Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

CONCURRENT SIMULATION:
AN ALTERNATIVE TO DISTRIBUTED SIMULATION

Douglas W.

Jones

Department of Computer Science
University of Iowa
Iowa City, IA 52242, U,S.A.

ABSTRACT

The advent of of a new deneration of
multiprocessors allows new approaches to
parallel simulation, Previous work in this

area has concentrated on distributed simula-
tion; this approach uses spatial decomposi-~
tion to allow simulations to be run on net-
works of machines, where the message flow
between processors in the network is related
closely to the topology of the system being
simulated. This paper presents an alternate
approach, concurrent simulation, which is
based on temporal decomposition. This allows
natural use to be made of the shared memory
facilities and load-balancing capabilities of
the new multiprocessors, and it overcomes
some fundamental limitations of the distri-
buted approach.

l. BACKGROUND

Discrete~event simulation is important
to fields as diverse as operations research
and VLSI design. In all of these fields, the
demand for time-consuming and hence costly
simulation studies has lead to a growing
interest in the use of parallel computer sys-
tems in simulation. The dominant approach to
parallel simulation, usually called distri-
buted simulation, involves the partitioning
of the simulation model into segments that
are then run on separate machines connected
in a network with a topology compatible with
the logical interconnection structure of the
simulated system (Chandy and Misra, 1979)
(Peacock, Wong and Manning, 1979b).

The problem with this approach is that
many simulation problems are not easily par-
titioned in this manner. Many distributed
simulation experiments have relied on manual
decomposition of the simulation model
(Peacock, Wong, and Manning, 1979a), although
automatic decomposition may be possible.
Furthermore, in the limited domain of queue-
ing networks, some otherwise well-behaved
simulation models are prone to deadlock when
run in a distributed environment (Peacock,
Wong and Manning, 1979b), and others gain
very little from the distributed approach
(Peacock, Wong, and Manning, 1979a). This
provides a clear motivation for investigating
alternate approaches to the application of
multiple processors to discrete-—event simula-
tion.

A new generation of symmetric multipro-
cessor computer systems has recently reached
the marketplace (Baskett and Hennessy, 1986)

417

(Bell, 1985). These machines are character-
ized by between 2 and 20 processors sharing a
single main memory. Most of these machines
are currently based on monolithic processor
implementations and a single shared memory
bus, where cache memories are used to reduce
bus contention. Systems with more processors
or more complex memory arbitration mechanisms
are on the horizon, as illustrated by the
Illinois Cedar machine (Kuck et al, 1986).
Because of their use of shared memory, all of
these machines have the potential for con-
currency based on problem decompositions
other than the strictly spatial ones commonly
used in distributed simulations.

The balance of this paper begins with a
brief discussion of the operation of a typi-
cal discrete-event simulation system running
on a single processor. Section 3 continues
with a general framework for discussing
parallelism in discrete-event models. Sec-
tion 4 discusses distributed simulation in
terms of this framework. Section 5 intro-
duces concurrent simulation, and section 6
continues this subject with an examination of
pending event set support for concurrent
simulation. The paper ends with a prelim-
inary evaluation of the potential performance
of concurrent simulation and a discussion of
how it might be combined with distributed
simulation., '

2. SEQUENTIAL DISCRETE-EVENT SIMULATION

The basic discrete-event simulation
algorithm operates by repeatedly extracting
and simulating the next event from the set of
all events involved in the simulation. Thus,
events are simulated in strictly chronologi-
cal order (as long as simultaneous events are
ignored). The simulation of one event may
involve changes to state variables of the
simulation model and the scheduling of other
events that are to be simulated in the
future. State variables can represent such
things as the voltage on a particular wire or
the number of items in some queue. At any
instant during the simulation, the pending
event set is the subset of all possible
events that consists of those events that
have not yet been simulated but have already
been scheduled., The following invariant con-
strains both the scheduling of new events and
the selection of the next event to be simu-
lated:

D. W. Jones

The simulated time of the event
currently being simulated is no later
than the simulated time of any event in
the pending event set.

wWithout loss of generality, the code for
simulating an event can be restricted to
reading the state variables on which the
event depends and making any state variable
modifications before any new events are
‘scheduled. This restriction divides the
simulation of each event into two phases, a
state-variable phase, where the state vari-
ables are inspected and possibly updated, and
.an event- ¢+ Where new events
are scheduled. Although this restriction has
no effect on the sequential discrete-event
simulation algorithm, it will be wuseful in
the parallel versions to be discussed next.

Note that, in terms of the world views
compared by Overstreet (1982) and by Over-
street and Nance (1986), this presentation is
clearly based on event .scheduling and not
process interaction or activity scanning,
Nonetheless, the division of the processing
of an event into phases resembles the divi-
sion used in the three-phase formulation of
the activity scanning approach ' (0O'Keefe,
1986). In terms of the three-phase model,
the events being discussed here are all bound
or scheduled events; any computations that
would occur as a consequence of conditional
or contingent events in a three-phase model
are assumed to be folded into the bound
events that caused the state changes on which
they depended.

3. PARALLELISM IN DISCRETE EVENT SIMULATION
Parallel approaches to discrete-event
simulation ultimately rely on the identifica-
tion of independent events, An event may
depend on another because of a sghgdul;ng
dependency or because of a state-variable
dependency. Event A has a direct -scheduling
dependency on event B if event A is scheduled
by the simulation of event B. The initial
events in a simulation model have no schedul-
ing dependencies, while all other events have
a direct scheduling dependency on exactly one
other event, Event A has a direct state-
variable dependency on event B if the results
of simulating event A depend on the value of
a state variable that is stored by the simu-
lation of event B, The number of other
events on which an event has state-variable
dependencies depends on the number of state
variables inspected during the simulation of
that event. An event depends indirectly on
another if it depends in any way on some
event that depends directly or indirectly on

the other. A pair of events are independent
if neither depends on the other,

The dependency relation establishes a
partial ordering of the set of all events in
a simulation run., If this is a total order-
ing, there are no independent events and

opportunities for parallelism are limited. A
parallel simulation system can begin the
simulation of any event as soon as all events
on which it depends have been simulated. The
problem of designing a parallel simulation

418

system, then, is to determine when this is
true. Figure 1 illustrates the dependency
relations between the events in a simulation
model and the subsets of the set of events
that can be identified at some point during
the simulation.

not yet
scheduled

can be
simulated
in parallel

[R

pending

already
simulated

space

Figure 1. Dependency relations and
subsets in the set of events, Event
dependencies are shown by arrows,
solid for scheduling dependencies,
dashed for state-variable dependencies,

It
models

should be noted that simulation
can be modified to change the depen~
dency relationships between events. For
example, if event A schedules event B, and
event B always schedules event C, where the
scheduling of C does not depend on the values
of any state variables, the model can be
changed so that A schedules both B and C.
The former formulation will minimize the size
of the pending event set, while the latter
may allow greater concurrency.

4. DISTRIBUTED SIMULATION

In a distributed simulation, the set of
state variables is partitioned in such a way
that, for each event, the state variables
needed to simulate that event are in a single
block resulting from the partitioning. Each
block is then associated with a process that
simulates the events that manipulate the
state variables in that block. 1Interprocess
communication is required whenever an event
associated with one block is scheduled by an
event associated with a different block.
Within each process, events are simulated
strictly in the order of their simulated
times; additional interprocess communication
is required to prevent the simulation of an
event until it can be guaranteed that no
events dealing with the same block will be
scheduled at prior simulated times.

Although most real simulation models can
be partitioned so as to allow distributed
simulation, some models cannot and others
must be modified to permit this. The primary
tool used to modify simulation models to
allow partitioning is event splitting. When
this is done, one of the events resulting
from the split schedules the other to happen
at the same simulated time and transmits to
it the values of any state variables needed.

Concurrent Simulation: An Alternative to Distributed Simulation

As described in Peacock, Wong, and Manning
(1979a), events that schedule others at the
same simulated time introduce the possibility
of deadlock into distributed simulations.

It is natural to hope that distributing
a simulation model over m machines would lead
to a speedup proportional to m; this is not
always the case. One reason for this is that
operations on an n element pending event set

take 0O(log n) time in the worst case using
the fastest known implementations (Jones,
1986) . If the event set is partitioned over

m machines, the time is reduced to O(log .n/m)
per operation. As a result, the speedup s
for operations on the pending event set will
be (log n)/{(log n/m). Solving for m as a
function of s and n (the number of machines
required to provide a particular speedup when
the size of the pending event set is known)
yvields

m = nll - 1/8)

For s = 2, this implies

This can severely limit the speedup for sys-
tems where the expected number of pending
events is large.

This estimate of the speedup resulting
from distributing a simulation is pessimis-
tic, in that it deals only with the gain to
be obtained by distributing the storage and
processing of the pending event set.
Although some simulation problems have large
pending event sets, many have only small ones
and thus may be quite appropriate for distri-
buted simulation. It is also important to
note that the speedup expected for distri-
buted simulation when the pending event set
is large can be made to look quite good by
using a linear list implementation., In this
case, the expected time to perform an opera-
tion when there are n elements in the pending
event set is O(n), so partitioning over m
machines reduces the time to O0(n/m) giving a
speedup of m. While this is an impressive
speedup, it is misleading since the run-times
will be slower than they would be with a
better choice of pending event set implemen-
tation. Unfortunately, few if any of the
papers on distributed simulation provide
clear descriptions of the pending event set
sizes or implementations used to obtain the
speedups reported. In fairness, it should be
noted that for the small queueing networks
such as are reported on by Peacock, Wong, and
Manning (1979a), the pending event set should
be gquite small, and thus the choice of
event~-set implementation should not make much
difference in the results reported.

5. CONCURRENT SIMULATION

An alternate approach to the problem of
applying parallel processing to discrete-
‘event simulation relies on the observation
that events are not simulated instantane-
ously. As noted above, the process of simu-
lating an event can be divided into two
phases, the state~variable phase and the

event~scheduling phase. As soon as the
state-variable phases of all events on which
a pending event has state-variable dependen-
cies have been completed, that event may be

simulated. This allows some parallelism even
when the event dependency relationship
imposes a total ordering on the set of all
events. The synchronization constraints that

govern this approach to parallel simulation
can be summarized as follows:

Cl: An event may not be considered for remo-
val from the pending event set until it
can be guaranteed that all events on
which it has state-variable dependencies
have already been scheduled.

C2: The state-variable phases of events that
have been removed from the pending event
set to be simulated must be simulated in
chronological order by simulated time
for those events that have state-
variable dependencies.,

The term concurrent simwlation is used
here to describe the approaches to exploiting
opportunities for parallelism that are not
exploited by distributed simulation. Since
the goal of this work is to identify an
alternative to distributed simulation, no
assumptions are made about the possibility of
partitioning the state variables of the simu-
lation model. Thus, it is assumed that all
events may inspect or modify any of the state
variables, so that the set of events is
totally ordered by state-variable dependen—
cies.

These constraints lead naturally to a
pipelined model of concurrent simulation
where a single process simulates the state-
variable phases of all events in strict chro-
nological order according to their simulated
times. A second process then handles the
event-scheduling phases of each event after
the first process has finished with it. This
distributes the work between the processes
based on a temporal decomposition instead of
a spatial decomposition such as is used in
distributed simulation. This pipelined view
of concurrent simulation is illustrated in
Figure 2. The specialized VLSI simulation
machine built at HP Labs appears to be a
direct hardware implementation of this
approach (Birnbaum, 1985).

pending event set

state~variable
Phase

event-scheduling

phase
v

Figure 2. A Pipelined View of
Concurrent Simulation

An alternate view of concurrent simula-
tion is based on a symmetrical decomposition
of the work to be done. 1In this case, all of
the processes execute identical code, and the

D. W. Jones

number of processes uséd may be arbitrarily
large (although it must be noted that adding
additional processes will not necessarily
lead to any performance gain). This view is
especially appealing for sSymmetrical shared
memory multiprocessors because full advantage
can then be taken of the automatic load
balancing characteristics of such machines.
The main body of each process in this model
is outlined below:

loop
wait(statesem);
e := nextevent;
statephase(e);
signal(statesem
eventphase(e);
forever;

In the above code, the wait and signal
operations on the semaphore statesem ensure
mutual exclusion, and therefore serializa-
tion, of the state-variable phases of all
events (Dijkstra, 1971). The procedures
statephase and eventphase actually perform
the simulation of the two phases of each
event, and the function nextevent returns the
next event from the pending event set.

The above code does not correctly cap-

ture all of the details of the interprocess
synchronization needed to ensure correct
simulation résults. Specifically, this code
does nothing to prevent the event-scheduling
phase of one event from scheduling an event
prior to some other event that is already
being simulated. As a result, condition Cl
can be violated in those cases where the
event already being simulated has state-
variable dependencies on the new event, which
leads to a violation of C2. The following
conservative invariant ensures that this does
not happen:
I2: No event in the pending event set has a
simulated time before the simulated
times of any events that have been or
are currently being simulated.

This new invariant is a simple
zation of Il, but it is much harder to
enforce., The problem is that it must be
enforced by preventing events £rom being
removed from the pending event set, not by
preventing the scheduling of events. One way
to ensure that I2 is satisfied is to have the
event simulation phase of each event
currently being simulated maintain a record
of the 1limit time of that event. The limit
time of each event is initially the same as

generali-

the simulated time of that event, but it may

be advanced as long as the £following local

invariant is met:

I3: When an event is scheduled, the simu~
lated time of that event does not come
before the limit time of the event that
scheduled it.

At any instant during a simulation, it
is possible to determine the minimum limit
time, the minimum of the set of 1limit times

of the events currently being simulated. It
is easy -to see that the minimum limit time is
the time before which no new events will be

420

scheduled by events currently being simu~-
lated. Thus, if the head event in the pend-
ing event set is scheduled at a time prior to
the minimum limit time, it can be guaranteed
that no as yet unscheduled events will be
scheduled before the head event. The follow-
ing code outlines how this can be accom-
plished:

loop
limit := infinity;
wait(statesem);
while nexteventtime > minlimit
do nothing;
e := nextevent;
limit := e,time;
statephase(e });
signal(statesem);
eventphase(e, limit);
forever;

In the above code, the function next-
eventtime returns the time of the next event
in the pending event set, and the function
minlimit computes the minimum of the limit
times of all active simulation processes.
The above code will not introduce any con-
currency unless the eventphase procedure
advances the limit time.

The problem of assuring that the limit
times of all but the most trivial events are
advanced by the event phases of those events
can be surprisingly easy to solve. All that
is needed is a guarantee that all new events
scheduled by an event are computed (and
scheduled) in order of increasing simulated
time. Assuming that this is done, the limit
time can always be set to the simulated time
of the most recently scheduled event, as in
the following code:

procedure eventphase(e, limit)};
while eventsremain(e) do
n := nextremaining(e);
schedule(n);
limit := n.time;

The eventsremain function in the above
code determines whether any events remain to
be scheduled; the nextremaining function
returns events £rom among those that remain
in the order of their simulated times.
Clearly, the feasibility of wusing this
approach depends strongly on the ease with
which events which remain to be scheduled can
be computed in this order. As an example
illustrating the ease with which this may be
done in some applications, consider the prob-
lem of building a logic simulator.

In a logic simulator, events that cause
the output of a gate'to change result in the
scheduling of input change events at the
inputs of each gate connected to that output.
The delay after which each of these new
events is scheduled is usually determined by
the wire length and type of wire used. The
number of events caused by an output change
event depends on how many inputs are driven

by that output. For most gate types, a
change to an input causes at most one output
to change, and frequently, nothing changes.

As a result, the event-scheduling phases of

Concurrent Simulation: An Alternative to Distributed Simulation

events, other than output change events, are
fairly simple. When an output changes, how-
‘ever, the simulator must scan the list of
inputs connected to that output and schedule
a new event for each of those inputs. If
this list is sorted in order of increasing
delay, these new events will be naturally
produced in the correct order; <furthermore,
this sorting can be done at the time the data
:structure representing the c¢ircuit to be
simulated is built, before the actual simula-
tion begins.

The above code suggests the use of a
rather complex computation each time the min-
limit function is computed. Since this is
evaluated inside a polling loop, this could
lead to unnecessary delays. One simple
alternative to this would be to recompute
minlimit each time the limit time of any pro-

cess changes. Although this might help, it
is unnecessary because the priority-queue
that is used to order the pending event set

can itself be used to perform this computa-
tionl! This is true because during the event
scheduling phase of the simulation of an

event, the limit time is always the same as
the simulated time of the most recently
scheduled event; this event can itself be
used as a record of the limit time. As a

result, the simulation of an event may begin
only when it is at the head of the pending
event set and is not being used as a record
of the limit time of any other event. The
following code illustrates this:

loop
wait(statesem);
e := nextevent;
statephase(e);
eventphase(e);
forever;

procedure eventphase(e);
if eventsremain(e) then
n := nextremaining(e);
schedule(n);
signal(statesem);
while eventsremain(e) do
old := n;
n := nextremaining(e);
schedule(n);
release(old);
end;
release(n);
else
signal(statesem);

In the above code, the
tion does not

nextevent func-
return the head event record

from the pending event set until that event
has been scheduled and released. Scheduling
an event places that event in the pending

event set as a record of the limit time of
the event that scheduled it, while releasing
an event indicates that that event no longer
records a limit time and may be simulated if
it is the head event in the pending event
set. The extension of the basic event set
abstract data type by the addition of the
release operation was perhaps the hardest
single step in the development of this
approach to concurrent simulation.

421

An important change was made in modify~

ing the previous code to produce the above:
The end of the critical section established
by the semaphore statesem was moved to

include not only the state~variable phase of
the event but the first call to schedule in
the event-scheduling phase. This does not
change the extent of parallelism from the
previous version since the initial setting of
the 1limit time of the event also prevented
the simulation of any other events until that
event had a chance to schedule the next
event.

It may be possible to introduce addi-
tional parallelism into this approach to con-
current simulation by adding semaphores to
specific state variables. If this is done,
and events claim exclusive use of the state
variables that they inspect or modify, the
global semaphore statephase may be released
as soon as the appropriate state variables
have been claimed and it is determined that
an event will schedule no new events. Since
this modification introduces some overhead
into the processing of all events, but only
allows a limited increase in concurrency, it
may not actually lead to any speedup.

6. PENDING EVENT SET SUPPORT

The model of the pending event set wused
by the sequential discrete-event simulation
algorithm has only two main entry points,
nextevent and schedule. These correspond,
respectively, to the dequeue and engqueue
operations on a priority-queue, sometimes
called delete-min and insert (Jones, 1986).
The concurrent model of discrete-event simu-
lation presented above requires an additional
operation, release. Although the problems of
implementing priority queues are relatively
well understood, this new operation will
clearly complicate any implementation of the
pending event set.

Concurrent simulation algorithms,
whether symmetrical or pipelined, will all
involve multiple processes contending for
access to the pending event set. Thus, it is
important to f£ind a pending event set imple-
mentation that supports concurrent opera-
tions. It is well known that a FIFO gueue
between a single producer and a single consu-
mer can be implemented without critical sec-
tions (Dijkstra, 1971). Unfortunately, all
known concurrent priority queue implementa-
tions require critical sections.

A concurrent implementation of
heaps is described in Quinn and Deo (1984).
in this implementation, the heap is
represented conventionally in a shared array.
One processor is dedicated to each level in
the heap, so it requires O(log n) processors
for an n item heap. Although the presenta-
tion in Quinn and Deo (1984) is based on a
parallel bottom-up heapify operation using

implicit

0(n/4) processors, it is clear 0(log n) pro-
cessors would be sufficient for top~down
insertions in the heap. Thus, both schedul~

ing of new events and removing the next event
from the pending event set should be possible
in constant time.

D. W. Jones

More recently, a concurrent version of
skew heaps has been developed (Jones, 1985},
In this implementation, each operation on the
pending event set is accomplished by a single
process in O(log n) time, The key to the
efficiency of this scheme is that each opera-
tion on the pending event set blocks other
operations for only a short, constant inter-
val, thus allowing event-set operations to be
performed at a constant rate as long as O(log
n) processors are available to accomplish
them. The advantage of this scheme is that
no processors must be dedicated to pending
event set management except when there are
operations on the pending event set in pro-
gress.

The concurrent implementation of skew
heaps, as it currently stands, does not
include any facilities to support a release
operation, and neither of the concurrent
implementations mentioned here has been modi-
fied to support the arbitrary deletion of

previously scheduled events. Both of these
operations will be required if concurrent
simulation is to become a widely used

approach to discrete-event simulation.

It should also be noted that the compu-
tations needed to manage the event-set are
almost evenly divided between the enqueue and
dequeue operations when concurrent skew heaps
are used. Among the sequential priority
queue algorithms discussed by Jones (1986),
some, such as pairing heaps, perform most of
the computations in the dequeue operation,
while others, such a Sorted linear list, per-
form more of the computations in the enqueue
operation. It would be highly desirable to
£ind. a fast concurrent priority queue algo-
rithm which performs most of its computations
in the enqueue operation because the con-
current simulation approach described here
allows the enqueues to be done in parallel
while requiring the dequeues to be done seri-
ally.

7. CONCLUSION
Although neither a formal analysis nor
any empirical results have yet been obtained

for the concurrent simulation model presented
here, it may be able to provide almost linear
speedup up to O(log n) processors wheén there
are n pending events, especially if there is
a wide wvariance in the number of events
scheduled as a consequence of each event. If
each event causes exactly one new event to be
scheduled, it is clear that this approach has
little hope of providing any speedup. Above
0(log n) processors, the pending event set
may well become a bottleneck so additional
speedup may be difficult to attain.

Since the concurrent approach to paral-
lel simulation attacks the problem from a
different direction than that followed in
distributed simulation, it is interesting to

ask whether the two approaches might not be,
There is some hope of this, since
the key concept of the limit time of an event.

combined.

in some approaches to distri-
For example, in Peacock,
(1979b), a link time is

has parallels
buted simulation.
Wong and Manning

maintained with each communications path
between the blocks resulting from the parti-
tioning of the model. The link time for each
path is the simulated time before which no
new events will be scheduled over that path.
The basic rule used to ensure correct han-
dling of time is that no event may be simu-
lated until the simulated time of that event
is less than the simulated times of all other
pending events in the same block and less
than the link times of all paths leading into
that block. The 1link times of all paths
leading out of each block are set eqgual to
the time of the event currently being simu-
lated in that block.

The expected Of(log n) limit on the
potential speedup of concurrent simulation is
surprisingly well matched to the number of
processors that is typical of the current
generation of commercially available sym-
metric, shared-memory multiprocessors (for
example, 12 on Sequent's current offering, 20
on Encore's current offering). Al though
there is reason to believe that larger sym-
metric multiprocessors may be hard to build,
larger systems using message passing or rela-
tively slower shared memory appear to be
quite practical. If such large systems are
constructed from symmetric multiprocessor
clusters, as is the case with the 1Illinois
Cedar machine (Kuck et al, 1986), an appeal-
ing approach to using these systems for
discrete-event simulation would be to use a
distributed approach to split the model over
multiple clusters, and use the concurrent
approach within each cluster.

REFERENCES

Baskett, F. and J., Hennessy J. (1986). Small
Shared-Memory Multiprocessors. Science
231, 963-967. .

Bell, C. G. (1985), Multis: A New Class of
Multiprocessor Computers. Science 228,
462-467.

Birnbaum, J. S. (1985). Towards the Domesti-

cation of Microelectronics.
tions of the ACM 28, 1225-1235.

Chandy, K. M., and Misra, .J. (1979). Distri-
buted Simulation: A Case Study. JIEEE
Irans. on Software Engineering SE-3,
440-452,

Hierarchical Order-
Acta

Dijkstra, E. W. (1971).
ing of Sequential Processes.
JInformatica 1, 115-138.

Jones, D, W. (1985). Concurrent Operations
on Priority Queues, submitted for pub~
lication,

Jones, D. W. (1986). An Empirical Comparison

of Priority-Queue and Event-Set Imple-
mentations. Communications of ihe ACM
29, 300-311.

Ruck, D. J., et al. (1986). Parallel Super-
computing Today and the Cedar Approach.
Science 231, 967-974.

Concurrent Simulation: An Alternative to Distributed Simulation

O'Keefe, R. M. (1986). The Three-Phase
Approach. In: Proceedings of the 1986 .

Overstreet, C. M. (1982). Model Specifica~-
tion and Analysis for Discrete Event
Simulation, Unpublished Ph.D. Thesis,
Computer Science Department, Virginia
Polytechnic Institute, Blacksburg, Vir-
ginia.

Overstreet, C. M. (1986). World View Based
Discrete Event Model Simplification.
In: Modelling and Si i
in the ifici Era.
North Holland, Amsterdam.

Peacock, J. K., Wong, J. W., and Manning, E.
G. (l1979%a). A Distributed Approach to
Queueing Network Simulation. In:

i of the 1979 Winter Simula-
tion Conference. Institute of Electri-
cal and Electronics Engineers, 399-406.

Peacock, J. K., Wong, J. W, and Manning, E.
G. (1979%). Distributed Simulation
Using a Network of Processors. Computer
Networks 3, 44-56.

Quinn, M., J. and Deo, N. (1984). Parallel

Graph Algorithms. ACM Computing Surveys
16, 319-348.

AUTHOR'S BIOGRAPHY

DOUGLAS W. JONES is an assistant profes-
sor in the Department of Computer Science at
the University of Iowa. He received a B.S.
in physics from Carnegie-Mellon University in
1973, and M.S. and Ph.D, degrees in computer
science from the University of Illinois in
1976 and 1980 respectively. He has developed
a gate level logic simulator that has been
used for teaching digital systems since 1983;
this lead to an investigation of event-set
implementations and parallel simulation. His
other research interests include system pro-
gramming languages and computer architecture.
He is a member of ACM and AAAS.

Douglas W. Jones

Department of Computer Science
University of Iowa

Iowa City, IA 52242, U.S.A,
(319) 353-7479

CSNET: jones@cs.uiowa.edu

423

