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ABSTRACT:

It is argued that Bayesian methodology is an
appropriate tool in certain simulation contexts.
Computational problems, specific to simulation
applications, are then described in some detail;
possible remedies are also outlined.

1. INTRODUCTION

In this paper, we hope to show that Bayesian
statistical methodoloyy has an important role to play
in the theory and practice of stochastic simulation.
In particular, we will argyue that Bayesian methods are
often appropriate when the practitioner is attemptiny
to quantify uncertainty in the input distributions
that drive the stochastic system under study.

From a statistical viewpoint, the material to be
dicussed here is standard and well known to the
Bayesian community. A primary yoal is to compute an
appropriate posterior distribution (or, at least, its
mean) for some quantity of interest. The difficulty
is that because of the model complexity that is
typical of stochastic simulation, the required
calculations tend to be highly non-trivial, in terms
of computational complexity. We intend to discuss
computational remedies elsewhere; our focus here is on
describing the relevant problems.

2. SIMULATION: TWO0 DIFFERENT APPLICATIONS
Before proceediny, it is useful to briefly discuss

the nature of simulation, OQur view is that:

Monte Carlo simulation is a nuwerical tool
for studying complex stochastic systems.

More precisely, let us suppose that the stochastic
system is represented by a probability triple

(0,% P) . Let X:o-> RY be a (F-measurable) random
vectgr such that EX exists. For a yiven map

g: R® -> R, the goal of ionte Carlo simulation is to
estimate

(2.1) o = g(EX).

Monte Carlo methods are algorithms that
numerically estimateo¢ by drawinyg observations from
one, or possibly more, independent copies of (0, F P);
the estimate is then formed by appropriately combining
observations.
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(2.2) EXAMPLE.
Suppose that one is studying the i1/M/1/e0 queue
with the arrival rate A= 5 and the service rate
M= 10. (See p. 202 of ROSS (1980) for a
description of the model.) Here,®is the space of
right continous real-valued functions with left limits

-D[0,00) (see ETHIER and KURTZ (1986)),%Fis the

associated Borelvo-field, and P is the probability on
{(€,F) under which the co-ordinate process Y is the
M/M/1/ce queue described above. If one is interested
in the number of -customers in the system at time

t = 15, then X = Y(15) and g{x) = x. The standard
Monte Carlo algorithm involves generating independent
copies of (,F, P) and averaging the corresponding
¥;(15)'s to obtain the estimator.

If, on the other hand, one is interested in the
steady-state variance, then one need only yenerate one
observation of (2,% P), set g(xq,%,) = x; - x22, and

Tet
t 2 t \
X =( f y 2s)ds, lim _1 f Y(s)ds)
0 T t 0

The main point to be emphasized here is that Monte
Carlo simulation is a computational method for solving
a certain class of problems. It follows that
simulation is, in itself, not a statistical
discipline; rather, it is most properly viewed as a
sub-area of numerical analysis. From this point of
view, it is misleading to reyard simulation as a
special type of "controlled statistical experiment".

lim 1
toe T

Given that we very strongly support viewiny Monte
Carlo simulation as a part of numerical analysis, it
is perhaps surprising to see us arguing for the
application of Bayesian methods (which are inherently
statistical in nature)., There is a consistency here,
however. In particular, Bayesian methods are
reasonable within the applications environment
associated with Monte Carlo simulation. In short:

The Bayesian statistical framework does not
apply to Monte Carlo simulation itself,
Rather, it applies to a certain applications
environment associated with Monte Carlo
simulation.

To describe the connection in more detail, it is
necessary to discuss the two main applications
settings for Monte Carlo simulation.

APPLICATION 1: SOLVING A MATHEMATICAL PROBLEM

In Example 2.2, Monte Carlo simulation was
suggested as a technique for solviny certain

.mathematical problems associated with a specific

mathematical model (as specified by (% P)). The
important point here is.that the applications setting
completely determines the probability triple
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(2,%, P). This approach to specification is typical
of Monte Carlo simulation applications in:

i) mathematics: Given a specific mathematical
model (such as the Schiugle model
(GRASSBERGER et al (1979)) with fixed
parameters), simulate in order to solve for
analytically intractable quantities.

ii) physics: Given a specific physical model (as
gescr15ed, for example, by Schrodinger's
equation, with specified initial conditions,
use Monte Carlo simulation to solve.

iii) statistics: Use Monte Carlo simulation to

calculate analytically intractable sampling
distributions (e.g. Monte Carlo studies of
power of statistical tests.)
APPLICATION 2: A DECISION SUPPORT TOOL
In most Industrial Enyineeriny/Operations Research
applications of Monte Carlo simulation, the simulation
is used to assist in decision-making of some kind.
For example, simulation is frequently used to test the
desiyn of a proposed system, in order to decide
whether or not to proceed with development.

In such a context, the applications setting does
not, in general, uniquely determine the probability
triple (&% P). The practitioner, using his or her
applications background, formulates a model that is
driven by certain input distributions and
parameters. As a consequence, the model formulation
takes the form (a,F P(F)), where F = (F;, «.., F,
Py> +++» Pp) is a vector of input distributions F? and
probability p;. Hence, the applications settiny 1eads
to a family of models (0,F% P(F)) indexed by F.

(2.3) EXAMPLE.

Consider the GI/G/1/co queue (see HEYMAN and SOBEL
(1982)) in which inter-arrivals have common
distribution F1 and service times have common
distribution F,, One can view the GI/u/l/eo queue as a
family of mode?s indexed by F = (Fl’ Fz).

(2.4) EXAMPLE,

A generalized semi-Markov process (GSMP) is a
mathematical formalization of a discrete-event
stochastic system (see GLYNN (1983)). Such systems
are characterized by certain distributions
Fis »++> F, which govern the way clocks are re-set,
and routing probabilities p;, ..., p,., which determine
"physical state" transitions within %he simulation,
Thus, a GSHMP can be viewed as a model indexed by F =
(Fis eoes Fps Pps wees Py)e

To assess the performance of the stochastic system
under considerations, it is common to use a real-
valued functional of the form (2.1). Since the
expectation depends on P = P(F), it is clear that the
quantity & can be viewed as a function of F:

% = o (F)

Statistical methods become relevant in trying to
characterize the uncertainty in performance o of a
stochastic system due to Tack of knowledge of the
input variable F. More specifically, when the
practitioner wishes to incorporate prior knowledge of
the "true" value of F into his or her uncertainty
.characterization, Bayesian methods are essential.
summarize:

To

377

. that the Fims are members of parametric families.

Bayesian methods are essential, in order to
incorporate a practitioner's prior on the
input distributions driving the simulation.

In other words, we are not suggesting that a
Bayesian philosophy is appropriate to Monte Carlo
simulation itself; it is, however, an important tool
in the decision context that is typical of Industrial
Engineeriny applications of Monte Carlo simulation.

3. A BAYESIAN FRAMEWORK FOR DISCRETE~EVENT SIMULATION
As indicated in Section 2, a Bayesian framework
makes sense in a stochastic simulation environment.

We now wish to describe the framework in more detail.

To accomplish this goal, we shall specialize our
discussion to stochastic simulations of discrete-event
type. Such simulations can be characterized as GSHMP's
(see Example 2.4). In this case, the simulation'is
characterized by:

i) clock-setting distributions
Fls «ees Fy
ii) routiny probabilities pis «.es Py
iii) an initial distribution ae for starting the

simulation

In most design problems of interest, one can
assume that the initial distribution s 1is determined
by modeling constraints, and is not dependent on
external "real-world" data. For example, if the
decision problem involves studying steady-state
behavior of a GSMP, any initial distribution can
yenerally be used to initiate the simulation, so
that # can be chosen to be independent of "real-world"
data., If a can be iynored in this way, then the
system under study can be viewed as a class of GSMP's
parameterized by Fl’ vens ﬁ“, Pys sees Ppe

In order to specify a prior on the index set F =
(Fis aves F Ps sees pn), it is convenient to assume
In
particular, suppose that Fj = Fi(li) where ¥; is an
appropriate set of parameters for the family Fi(')°
This reduces the dimensionality of the index set from
infinite dimensional to finite dimensional.

Specifically, the system can now be viewed as a class
of GSMP's indexed by 8 = (xl, cees Ty p%, cees Pl &
RP (B=n+dy, +... +d, where ¥j e R ‘

u).

The performance of the system is measured by some
real-valued functional of the form (2.1). Since the
probability measure driviny the stochastic system
depends on 8, it follows that EX is representable as
some function of 8, call it u(8). Thus , & = (8) when

«(8) = g( 4 (8))

It seems worth mentioning that the function g is
necessary, in order to incorporate applications in
which the performance functional involves central
moments and/or ratios of expectations (as in the
regenerative method; see IGLEHART (1978)).
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Suppose that the practitioner has a prior
¥ (do) on the parameter 6. This induces a prior
n (dt) on the performance functional & :

1 dat)

. de
-&9: g(p(8))e dotJ—Y( )

If "real-world" data for 8 is available (ie.
observations for the Filei)'s, P;'s), then the prior
can be combined with the Aata to yield a

posterior P (d8) on 8, This then leads to a
posterior on the performance functional e :
(3.1) T (det )z

o (d8)
{6: gl m(8)) s doLJ-

The posterior % can be used to compute the
posterior mean ofe ; this is a Bayesian point
estimate for the performance of the system. A further
calculation leads to credible sets for o& (see BERGER
(1985)); this can be viewed as a Bayesian confidence
interval forov . Basically, the posterior ¥
summarizes the statistical information relative to the
system performance &« . In the next section, we turn
to describing research problems associated with the
computation of ¥ .,

4. RESEARCH PROBLEMS

As indicated in Section 3, the basic problem is:

(4.1) Given:

1) a GSMP indexed by (Fl(xl)’ eses
Fo Bn)s Pps eves py)
2) aprior on 8 = (B «ees ¥ s Prs wees Py)

3) ‘"real-world" data on the Fjl¢;)'s, pi's

Compute:

1) a posterior on X =& (8)
2) the posterior mean

3) a credible set

In many settings, it is reasonable to expect that
the posterior\¢(de) on 8 can be computed using
standard Bayesian methods., For example, if the prior
@ chosen from an appropriate conjugate family, then
the posterior\¢ can usually be analytically
calculated.

Consequently, the difficulty is computing (3.1) is
performiny the appropriate integration. Some comments
on integration problems in the classical Bayesian
context can be found on payes 262-267 of BERGER
(1985). The integration problem posed here is just a
more complicated variant of the classical problem.

A first cut at solving this integration
numerically starts by discretizing the posterior'y by
a point mass distribution ie. ¥ assigns mass p; to
point 8,, 1 ¢ k4¢€ . For each B s one then simulates
the GSME, and estimates M {8y) by (8 ). The: _
posterior ¥ is then approximated by the measure =
which assigns mass p, to point g{ A(8,)), 1 ¢ ket |
This solution strategy combines classical numerical
integration (ie. the discretization step) with Monte
Carlo simulation (calculating ;2(ek)). 0f course,
another alternative would be to sample the
posterior W , obtaining random deviates 6;,..., BE,
and approximate Y by the empirical distribution z

which assiyns mass 1/ to y (4(8)), 1 ¢ keP. In
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general, however, strategies involving appropriately
modified classical numerical integration schemes are
to be preferred to pure Monte Carlo algorithms, due to
their improved variance properties.

Note that the computational -effort required to
compute a posterior on ¥ is, roughly speakiny, &
times the effort required to do an ordinary Monte
Carlo simulation of the system. Thus, it is
imperative to consider methods that would improve the
efficiency of the numerical algorithm described

above, Among the possible ideas to be investigated
are:
i) methods for congtructing a good
approximation ¥
ii) how to optimally split simulation effort
amony Ji(61)s eees
iii) using @pti%hetic r.gc's to induce correlation
amony i (61), cees i (
iv) using derivative information on \¢ to develop
improved approximations of % .
Some of these ideas are explored in GLYNH
(1986). We also wish to point out that the

ca]cu]atiqg of a credible set from the approximating
posterior ¥ is non-trivial; this is an important topic
deserving further attention.

In some applications settings, (4.1) is not a
natural formulation of the Bayesian problem. In
particular, the practioner may have significantly
yreater intuition about the distribution ofel than
that of 8. For example, in a manufacturing setting,
the engineer may well know more about the assembly
Tine production rate than the parameters associated
with individual machine down-times. Further research
is required on this important topic.
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