Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J, Henriksen, S. Roberts (eds.)

LANGUAGE ASSESSMENT CRITERIA FOR DISCRETE SIMULATION

James

W.

Hooper

Computer Science Department
The University of Alabama in Huntsville
 Huntsville, Alabama 35899

ABSTRACT
Criteria are. suggested for use in
conducting comparative assessments of

languages for use in discrete simulation.
The criteria are grouped within the
categories of simulation-~specific criteria
and general criteria. A discussion is
provided concerning the significance the
various assessment criteria have in modeling
and simulation. Suggestions are offered
concerning the use of the criteria in a
language selection process.

1. INTRODUCTION

A bewildering array of languages is
available for any project involving
computers. Occasionally the choice of
language is dictated for a project -- e.g.,
because the firm's contract specifies use of
a certain language, or because only one
language is available currently, and tinme
doesn't permit obtaining another. But in
general a real choice is available, and in
this case the choice should be carefully
considered.

In Section 2, criteria are considered
that pertain specifically to simulation. In
Section 3, criteria are presented that could
profitably characterize all programming
languages. The intent is that available
languages may be assessed against these
criteria, in order that the choice may
effectively support the goals of a simulation
study. In the final section (Section 4) some
suggestions are given concerning use of the
criteria in language selection.

2. SIMULATION-SPECIFIC CRITERIA

In a great many application areas,
including simulation, a choice is available
between dgeneral purpose languages and
application-specific languages. The choice
between dJgeneral purpose languages and
simulation languages often comes down to
weighing the benefits to be obtained from the
built-in simulation-specific features against
the often-greater generality and
computational power of a general purpose
language. This dichotomy has been addressed
by some language designers
purpose computational features -- e.g.,
Simula (Dahl and Nygaard 1966) and SIMSCRIPT
II.6 (Kiviat, Villanueva and Markowitz 1973),
and by developing sets of simulation-specific

in providing
simulation languages with broad general-.

404

procedures for use with a general purpose
language e.g., GASP IV (Pritsker 1974),
for use with FORTRAN, and SIMPAS (Bryant
1980), for use with Pascal.

There are a number of functions that
must be performed with any simulation model,
and which thus should be supported by the
language used for model development. These
necessary functions nmay be stated, in summary

form, as:

(a) modeling the dynamics of a system,

{b) modeling a system's state,

(c) performance data recording and

analysis.

It is important that a simulation
language aid the modeler by providing
"conceptual guidance® (Shannon 1975) -- i.e.,
providing a conceptual framework for

development of the model. This provides a
significant advantage over using a general
purpose language, and having no such guidance
for organizing and developing the model.

The exact nature of system dynamics
modeling varies depending on whether the
simulation is continuous, discrete, or
combined. In the continuous case, for
example, a system's dynamics may be achieved
by integrating differential equations, and
executing blocks of code as specified time
values are reached. In the discrete case,
dynamics are effected by moving the clock
ahead to the time of the next event in the
Event Set, and executing code to model the
associated state transition -- frequently
including generation of random variates. The
exact approach depends on a language's
strategy (or strategies), which may be one of

(a) process interaction, (b) activity
scanning, and (c¢) event scheduling (Kiviat
1971, Nance 1971, Nance 1981, Hooper 1986),

A number of simulation studies can profit
from use of combined discrete/continuous
methods (e.g., as provided by SLAM II
(Pritsker 1984) and SIMAN (Pegden 1984)).

A great deal is involved in modeling a
system's state, but in the final analysis,
the system state at any given time is
represented by entries in data structures.
Thus the ease with which system states may be
expressed depends on the ease with which
entities may be created and terminated, their
attributes and relationships expressed, and
entities grouped according to their
attributes and relationships. To this end,
it is desirable that a language provide

‘convenient means for using linked lists and

Language Assessment Criteria for Discrete Simulation

ordered sets, among other data structures;
also, built-in features for creating,
managing and terminating entities, and for
representing their attributes and
relationships, provide a significant
advantage. A good range of functions for
generating random variables is a basic
requirement for discrete event simulation
studies,

With regard to recording and analyzing
data, such capabilities as automatic
collection of certain types of performance
data, and the means to easily generate graphs
and charts, are very important. Interactive
interfaces, dincluding graphics, are
especially attractive and helpful; the adage
"a picture is worth a thousand words" is
likely an understatement when attempting to
assess system performance.

In somewhat more detail, we can thus
expand the three functions listed above into
the set of criteria for measuring simulation-
specific features of a language, as shown in
Figure 1.

.example,

3. GENERAL CRITERIA
To provide effective simulation support,
a language should have considerable

flexibility and computational power,. For
relative to modeling a system's
dynamics, it is important to have a full
range of features (control flow, arithmetic
computation, data handling) as provided by a
good dgeneral purpose language. There are
numerous features that could profitably
characterize all programming languages --
whether general purpose or simulation
languages. These features may be divided
into the categories of (a) design aspects and
(b) environmental aspects, Figure 2
summarizes some important criteria against
which all programming languages may be
measured.

Software development has become an
extremely complex and error-fraught endeavor,
as software systems have become larger and
more complex. The field of software
engineering has been developed since 1968 to

Time Management Features

Discrete Event Methods
Event Scheduling
Activity Scanning

Process Interaction

MODELING A SYSTEM'S STATE
Range of Data Structures

Performance

MODELING A SYSTEM'S DYNAMICS
Framework for Modeling and Simulation (providing
support for conceptualizing/organizing a model)

Combined Discrete/Continuous

(especially linked lists, ordered sets,
entities with attributes and relationships)
Random Variable Generation Features

PERFORMANCE DATA COLLECTION AND ANALYSIS FEATURES
Features for Specifying and Collecting

Features for Obtaining Standard Reports
Features for Designing Special Reports

Supplied

and Operations Supplied

Data

Figure 1:
Language

Simulation-Specific Criteria for Evaluating

Features

LANGUAGE DESIGN ASPECTS

Support for the Software

ENVIRONMMENTAL ASPECTS
Availability

Computer Runtime

Understandable Language Concepts
Understandable Language Syntax L
Computational/Representational Power and Flexibility

Software Development Support Environment

Development Process

Portability
Standardization
Figure 2: General Criteria for Evaluating
Language Features

405

J. W. Hooper

attenpt to solve the prevailing problems of
late, over-budget software, characterized by
numerous errors, and difficult to understand
and modify. Large simulation systems are
examples of very complex software. Thus to
as great an extent as possible the proven
approaches of software engineering should be
employed in the development of simulation
software, including emphasis on activities
throughout the "software life cycle". This
implies having languages that support top-
down, modular development, that are readable,
that help to reduce the creation of errors
during software development, that ease the
problem of isolating errors when they occur,
and that have conceptually simple, yet
powerful, features. The criterion of
"Support for the Software Development
Process™ of Figure 2 is intended to summarize
such aspects of languages. Wiener and
Sincovec (1984) state the opinion that
languages which offer support in the
following areas provide the basis for
constructing reliable and maintainable
software: (1) readability, (2) modules for
modular software construction, (3) separate
compilation with strong cross-reference
checking, (4) the control of side effects,
(5) data hiding, (6) data abstraction, (7)
structured control of flow, (8) dynamic
memory management, (9) type consistency
checking between various subprograms, and
(10) runtime checking.

The emphasis on software engineering
technigues has impacted language design. For
example, strong typing characterizes a number
of languages (e.g., Pascal, Ada);
simulationists are seriously considering
strong typing languages for simulation. 1In
February 1984 the Conference on Simulation in
Strongly Typed Languages was held, under
sponsorship of the Society for Computer

Simulation (see Bryant and Unger 1984). As
may be seen from the papers in the
proceedings, and references in those papers,

considerable activity is underway in this
area.

Software development environments are
becoming more and more important, and relate
directly to the goal of developing error-free
software more quickly i.e., of making
programmers more productive. In order to
adequately assess a general purpose language
or a simulation language, the quality of the
support environment must be considered.
Howden (1982) categorizes tools in a software
development environment by software life
cycle activities; in particular, by tools and

techniques for (1) requirements, (2) design,
(3) coding, (4) verification, and (5)
management. The Ada program support

environment (Defense Advanced Research
Projects Agency 1980, Sommerville 1985)
consists of such tools as a run-time support

system, database primitives, peripheral
device interfaces, a compiler for Ada, an
editor, a loader, a debugger, and a

configuration manager.

The complexity of simulation models,
including parallelism, makes the availability
of an integrated set of support tools
especially important. Substantial research

has been performed as to what should
constitute an effective "modeling and
simulation support environment" -- i.e., a
software development environment especially
for modeling and simulation. Nance (1984)
suggests several aspects that should
characterize such an environment, including
extensions to software engineering
environments especially for modeling, program

generators (e.g., DRAFT and CAPS), systen
specification languages, and a modeling
methodology -- such as Nance's Conical

Methodology (see Nance 1984 for references
‘for DRAFT, CAPS, and the Conical
Methodology). Overstreet and Nance (1985)
present a description of a language (called
CsS, for condition specification) for
specifying models at a level between a
conceptual model and an implementation of the
model. The advantages suggested in using
this intermediate-level specification include
improved error detection and analysis, and
automated production of some kinds of
documentation. Balci (1986) presents a full
set of requirements for a model development
environment, based on the Ada program support
environment.

Reese and Sheppard (1983) describe a
prototype "simulation software development
environment”" (SSDE), based on a series of
databases, a language, and supporting tools,
which automates some aspects of phase-to-
phase transitions in the model life cycle.
Joyce, Birtwistle and Wyvill (1984) describe
"ANDES", a simulation environment with strong
emphasis on animation for model
specification, debugging and validation.
Henriksen (1983b) suggests what the
characteristics of simulation tools of the
future may be. Working from a common
"knowledge base" would be a number of tools
-~ including a model editor, an input
preparation aid, a statistics collection

facility, an experimental design facility,

406

and an output definition facility, along with
program editor, compiler, and runtime
support., The emphasis is on the integration
of these tools with respect to the knowledge
base. Current research progress suggests
that Henriksen's expectations are reasonable,

The current trend toward modeling and
simulation support environments has already
resulted in commercially-available systems;
they do not presently achieve all the
functions mentioned by Henriksen (1983b) and
others, but they are steadily progressing
toward such goals. One such system is TESS,
developed by Pritsker and Associates for use
with SLAM II (Pritsker 1984). Standridge
(1985) gives an overview of TESS; the support
capabilities of TESS include (1) graphically
building SLAM networks, (2) forms entry of.
control and data, (3) database management of
user-defined model parameters, inputs, and
simulation-generated data, (4) preparation of
reports and graphs, (5) analysis of
simulation results and (6) the animation of
simulation runs. An agreement was recently
announced between Pritsker and Asociates and
Wolverine Software Corporation, whereby TESS
will be made available to users of GPSS/H
(Henriksen 1983a). Systems Modeling
Corporation has developed around SIMAN

Language Assessment Criteria for Discrete Simulation

(Pegden 1984) a set of integrated tools which
provide for graphical building of models,
data collection during simulation runs,
graphical preparation of simulation results,
and simulation of concurrent animation.

Modeling and simulation support
environments will no doubt be an
increasingly-important criterion by which
simulation languages are measured. Expert
systems hold promise in easing the
development of simulation models and
interpretation of simulation results.
Shannon, Mayer and Adelsberger (1985) provide
a summary of the likely potential of expert
systems with regard to simulation.

4. SUGGESTIONS FOR APPLYING THE CRITERIA

If we are considering various languages
for use in a simulation study, we may assess
their features against the lists of criteria
in Figures 1 and 2. An important general
criterion for programming languages is
naturalness for a given application. Since
our emphasis here is primarily on simulation
studies, it follows that a language that
measures up poorly against the simulation-
specific criteria of Figure 1, will not be
especially "natural” for this application; on
the other hand, a language which exhibits
most of the simulation-specific criteria, may
rate poorly overall if some of the general
criteria (of Figure 2) are not met.

A suggestion for use of the criteria in
comparative language assessment is to create
a table with the criteria of figures 1 and 2
placed vertically at the left side of the
table, and with languages to be assessed
constituting the "horizontal axis".
Suggested descriptive words for use in
assessments are: none, poor, fair, good, very
good, and excellent. In the case of tinme
management features, availability may be
indicated by use of yes or no.

There is no best language, in any
absoclute sense. Thus in most instances one
should not simply assign equal weights to all
criteria, rate a set of languages, "add
columns", and pick the language with the
"high score". Each project has its own
priorities and resource limitations (e.g.,
human skills, time, money), and thus each
language selection activity gives rise to a
set of "weighting factors" for each of the
criteria of figures 1 and 2, determined
specifically for the project. For example,

availability of an effective modeling and

simulation support environment likely
deserves considerably more emphasis than
computer runtime in most projects; yet in a
few situations runtime may be a very critical
criterion. And, as another example, lack of
the combined discrete/continuous time
management feature may be of no consegquence
whatever in some projects. Of course one may
choose not to use numerical weights, per se.
But in any case, the relative importance of
the criteria should be carefully considered
in assessing the comparative advantages of
languages.

The reader who wishes to pursue further
the ideas discussed here, may find a good
discussion of desirable general language
features in Horowitz (1984) and Pratt (1984).
Shannon (1975), Banks and Carson (1984), Shub
(1980), and Law and Kelton (1982) give good
discussions of simulation-specific language
features. The subject of language support to
the software development process is treated
at length by Weiner and Sincovec (1984) and
by Ghezzi and Jazayeri (1982). Nance (1984)
provides a good introduction to some of the
issues underlying model development
environments, along with a brief historical
summary and a status summary. The
implications of discrete event language
strategy for model development and execution
is considered in Hooper (1986).

REFERENCES

Balci, O. (1986). Requirements for Model
Development Environments. Computers and
Operations Research 13, 53-67.

.Banks, J., and Carson, J.S.,II (1984).
Discrete-Event System Simulation. Prentice~
Hall, Englewood Cliffs, New Jersey.

Bryant, R.M. (1980). SIMPAS: A Simulation
Language Based on Pascal. In: Proceedings of
the 1980 Winter Simulation Conference (T.I.
Oren, C.M. Shub, P.F. Roth, eds.), IEEE, New
York, 25-40.

Bryant, R., and Unger, B.W. (1984).
Simulation in Strongly Typed Languages: Ada,
Simula Society for Computer

Simulation, San Diego, California.

Dahl, 0.J., and Nygaard, K. (1966), SIMULA--
An ALGOL-Based Simulation Language.
Communications of the ACM 9, 671-678.

Defense Advanced Research Projects Agency

Department of Defense, Washington, D.C.

Ghezzi, C., and Jazayeri, M. (1982).
Programming Language Concepts. Wiley, New
York.

Henriksen, J.0.
GPSS. In: Proceedin

Computer Simulation Conference. Society for
Computer Simulation, San Diego, California,
:918-933.

(1983a). State-of-the-Art

Henriksen, J.0. (1983b). The Integrated
Simulation Environment (Simulation Software
of the 1990's). Operations Research 31, 1053-
1073.

Hooper, J.W. (1986). Strategy-Related
Characteristics of Discrete-Event Languages
and Models. Simulation 46, 153-159.

Horowitz, E. Fundamentals of

______ Second Edition.
Computer Science Press, Rockville, Maryland.

Howden, W.E. (1982). Contemporary Software
Development Environments. Communications of
the ACM 25, 318-329.

407

J. W, Hooper

Joyce, J., Birtwistle, G., and Wyvill, B.
(1984). In: Proceedings of the 1984 UKSC
Conference on Computer Simulation (D.J.

Murray-Smith, ed.). Butterworths, Boston.
Kiviat, P.J. (1971). Simulation‘Languages.
In: Computer Simulation Experiments with
Models of Economic Systems (T.H. Naylor,
ed.). Wiley, New York, 406-4809.

Kiviat, P.J., Villanueva, R., and Markowitz,

H.M. (1973). Simscript II.5 Programming
Language, Second Edition. C.A.C.I,, Los
Angeles, California.

Law, A.M., and Kelton, W.D. (1982).
Simulation Modeling and Analysis. McGraw-
Hill, New York.

Nance, R.E. (1971). On Time Flow Mechanisms

Nance, R.E. (1981). The Time and State
Relationships in Simulation Modeling.
Communications of the ACM 24, 173-179.

Nance, R.E. (1984). Model Development
Revisited. In: Proceedings of the 1984 Winter
Simulation Conference (S. Sheppard, U. Pooch,
D. Pegden, eds.). IEEE, New York, 75-80.

Overstreet, C.M., and Nance, R.E. (1985). A
Specification Language to Assist in Analysis
of Discrete Event Simulation Models.
Communications of the ACM 28, 190-201,

Pegden, C.D. (1984). Introduction to SIMAN.
Systems Modeling Corporation, State College,
Pennsylvania.

Pratt, T.W. (1984). Programming Languages,
Second Edition. Prentice-~Hall, Englewood
Cliffs, New Jersey.

Pritsker, A.A.B. (1974). The GASP IV
Simulation Language. Wiley, New York.

Pritsker, A.A.B. (1984). Introduction to
Simulation and SLAM II, Second Editon.
Halsted Press, New York.

Reese, R., and Sheppard, S. (1983). A
Software Development Environment for
Simulation Programming. In: Proceedings of
the 1983 Winter Simulation Conference (S.
Roberts, J. Banks, B. Schmeiser, eds.). IEEE,
New York, 419-426.

Systems Simulation: The
Englewood

Shannon, R.E. (1975).
Art and Science. Prentice-Hall,
Cliffs, New Jersevy.

Shannon, R.E., Mayer, R., and Adelsberger,
H.H. (1985). Expert Systems and Simulation.
Simulation 44, 275-284.

Shub, C.M. (1980). Discrete Event Simulation

Languages. In: Proceedings of the 1980 Winter
Simulation Conference (T.I. Oren, C.M. Shub,
P.F., Roth, eds.),Volume 2. IEEE, New York,
107-124.

408

software engineering,

Sommerville, I. (1985). Software Engineering,
Second Edition. Addison-Wesley, Reading,
Massachusetts.

Standridge, C.R. (1985). Performing
Simulation Projects with The Extended

Simulation System (TESS). Simulation 45, 283~
291.

Wiener, R., and Sincovec, R. (1984). Software
Engineering with Modula-2 and Ada. Wiley, New

York.

AUTHOR'S BIOGRAPHY

JAMES W. HOOPER 1is an associate
professor of computer science at the
University of Alabama in Huntsville (UAH).
He teaches and conducts research in the areas
of programming languages and compilers,
systems prototyping and
discrete simulation. He is currently
conducting sponsored research in prototyping
and simulation approaches for distributed
systems, for the U.S. Army Strategic Defense
Command. Prior to joining UAH in 1980, he
was employed by NASA Marshall Space Flight
Center, where he conducted research in
simulation approaches for data management.
He has a B.S. in mathematics from the
University of North Alabama, M.S. in
mathematics from Auburn University, M.S. in
Computer Science from the University of
Missouri at Rolla, and Ph.D. in Computer and
Information Sciences from the University of
Alabama at Birmingham. He is a menmber of
SCS, ACM, and the IEEE Computer Society.

James W. Hooper

Computer Science Department

The University of Alabama in Huntsville
Huntsville, Alabama 35899

(205) 895-6515

