-down command menu.
Through the keyboard the user is able to maintain com-
ponent subcomponent-independent information by interac-
tion with the Text File Maintenance Subwindow. And
through the keyboard, the mouse and through commands
offered on a pop-down menu, the user is able to maintain
component subcomponent information by interaction with
the Graphics File Maintenance Subwindow. The Utility
Subwindow serves miscellaneous purposes such as providing
verification notices for some commands and allowing ” quick”
data entry also necessary for interaction with the Graphies
File Maintenance Subwindow. Refer to Fig. 2 and the
appendix for an illustration of the user environment.

‘When the user attempts to use the tool to build a new
component, the component must be specified as atomic or
nonatomic through the Text File Maintenance Subwindow.
If the component is atomic then the user is expected to enter
the I/O specifications. and the name of the object file of a
given format that will be used to represent the internal
workings of the atomic component. If the component to be
built is nonatomic then the user is allowed to graphically
build the internals of the component through the placement
of its various subcomponent, including line connectors. In
the event that the component already exists from previous
tool use, The Component Building Unit calls on the File Sys-
tem Unit to retieve all existing component information.
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In the process of building the internals of a component
graphically, the user can call upon the following group of
commands on a pop-down menu: get a subcomponent,
remove a subcomponent, decompose a subcomponent, turn
line mode on, turn line mode off, delete component informa-
tion, and exit the Component Building Unit.

4.1.1. Subcomponent Getting and Removing

If the user chooses to “get” a subcomponent then he
positions himself with the mouse-controlled cursor at the
location he wants the subcomponent placed and gives the
proper command. He is then asked through the Utility
Subwindow to supply a combination of the following infor-
mation: subcomponent name, subcomponent version,
number of input ports and number of output ports. If the
subcomponent is a nongeneric component then the name and
version must be given and if it is a generic component then
the subcomponent name (SYNC, DELA, ABST, PROJ,
SELE, or REPL) and the number of input or output ports,
as applicable, must be given. The Component Building Unit
leaves the verification of the existence of the subcomponent
to the error checking facilities of the I/O Specification Unit
and it graphically generates the subcomponent.

If the user chooses to remove a sibcomponent then he
must simply issue the command and give verification, which
is indicated through the Utility Subwindow.

4.1.2. Decomposition of Subcomponents

The user can choose to decompose a nongeneric subcom-
ponent by putting the mouse on that subcomponent and
issuing the ”decompose” command. The system then gen-
erates a new tool instance where that subcomponent becomes
the main component of the tool and the user is then allowed
to interact with the current set of tools simultaneously.

4.1.3. Line Control

Lines are subcomponents used to connect other subcom-
ponents, they are drawn graphically by the user through the
use of mouse buttons, and they are removed through the
“remove” subcomponent command discussed previously.
Additionally, the ”line mode off” command disconnects the
line drawing facilities from the mouse buttons and the ”line
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Figure 2: A User's View of SAM

mode on” command connects the line drawing facilities to
the mouse buttons. Initially the system is in line mode and a
user should have no reason for setting line mode off unless
the mouse buttons required for line processing were needed
for other fool functions (presently there are no other fume-
tions of the tool using those buttons).

When drawing lines, the user many set or unset line
beginning markers at any unused subcomponent port. The
second line marker set then defines the line. The system
requires that the first line marker set must be on an existing
port, but the second line marker set does not have to be.
Any lines that do not connect two ports and that are not
extremely small are drawn extending straight vertically or
horizontally, depending on if the largest change between
markers occured on the X or the Y axis.

4.1.4. Deleting Component Information

The user may choose to delete the overall component
(its textual and graphical information) through the ”delete”
component command. Upon verification through the Utility
Subwindow, the Component Building Unit calls upon the
File System Unit to delete all pertinent records and the user
is then allowed to exit from the tool.

4.1.5. Exiting a Component

The user may choose to exit the tool and if the Com-
ponent Building Unit finds no existing decomposed children
then it allows the user to verify the action before proceeding.
Upon verification, the unit calls upon the File System Unit
to save all existing information pertinent to that component
and the user is then allowed to exit from the tool.

4.2. THE FILE SYSTEM UNIT

The File System Unit consists of two files: the Header
File and the Line File. The Header File contains one record
for each nonatomic component and ome record for each
nongeneric atomic component and each record is made up of
the information that is maintained in the Text File Mainte-
nance Subwindow of the Component Building Unit. The
information maintained in the Header File is the information
pertinent to a component and independent of the specifics of

its subcomponents. This information includes the com-
ponent name and version (which make up the key), a
description of the component, input and output type
specifications, an indicator of whether or not the component
is atomic, and the name of the object module that represents
the internal workings of the nongeneric atomic component (if

applicable). Fig. 3 lists the information kept in a Header
File record.

KEY Component Name
Version
DATA | Component Description

Input Specification Types
Output Specification Types
Atomic Indicator (Y/N)
Object Module Name

Figure 3: Header File Record Format
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The Line File contains one record for each subcom-
ponent of a nonatomic component, where a subcomponent
can be another nonatomic subcomponent, a generic com-
ponent, or a line used for connecting other subcomponents.
The information kept in a record specifies the subcomponent
number, name, version, center X and Y coordinates, number
of input and output ports, and information about the I/O
specifications of a port and what it is connected to. Fig. 4
lists the information kept in a Line File record.

KEY {Component Name
Version
Subcomponent Number
DATA {Subcomponent Name

Version

Center X Coordinate
Center Y Coordinate
Number of Input Ports
Number of Output Ports

For Each Port:
Specification Types
Connected To- Number
Port Number
Port Type

Figure 4: Line File Record Format

4.3. THE I/O SPECIFICATION UNIT

The I/O Specification Unit is 2 separate utility of the
tool that allows the user to check a multilevel system of
components (the user specifies the root component in using
this unit) for errors in construction. This unit breaks down
into Phase I, which is responsible for detecting any missing
parts of the system, and Phase II, which is responsible for
caleulating I/O Specifications for generic and nonatomic
components and for checking the conmsistency of I/O
specifications over the entire system of components.

4.3.1. Phase 1

Phase I will detect a component subcomponent that has
no record in the Header File, a nonatomic component that
has no subcomponents (and thus has no records in the Line
File), missing I/O Specifications, and an incorrect number of
"open” input or output connections. Note that I/O
Specifications must be given for the root component, all
nongeneric atomic components and for any nonatomic com-
ponents without subcomponents, All error listed above are
fatal errors that prevent the system from continuing on to
Phase II before their correction, except the error indicating
that a nonatomic component has no subcomponents. If a

nonatomic component with no subcompoments has I/O -

specifications then a warning is given and the system
proceeds treating that component as if it were atomic. If no
I/O specifications are given for the component then it is a
fatal error. Note also that each nonatomic component with
subcomponents must have exactly one "open” input port and
one "open” output port for connection to other components,
or else a fatal error occurs.
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Phase I uses work files to proceed through a breadth-
first processing of the component tree, eliminating connection
lines (in favor of direct connections) and checking com-
ponents at each level for the mentioned errors.

4.3.2. Phase I

Since the ‘input/output specifications are given by the
user for the root component and for all nongeneric atomic
components, in Phase IT the I/O specifications for generic
components and for nonatomic components can be calculated
and the consistency of I/O specifications over the entire sys-
tem of components can be checked.

Once Phase I has been completed without the detection
of any fatal errors, Phase II can proceed to use a propagation
method of determining the I/O specifications of generic com-
ponents (through help from their definition) and of nona-
tomic components. As long as a generic component withoust
determined specifications is not connected on input to
another  generic component  without determined
specifications, the I/O specifications of that generic com-
ponent can be calculated. Since there is a "left most” gen-
eric component whose input specifications must be able to be
determined (if nothing else, as the I/O specifications of the
root component), there is a guarantee of eventual propaga-
tion of specifications to all generic components. Similarly,
the I/O specifications of nonatomic components can be calcu-
lated in a left to right fashion so that eventually all nona-
tomic component I/O specifications can be determined.

After all I/O specifications for generic and nongeneric
components have been calculated, Phase II can simply look
at the specification types of a connected input-output pair
and mention any mismatches or discrepencies.

5. CONCLUSION AND FUTURE WORK

This paper presents the feasibility of an implementation
of a computer aided design tool, the Specifier and Analyzer
Module (SAM), for distributed simulation. The advantages
gained in using this tool are that it allows the specification of
discrete event systems using graphics, tests the specifications
for consistency of I/O relationships and provides the storage
and retrieval of reusable components. By providing a good
environment for the specification of discrete event models,
the time for developing models can be greatly reduced. The
graphics interface provides a powerful tool for a user to
interact with SAM while the file management system gives
the user the capability to compose models from previously
specified model components. Complex models can therefore
be made in a modular and layered manner whereby system
specifications can be built on top of previously tested model
components. Testing for interface errors can be done easily
and pinpointing of errors more accurately determined.

In each of the three components of SAM there is room
for future work that would offer the user more freedom. In
the Component Building Unit the limit of user workspace
and component size (in terms of immediate subcomponents)
could be relaxed with a ”rolling screen” function and plenty
of memory, and new commands could be added that would
allow such things as switching from the building of one main
component to another, inquiring on component sets in the
file system and printing components sets. The File System
Unit could allow the faster access of records and the access
of records with varying amounts of information in them (in
relation to the number of input and output ports of generic
components, the input and output specification information,
etc.). The I/O Specification Unit could allow more freedom
to the user in indicating which parts of the system he would
like to specify and analyze. Additionally, the form of the
input/output specifications could forever be more elaborate.
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A separate research is being undertaken by the authors
to link the output from SAM to the Execution Module. This
module takes in the specification of the discrete event system
from SAM and translates the specification into C program-
ming language code. The Execution Module then maps the
different components of the distributed program onto a net-
work of processors. These are then run concurrently. The
Execution Module will be implemented on a network of Sun
Workstations connected via an Ethernet where processes
communicate using UNIX 4.3 BSD interprocess commnunica-~
tion primitives. With the integration of the SAM and the
Execution Module into one system, a user will be able to
design, specify, analyze and then run the generated distri-
buted program on the DCS.

APPENDIX

The partial design of a multiple level system com-
ponent, the P (for "Partial”) System component, using SAM
is illustrated.

Component PSYSTEM

1
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