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ABSTRACT

Explanation systems supply information that
clarifies the structure and problem domain of a
computer program for the user. We begin our paper by
describing the early explanation systems, which were
built for expert system programs, and by reviewing
some of the subsequent developments in artificial
intelligence that relate to this area. The results
of our research are consistent with some of the
recent developments in artificial dintelligence;
we have found that there are a variety of kinds of
information that are useful to naive users of
computer programs. We Thave been particularly
interested in writing programs that can supply such
information to naive users of numerical computer
simulations. We describe an implemented explanation
system, NATURALIST, which explains the structure and
domain of a simulation for inventory control. Our
experience with the NATURALIST program suggests that
explanation facilities may be valuable additions to
numerical computer simulations.

1. INTRODUCTION

The concept of a symbolic explanation facility
originated in artificial intelligence research of the
early 1970s. The first explanation facilities merely
repeated the propositions or clauses that were or
could be proven in the course of a particular session
with a rule-based expert system (Winograd 1972). If
a user of such a system wanted to know, for example,
how a program arrived at a conclusion C, the system
would print the propositions that were proven in
order to reach conclusion C.

A trace of the propositions that are or could be
proven in the course of a particular session with an
expert system program helps to clarify for users the
control structure of the program. Subsequent
artificial intelligence research has shown, however,
that repeating the propositions that are or can be
proven in an session with an expert system is only
one technique for elucldating rule-based expert
system programs (see Helman 1986). The research of
Hasling (1984) and Chandrasekaran (1985), for
example, develops techniques for manipulating and
presenting knowledge pertaining to the justification
of conditional chains of reasoning in rule-based
expert systems. In these systems, the connections
between nodes in the AND/OR graphs defined by the
‘rules  of the expert system are classified
semantically. This semantic classification is based
on the tasks these connections or inferential steps
represent in terms of the expert reasoning processes
which such programs simulate. Once such a
classification is stored, a trace of system behavior
can either repeat the propositions or clauses the
system proved in a particular session or it can
enumerate the expert tasks or strategies simulated by
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these chains of steps. The latter trace elucidates
the control structure of the expert system program,

and also cldrifies the expert strategies which
pertain to the given problem domain. This example is
paradigmatic of recent artificial intelligence

research pertaining to explanation. Such research
has, in general, shifted from the question, "How do
we trace the inferential steps of a program?” to the
question, "How do we explain the problem domain of
the program to a user?” (note Clancey 1983).

2. EXPLANATION FACILITIES AND SIMULATIONS

The focus of this study is the problem of writing
explanation facilities for numerical computer
simulations. The problem of writing explanation
facilities for numerical computer simulations is
analogous to the problem of writing such facilties
for rule-based expert systems. An explanation
facility for a numerical computer simulation can
trace the steps of a simulation in a variety of ways
(paralleling methods in artificial intelligence: note
Heterick, Gerth, and Huebner 1977).

A major contrast between rule-based expert
.systems and numerical computer simulations is that in
the latter there is no natural data structure that
may be called “the smallest unit that requires
explanation.” The 1locus of explanation for
rule-based expert systems 1s the clause or
proposition. It may be noted parenthetically that
programs which list chains of clauses or propositions
may themselves be difficult to understand if the
chains are long and complex. In these cases, it may
be helpful to classify the nodes of the AND/OR graphs
defined by the rules of an expert system by an
abstraction hierarchy. That is, collections of nodes
which have a great deal of structure may be
explained, for some purposes, as individual units.
In these kinds of programs the clause is still the
basic unit of explanation. In numerical programs,
however, it is not clear how the basic unit for
explanation’' is to be determined: Does one explain
In considering the problem
of writing explanation facilities for computer
simulations it dis appropriate to abstract from the
details of how an explanation system can trace the
behavior of a program. We approach the problem of

-explaining computer programs as part of the study of

the interface between the computer and the user,
focusing on the kinds of explanations that (naive)
users of computer simulations will find useful.

3. PHILOSOPHICAL BACKGROUND

Our theory of explanations, which is the basis
for the simulation explanation facility NATURALIST
(see Section 4 below), is derived from the literature
in the philosophy of explanation. We have been
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particularly interested in the literature on genetic

explanation (explaining an event by citing the
history of the event - note Dray 1957), causal
explanation (explaining an event with reference to
the causes of the event - e.g., Salmon 1985),
what-if  explanation (explaining an event by
contrasting it with K what might have happened ~ Van
Frassen 1980), functional explanation (explaining a
variable or a component by elucidating its function
within a larger system - see Hempel 1965), and
how-possibly explanation (explaining an event by
correcting the mistaken presuppositions of persons
who do not understand the event - see Dray 1957).

Some philosophical accounts of explanation find
that different aspects of explanation are central in
distinct disciplines. For example, Hempel (1965) has
noted that anthropology  emphasizes  functional
explanations; the description of the function (within
a larger context) of a particular rite or totem. The
philosophical viewpoint the authors adopt in this
study (naturalism) is that day-to-day explanatory
behavior does not vary significantly from discipline
to discipline. A physicist will also, for example,
in his or her ordinary activities, talk of the
functional role of an event or an apparatus. There

are, furthermore, a number of distinct kinds of
explanations that are appropriate in nearly all
disciplines. In particular, the five kinds of

explanations that provide the focus for this study
(genetic explanation, causal explanation, what—-if
explanation, functional explanation, and how-possibly
explanation) are used in a variety of contexts.

If our viewpoint correctly characterizes everyday
explanatory activities, ‘then an adequate explanation
facility should be capable of providing a variety of
kinds of information. By providing users with the
kinds of information that human explainers typically
make available, the NATURALIST program is intended as
an illustration of such a facility.

Our method of investigation in this study may be
contrasted with the methods used in work on cognitive
process simulations (e.g., Kuipers and Kassirer
1984). 1If we had followed the cognitive process
methodology in this study, we would have recorded
what experts say as they explained their programs to
naive users.
of explanation types from these protocols.

The top—down approach adopted in this study (from
a theory of explanations to specific applications)
contrasts with the bottom-up approach of cognitive
process theory. Both methodologies have their
advantages. Cognitive process investigations gain
insights through their in-depth studies of the
thinking and problem-solving behavior of experts.
They then extend these observations to general
situations. The fundamental distinctions made in
top—~down or theoretical studies may be somewhat
easier for naive users to understand. A complete
comparison of these two methodologies is, however,
beyond the scope of this paper.

We would then have derived our taxonomy

4. NATURALIST

In order to (partially) test our theory of
explanation, we needed to see if the kinds of
explanatory information given in genetic, causal,
what-if, functional, and how-possibly explanations
could be supplied by a facility attached to a
specific simulation. For this experiment, we used an
inventory control model described in Gaither (1982).
Gaither models inventory control as follows:

annual
total annual annual annual incoming
material= carrying + ordering +acquisition +trans-
costs costs costs costs portation
costs
Q D
™C = =0 + =8 + ac(D) + (D)
2 Q
.annual annual

carrying expected
+ cost for +stockout

safety costs
stock
D
+ (8S)C + A(S')-
Q

Variable Definitions

Q = fixed order quantitily in units per order

C = carrying costs per unit in dollars per unit per
year

D = annual demand in units per year

S = ordering or setup cost in dollars per order

ac = acquisition cost in dollars per unit

(this may be, for example, a constant function of Q)

r = incoming transportation cost in dollars per unit
(this may be, for example, a discontinuous Ffunction
of Q)

S5 = level of safety stock in units

A = probability of stockout in each reorder cycle
§' = stockout, reorder costs, etc., in dollars per
stockout

In a simulation based upon this model, an initial
estimate of the optimal order quantity (the Q that
minimizes TMC) is made by calculating the quantity
1/2(/33575‘). Q is then incremented in a range
determined by this initial estimate. For each Q
tested, the simulation will determine the optimal
safety stock (the SS that minimizes the sum of the
annual carrying costs plus annual expected stockout
costs) by varying the estimate of A. The sample
partial output from our implementation of the Gaither
Inventory Control Model (Figure 1 below) only

Indicates the optimal safety stock for each order

quantity (Q):
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Inventory Control Simulation for 1985 Simulation Number f{ Page 1
finnual ~—fnnual safety stock cost— Total
Order Service Safety fAnnual finnual incoming Expected finnual annual
quantity level stock ordering  carrying transportation  Carrying  stockout Total acquisition  material
{units) (i-alpha)  {units) cost cost cost cost cost cost cost costs
386 0.9953 118 1815.54 433,55 17935, 88 277.38 29.87 307,17 268275, 88 288886
394 9.9938 114 1778.68 462,95 17640, 00 267.98 38,60 386,50 268275, 00 288463
402 9.9938 114 1743,28 472,35 17325, 08 267.99 37.83 385,73 268275. 89 288124
413 0,39938 114 1709.27 481,75 17210, 88 267.9% 37.09 384,99 268275, 89 247781
418 2.9918 109 1676.56 491,15 16695, 63 256, 15 48, 12 304,27 268275. 09 287442
426 9.9918 139 1645, 07 500, 55 16340, 20 256,15 47.21 383.36 268275, 0 287104
434 8.8918 199 1614.75 509,55 16065, 08 256. 15 46,34 382,49 268275. 89 286767
442 3.9918 1 1585, 52 519.35 15758, 80 236, 15 45,50 381,65 258275, 98 286432
450 0.3918 169 1557.33 528.79 15435, 60 256, 15 44.70 309, 85 268275, 98 286097
438 9. 9918 189 1539, 13 538,15 15120, 0 236.15 43,91 300,26 268275, 00 285763
466 9.9918 109 1503, 86 547,55 14805. 03 256, 15 43,16 298.31 268275. 08 285431
474 2.3918 129 1478, 48 556, 95 14895, 00 25615 42,43 298.58 268275, 08 285414
482 0.3918 133 1433, 94 566. 35 14450, 60 256, 15 41,73 297.88 268275, 00 285083
49 39,5918 189 1430,20 573,75 14175, 02 256. 15 41.085 297,28 268275, 22 284753
Figure 1: Partial Output From The NATURALIST

4.1. Genetic Explanations

A genetic explanation, when it is successful,
makes sense out of a present event by citing a
sequence of past events that led to it.
concept of a genetic explanation to apply to the
simulation, we
simulation is run over an extended period of time,
and that we have a record of the actual as well as
the expected variable
values provides some useful information, but such
graphs will not tell us what to expect in the present
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time period, or why significant changes occurred when
they did in past time periods.

The histogram in Figure 2 shows changes in
acquisition costs for toasters over a period of seven

For the
years. During the first two years recorded, the user

of the NATURALIST facility is asked to supply a text
to accompany the recorded value for each variable.
After the first two years, the user of the NATURALIST
genetic explanation facility is prompted to enter
explanatory text whenever a variable value differs
significantly from the previous year.
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Figure 2: Genetic Explanation For Acquisition
Costs
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The genetic module of NATURALIST is best taken as
one possibility that could be implemented within the
next generation of genetic explanation facilities.
The possibilities for advanced genetic explanation
facilities are brought out in the following example
of a genetic explanation:

Why is the principal maternity hospital in the
city of Alexandria located on the grounds of the
navy arsenal?

Genetic Explanation: By 1839 the Ottoman governor
of Egypt had been at work for more than thirty
years to equip himself with a fleet of warships
in the Western style. He realized that his naval
establishment would not be self-sufficient unless
he had Egyptian workers build the ships, and they
could only be trained by hired naval specialists
from the West. Foreign specialists, however,
were unwilling to come without their families,
and they wanted to be sure of adequate health
care. The Ottoman therefore hired Western
physicians to attend naval experts and thelr
families. The doctors found that they had extra
time, and being community minded decided to aild
the local Egyptian population. Maternity work
was the first call and therefore a maternity
hospital arose within the confines of the navy
arsenal (Hempel 1965).

From a computational point of view, this example
has two very interesting features. First, there is
no reference, in the above genetic explanation, to
the time intervals at which the key events took
place. The time “grain” of the NATURALIST genetic
explanation facility is, in contrast, set at ome year
and is not easily altered by the user. More advanced
genetic explanation facilities would presumably be
generic to some degree. Historical information

pertaining to the simulation would still constitute a:

separate kind of information which the user could

access, but the structure of this information could’

be easily tailored by the user of the simulation. In
the object—oriented simulation programming language
ROSS (McArthur, Klahr, and Narain 1986) there are
commands that would allow a user to easily vary the
"grain” of such a facility to suit his or her
purposes. It would also be possible, in ROSS, to
allow the user to abstract the sequence of important
events from the dates of their occurrence, if these
dates were not particularly important.

A second interesting feature of the above example
is that the events described are “causally” related
to one another. For example, we can understand how
the desire of the Ottoman governor for a
self-sufficient navy led him or "“caused” him to
establish a training program for Egyptian workers.
In programs such as De Kleer and Brown (1984),
Baskaran and Reddy (1984), and Widman (1986) the
transitions between program states represent the
causal interactions between parts of a system over a
period of time. Thus, a trace of the changes in
program states provides a causal as well as a
historical account of the changes in a system. We
might say, however, that such a program can only give
"internal” genetic explanations. That is, the user
of these programs only has access to a historical
record of the variables that constitute the described
system. The point of a genetic explanation facility
is to allow a user to access exogenous variables when
necessary.
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In the NATURALIST system, we provide a way for
the expert or the user to note exogenous variables
which are important for an understanding of changes
in variable values. Because we ask users to supply
their own explanations of these changes, our approach
seems to be at one end of a spectrum (from the
perspective of artificial intelligence); at the other
end of the spectrum, we find research that has been
directed at the production of systems that supply
their own explanations. Schank (1982), for example,
presents an account of how intelligent systems can
provide their own explanations of unexpected events.
His approach cannot be sharply distinguished from our
own, however, for it may be helpful as well in the
design of systems that provide “canned" explanatioms.

4.2. What-if Explanations

A successful what-if explanation makes it easier
to understand an event by contrasting the occurrence
of the event with what might have happened (Van
Frassen 1980). 1In our explanation facility for the
‘Gaither simulation the concept of what-if
explanations is implemented as a kind of spreadsheet.
Once the user has run the simulation with a set of
variable values, he/she may change any number of
these values, and rerun the simulation. The system
returns the effects these changes have on the six
quantities (e.g., annual acquisition cost) that make
up total material costs, as well as the the effect
these changes have on total material costs. The user
may also rerun the simulation after changing the
functions of the model (the user can, for example,
model transportation costs as a step, discontinuous,
or constant function of order quantity).

4.3. Causal Explanations

A successful causal explanation makes sense out
of a given event by citing the causes that led to
that event. In the philosophy of science, the notion-
of a causal explanation has been closely tied to the
notion of a general causal law. The classical
philosophy of science theory is that an event E can
be causally explained when E can be deduced from one
or more general causal laws together with a statement
of initial or antecedent conditions. Causal
explanations, on this view, are in accord with the
following schema:

Cl, C2,.4004.Ck Statements of initial or

antecedent conditions

L1, L2,¢0se00lk General laws

deduction

E Description of the event to
be explained

Figure 3: The Structure of Causal Explanation
According to the Classical Theory in the Philosophy
of Science
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Hempel (1965) gives the following example of a causal
explanation that accords with this schema:

To an observer in a rowboat, that part of an oar
which is under water appears to be bent upwards.
The phenomenon is explained by means of general
laws—-mainly the law of refraction and the law
that water is an optically denser medium than
air-——and by reference to certain antecedent
conditions~—especially the facts that part of
the oar is in the water, part in the air, and
that the oar is practically a straight pilece of
wood. Thus, here again, the question "Why does
the phenomenon occur?” is construed as meaning
"according to what general laws, and by virtue
of what antecedent conditions does the
phenomenon occur?”

The causal explanation module in NATURALIST
determines the causes of changes in total material
costs from one year to the next. The causes of
changes are determined in two steps. The first step
of the NATURALIST algorithm for causal explanation is
to calculate the effects that each change in variable
value, on its own, would have had on total material
costs (see Kosy 1984).

The second step of the NATURALIST algorithm for
causal explanation is consistent with the classical
view of causal explanation in the philosophy of
science. We can, after the first step of causal
explanation, know that the changes in acquisition
costs, on their own, would have accounted for half of
the change in total wmaterial costs. Why, however,
did acquisition costs change as they did? To
understand why acquisition costs changed, we must
find a general principle or law which describes the
change.

To supply the user with a general principle that
accounts for changes in variable values, NATURALIST
uses a backtracking rule-based reasoning program.
The top-level goals of the AND/OR graphs defined by
the rules of this program are alternative reasons for
changes 1in variable values. For example, the
top—level goals of some AND/OR graphs are the various
reasons why acquisition costs might have risen. We
have not, however, been able to produce a exhaustive
classification of the reasons why variable values
might change. There are cases where no conclusion
can be drawn.

Goals can be proven in our reasoning program in
one of four ways. The first two techniques are the
standard methods for reaching conclusions in symbolic
reasoning programs. First, a goal can be proven by
deducing it from other goals that have been proven
already. Second, a goal may be proven by asking the
user a question, and getting the answer that is
required to prove that particular goal.

In NATURALIST, we also use the simulation results
and the information recorded in the explanation
modules to prove goals in the AND/OR graphs defined
by the rules of the reasoning module. Thus, the
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third method for proving goals is by finding that
certain explanations have been entered in the genetic
explanation module. That is, NATURALIST has a
limited pattern-matching facility which searches for
specific information that may have been entered by
users as genetic explanations. Finally, we
interleave the numerical simulation results with the
AND/OR graph defined by the rules of the causal
module. There are, in general, two ways in which
numerical simulations way be interleaved with
symbolic reasoning programs. First, a symbolic
reasoning facility can reach qualitative conclusions.
These can be mapped to numbers and then standard
numerical simulation techniques may be applied (note
Lee and Widman 1986). Second, conclusions in a
symbolic reasoning program may be proven or not
proven depending on the results of a numerical
simulation (Clarkson 1963). The latter method is
used in NATURALIST. Simulation results are used to
help to discriminate the reasons for changes in
variable values.

4.4. Functional Explanations

A successful functional explanation clarifies an
event or a device by elucidating their roles in terms
of the larger systems of which they are a part. The
functional roles of an event or a device are,
however, relative to the interests of the person who
is studying the device. From one perspective, for
‘example, the function of the fuel pump of a car might
be its role in keeping the engine running; another
person might elucidate the function of the fuel pump
in terms of its role in keeping fuel consumption low.

The relativity of functional explanation is
brought out when one gives this notion a
computational interpretation. Consider, for example,
several lines of code that are supposed to compute
the square root function. From one point of view,
these lines of code play a role in the numerical
functions computed by a program. If these lines of
code do not compute the square root function, the
program will not work as it is supposed to. The
lines of code that compute the square root function
will also play a role in the control structure of the
program. From this point of view, the function of
these lines of code may be to receive values from one
procedure and pass values to another procedure.
Finally, one may characterize the functions of these
lines of code in terms of the real-world sub-system
that the code 1is supposed to model, and the
relationship of this sub-system to the larger system
which is modeled by the program as a whole.

To simplify matters somewhat, we may interpret
the notion of a functional explanation, in the
context of a computer simulation, as an explanation
by trace. That is, a functional explanation traces
the relationships between one part of a program and
the rest of the program. One can, however, trace a
program at any number of levels. In NATURALIST, the
functional explanation module traces through a
symbolic explication of the Gaither numerical model.
Figure 4 shows a functional explanation NATURALIST
produces for the computation of acquisition costs:
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Functional Trace of Acquisition Costs
Annual
Annual
Annual
Anmmual
Annual
Annual

Carrying Cost

Ordering Cost

Acquisition Cost

Incoming Transportation Cost
Carrying Cost for Safety Stock
Expected Stockout Cost

+ + 4+

Total Annual Material Costs

Acquisition Costs contributes to Annual Acquisition
Costs.

Annual Acquisition Costs = Acquisition Cost * Demand

2%
47
6%

delta Acquisition Costs
delta Demand
delta Annual Acquisition Costs

This change in Annual Acquisition Costs made a linear
contribution to the rise of Total Material Costs
(TMC)

Figure 4: Functional Explanation Produced By
Naturalist for Acquisition Costs

The ideal functional explanation facility would
allow the user to trace the behavior of a simulation
on a number of separate but important levels. We may
say, alternatively, that simulation explanation
facilities would allow the user to verify the
behavior of simulations by a number of distinct
methods  (e.g., tracing and testing numerical
algorithms, tracing control structure, tracing the
relationships between program structures which
represent objects in the expert's model of the
problem domain). Research pertaining to
object-oriented programming environments has made
progress in this area (Ruiz-Mier, Talavage, and
Ben-Arieh 1985); still, much work remains to be done.

4.5. How—Possibly Explanations

An explanation is often required when a person
finds that an event is unexpected; i.e., when he/she
cannot understand how the event could have occurred.
In these cases, an explanation should uncover the
assumptions underlying the confusion of the person
who did not expect the event in question, and then
show either that these assumptions are false, or that
they do not warrant the conclusion that the event
could not have occurred (see Dray 1957).
How-possibly explamations do not form a completely
distinct category of explanation. A causal or a
genetic explanation of an event, for example, may be
required to remove the mistaken presuppositions of
the person who finds an event unexpected. An
explanation is a how-possibly explanation if it
removes confused presuppositions; this basis for
categorization is, perhaps, orthogonal to the logical
and semantic features that distinguished what-if,
causal, genetic, and functional explanatioms.

To implement the ideal how-possibly explanation
module for a computer simulation it would be
necessary to model the knowledge and presuppositions
of particular users of the simulation. If this
modeling task is too difficult or time-consuming in a
specific context, it is still possible to identify
the mistaken presuppositions that are most
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‘Present alternative models of a problem domain.

significant with respect to a particular computer
simulation. A how-possibly explanation facility
would, following this methodology, supply information
that would remove the presuppositions of the user
that are most likely to be mistaken or that are most
likely to cause problems.

The how-possibly explanation module for
NATURALIST is in the process of being implemented.
In the design of this module, we have been
particularly interested in giving the naive user
access to information that pertains to the
limitations of the NATURALIST simulation. The

NATURALIST simulation equations for transportation
costs, for example, cannot reflect month-to-month
differences in the cost of shipping a unit. By
making such limitations explicit, a how-possibly
explanation module may play a role in the validation
of a simulation. That is, such a facility reduces
the practical significance of disparities between the
simulation model and the real-world system that is
being represented by the simulation model (note
Bratley, Fox, and Schrage 1983).

5. CONCLUSIONS AND FUTURE DIRECTIONS

On the basis of this study, it appears that
explanation facilities can be wuseful additions to
simulation programs. Explanation facilities seem
particularly helpful in situations where a novice
needs to understand and use a complex numerical
simulation. * A future direction for this work is to
test this hypothesis empirically. With Professor
Elizabeth Short of the Case Western Reserve
Department of Psychology, we have designed several
experiments to explore the relationships between
increased understanding of models and the use of
explanation facilities.

Another direction of this research pertains to
the design of simulation explanation facilities that
We
are presently, in collaboration with Professor Leon
Sterling of the Case Western Reserve Department of
Computer Engineering and Science, developing a
program that presents alternative models for
inventory control.
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