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ABSTRACT

This the ranking and

selection problem of choosing that one of k normal

tutorial concerns
populations (with common known variance) which has
the
procedures which guarantee a specified probability

largest mean. ¥e discuss a number of

of selecting the correct population. Ye
concentrate on so~called indifference-zone
procedures.
1. INTRODUCTION

Ranking and selection procedures are a

collection of methods which enable an experimenter
to answer such statistical questions as:

o Which of k normal populations has the

largest mean?

o Which of k Bernoulli populations has. the
largest ""success'' probability?

o Which is
multinomial distribution?

the most probable cell of a

The purpose of this tutorial is to introduce
the reader to basic ranking and selection notation
¥e concentrate on the problem of
(with

common known variance) which has the largest mean.

and techniques.
choosing that one of k normal populations

This problem serves as a springboard to the other

questions mentioned previously. For more

comprehensive treatments on ranking and selection,
see Gibbons, Olkin, and Sobel (1977) and Gupta and
Panchapakesan (1979).
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The
follows.

of this
we discuss the so-called

organization paper is as
In Section 2,
approach in and

indifference-zone ranking

selection. Section 3 introduces and compares a
the

An overview is

number of procedures for finding normal
population with the largest mean.

given in Section 4.

2. THE INDIFFERENCE-ZONE APPROACH

Suppose "1”"’"k are k normal populations

such that Tri has mean Ry and common known variance

crz, i=1,...,k. V¥e wish to ascertain which of
the k TTi’s has the largest mean; we shall
hereinafter refer to that ni as the 'best"

population. Let l‘l[i] < p[z] < e £ “[-k] denote
the ordered but unknown ui’s. ¥e do not know the
values of the p[i]'s nor do we know how they are
paired with the Tli’s. So the goal of finding the
best Tri can be restated as that of finding the
population corresponding to u[k].

A typical procedure for choosing the best

population wusually requires the experimenter to

take a certain number of observations in a
prescribed way from each ni; the selection is then
made using statistics calculated from +these
observations. Since the observations are

realizations of random variables, it is possible
that the experimenter will not choose the best
"i' However, if the best population is indeed
chosen, we say that the experimenter has made a

correct selection (CS).

In order to implement the procedures which
will be this the
experimenter must supply two constants, &* and P*,

discussed in tutorial,



Tutorial on Ranking and Selection Procedures

8% > 0 is
specified with the following thought in mind: If

prior to the start of experimentation.

p[k] - u[k—l] is very small, it stands to reason
that an experimenter would regard the populations
corresponding to p[k] and u[k—l] as practically the

same. So &* is chosen as the smallest value of
u[k] - "[k—l] that the experimenter views as
"worth detecting.” In other words, if

u[k] - u[k—i] were to be > &%, the experimenter
would prefer to choose the Tri associated with
“[k]; if ”[k]_”[k—i] were to be < &%, the
experimenter would be indifferent about choosing
either the population corresponding to p[k] or that

Hik-1]° o =
- *2 § -
K] ~ Me-1] > 8*% is called the preference-zone,

corresponding to Hence,

and its complement is the indifference-zone.

The procedures we will examine in the next
the
introduced by Bechhofer

section guarantee indifference-zone
probability requirement

(1954):
P{CSi > P* whenever { € Qg (PR)

we can force P§CS} = 1/k simply by
To

Of course,
choosing as best one of the k TTi's at random.
avoid this triviality, we require 1/k < P* < 1.

3.. INDIFFERENCE-ZONE_PROCEDURES

In this
indifference-zone [i.e., procedures
which satisfy (PR)] for finding that one of k
normal populations with common

section, we discuss a number of

procedures
known variance
which has the largest mean.

3.1 A Single—Stage Procedure

If the size of the sample to be taken from
each TTi is a constant determined prior to the
that the
¥e first
examine a single-stage procedure due to Bechhofer
(1954) .

start of experimentation, we say

procedure is a single-stage procedure.

Procedure PB:

1. Specify §k,o%,5%,P*1,
1/k < P* < 1.

with &* >0 and
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2. Calculate np « I (ck,P*G/é*)2+ 1|, where
Cy px is a tabled constant [see, e.g.,

»
Bechhofer (1954)], and | -|| is the greatest

integer ("'floor") function.

3. Take ng independent observations from each
of the k populations.

4. Let xij denote the jth observation from lTi,
i=1,...,k and

the k sample means:

j=1,...,n5. Calculate

- np
X; ¢ Zj=1 Xij/n , i=1,...,k.

5. Select as best that
corresponding to the largest -ii’

population

As a simple example,
P* = 0.75, 8* = 0.2.
Bechhofer  (1954), we
Further suppose that 02
52.

from each of the three populations.

suppose that k = 3,
and From the tables in
03’0.75 = 1,.4338.
= 1. Then ng = |52.39] =

So we must take 52 independent observations

have

3.2 An Open Sequential Procedure

If a
procedure, we shall say that it is multi-stage (or

procedure is not a single-stage

sequential). A sequential procedure is open if,
prior to the start of sampling, the experimenter
can not place an upper bound on the number of
observations to be taken from each population.
The
next procedure is an open sequential procedure

from Bechhofer, Kiefer, and Sobel (1968).

Otherwise, a sequential procedure is closed.

Procedure PBKS:

$k,0%,5%,p*3,
1/k < P* < 1.

1. Specify with &% > 0 and

2. Set the stage counter n « 0.

3. Set nen+ 1.
from each TTi, i=1,...,k.

Take one observation xin

4, For all i, calculate
n
Yin € Lja %y -

Further, let Ymax « maxlsiskyin'
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5. Calculate
Z_ & Zk exp{ -&*(Y - Y )/02}
n i=1 max = in -

6. If Zn < 1/P*, stop sampling, and select as
best that TTi
Otherwise, go to Step 3.

corresponding to Ymax’

Let NBKS denote the random number of stages
required for procedure PBKS to terminate (i.e.,
the value of the stage counter n at procedure

the distribution of NBKS

configuration of the

termination). Clearly,

depends on the underlying
population means Hyseooslly- Two configurations

are of special interest:

If “[1] = ”[k—i] = “[k] —- &%, we say that g
is in the least favorable configuration
(LFC). The LFC is a
configuration for pi’s in the preference—

"worst case"

zone.

If u[i] = p[k], we say that y is in the equal
The  EMC is a
configuration over the entire

means. configuration (EMC).
"worst case'
space of U's.

Denote the expected number of
Procedure Poks when g is in the LFC (EMC) by

stages for

E[NBKS| p=LFC] (E[NBKSI p=EMC]). It can be shomn
that the LFC maximizes E[NBKS] over all
configurations in the preference-zone. That is,

E[NBKSIBE%"‘] < E[NBKS|5=LFC]. Consideration of
the EMC is also important since E[NBKSm] <
E[NBKS| p=ENC] for all g. If (unknown to the
experimenter) g is in the EMNC, procedure PBKS
might be costly to run until natural

termination.

quite

Continuing our simple example, again suppose
that k=3, o°=1, P*=0.75, and & = 0.2.
Bechhofer and Goldsman (1986) show that, for this
example, Procedure Pyxs P§CS|p=LFC} =

0.777, E[Npyo|g=LFC] # 38.89, and E[Np,  |p=EMC] =

yields

47.98. Thus, for this example, these expected
values are smaller than the 52 observations
required by the single-stage Procedure PB' (The

number of observations required by PB is

determined before the start of experimentation,

and is independent. of i once sampling commences.)
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is the fact

An unappealing feature of PBKS

that it is open. Bechhofer and Goldsman (1986)
note that Pp. always yields P§CS|p=LFC} which is

(In the previous
example, P§CS|u=LFC? # 0.777 > 0.75 = P*.) They
study a closed version of PBKS which uses sampling

larger than the desired P*.

truncation, that is, the automatic termination “of

sampling after a certain predetermined number of

stages have been conducted. Compared to PBKS’
truncation results in less probability
"overprotection”, as well as slightly smaller
expected numbers of stages.
3.3 A Closed Sequential Elimination Procedure

¥e next discuss an interesting class of

sequential procedures due to Paulson (1964). As

sequential sampling proceeds, populations which
appear to be inferior are permanently eliminated

from further consideration.
Procedure Pp:

1. Specify §k,oz,6*,P*§ with
1/k < P* <1, and 0 <\ < 4%86*.
suggests taking X = &*/4; indeed, empirical

show that

such a choice often results in considerable

8* > 0,
[Paulson

calculations in Ramberg (1966)

savings of observations over other values
of A However, it can be shown
analytically that as P* approaches 1, the
choice A = X%8* is, in a certain sense,
optimal.]

2. Calculate the quantities

o4 k-1
2 ¢ T (o)
and
LA EWZY 8

3. Initialize the stage counter n « 0 and the

set of contending (non-eliminated)

populations Iy« $1,2,...,k3.

4. Setn « n + 1,
from each T; such that i € I

Take one observation Xin‘
10
5. For all i € In—l’ calculate

n
Yin © Ljag Xy5e

+ max.

Further, let Ymax ie1

n-1 '°
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6. Determine the new set of contending
populations:

I el Y -Y <a -m}.

7. If the cardinality ]In| =1 or if
n= V!X + 1, then terminate sampling, and
select as best that TTi corrsponding to

Y oax- Otherwise (|In| >1 and n g W)‘), go

to Step 4.

Let NP denote the random number of stages
required for procedure PP to terminate sampling.
¥e ran a Monte Carlo experiment for our simple
example with k=8, o = 1, P* = 0.75, &* = 0.2,
and X = X%8*. The experiment revealed that
PiCS|p=LFC} =2 0.89, E[NPILL‘:LFC] Z 79.60, and
E[NP|g=EHC] % 100.57. The tremendous probability
overshoot (P3CS|u=LFC} >> P*) is purchased at the
expense of the expected values, both of which are
much greater than the corresponding values from
Procedures P]3 and PBKS' However, as alluded to
previously, PP performs more parsimoniously (for
this example) when » = 8*/4. Also, it turns out
that the performance of PP improves when P* is
closer to unity. Further, improvements in the
Paulson procedure due to Fabian (1974) and Hartmann
(19868) greatly reduce the expected values to

competitive levels.

An advantage of an elimination-type procedure
such as PP is the fact that once a population is
eliminated, no additional observations are ever
taken from that ITi‘ Thus, whereas Procedures PB
and PBKS require knB and kNBKS total observations,
respectively (i.e., k observations per stage),

Procedure PP requires Iess than kN total

P
ohservations.

3.4 A Two—Stage Elimination Procedure

It can sometimes be costly (in terms of time
and money) to take observations sequentially.
Rather, the experimenter might prefer to conduct
the entire selection procedure in one or two
stages, both of which take a predetermined number
of observations from each population. Tamhane and
Bechhofer (1977,1979) give a class of two-stage
procedures for finding the best population. V¥e
will concentrate here on the two-stage procedure
which they denote as Pa(Cl); for simplicity, we
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shall call this Procedure P,,. Procedure P, is

TB TB

an elimination procedure since, after the first

stage,

P’I'B eliminates from further consideration

populations which seem to be inferior.

Procedure PTB:

1.

Specify  §k,0°,5%,P*} with &% >0 and
1/k < P* < 1.

Find constants C4s Cps and d, tabled in
Tamhane and Bechhofer (1879), pp. 348-349.

Calculate the constants
n, « | (c,0/M% + 1)
1 1 ’

ny « [[(c,0/6% + 1|, and

h + dé."‘/c1 .

n, (nz) is the sample size to be taken from
each (contending) population in the first
(second) stage of experimentation. h is a
constant which will be wused in the

elimination process.

First stage of sampling: Take n,
independent observations from each of the k

m.'s.
i
Calculate the k first stage sample means:

%1

)«an X../n i=1 k
i j=1 "ij’ 1? premem

3D

(1)
Further, let Xmax « maxlgisk i

Determine which populations will enter the
second stage of sampling:
O INE-(¢ b
Ie{i]X;~ 2% -7 -h}.
Second stage of sampling: If |I]| = 1, stop
sampling and select as best the single

contending ITi . Otherwise, take

n
2
additional observations from all ﬂi's such

that i € I.

Calculate
- n1+n2
X+ Zj=1 X;5/(ying), 1 €L

Further, let xmax - maxiEIXi.
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9. Select as best that TTi corresponding to

xmax’
Continuing our example, let k = 3, 02 =1,
P* = 0.75, and 3* = 0.2. Referring to the Tamhane
and Bechhofer tables, we find that ¢, = 0.9986,

1

cp = 0.9485, and d = 3.989. Simple calculations
give n, = 25 and n, = R3. So the maximum possible
number of observations taken from a given

population is 48.

Procedure PTB possesses a number of appealing

properties: Let TTB denote the (random) total
number of observations required by PTB' It can be
shown that P, is wuniformly better than the

TB

single-stage Procedure PB; TTB is always less than
knBy. Procedure PTB is (approximately) minimax in

the sense that supHE[TTBIH] is (approximately)

minimized subject to (PR), n, and n, nonnegative
integers, and h > 0.

4. OVERVIEW AND EXTENSIONS

The procedures outlined in Section 3 serve to
give the reader the flavor of various simple
indifference-zone procedures.
the

research.

Comparison among
above procedures is the subject of current
We also point out that the LFC and EMC
are not the only configurations of interest. In a
real-life application, the experimenter might very

well be conservative in his choice of &*; that is,

he may actually expect ‘F[k] - "[k—l] > &*.
Therefore, another interesting research topic
concerns the extent to which such a 'favorable"

configuration of pi’s improves selection procedure

performance.

Ranking and selection techniques exist to
find the Dbest
information about the variances is available. For
that the k
populations have common (but unknown) variance.
or, might
completely

normal population when less

instance, we might only assume

that the variancés
further,
might be interested in selecting that component of
which has the

we assume are

unknown. Generalizing we

a k-variate normal population

largest mean.
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As mentioned previously, ranking and
selection methods extend beyond normal
populations. For instance, it might be desired to

select the best of a number of drug treatments in
such a selection amounts to
population with the
Perhaps the
experimenter is interested in choosing the most
variety of
possible to interpret this problem as that

a clinical trial;
that

'success'

choosing Bernoulli

largest parameter.
popular a certain product; it is
of

determining the most probable multinomial cell.

The is not the
only methodology available to practitioners. A
class of

[introduced by

indifference-zone approach

selection
(1956) ] is

large so-called subset

procedures Gupta

available.

Also of
ranking and selection procedures can directly be
the
This is a bit surprising since most

interest is the fact that many

extended for wuse in computer simulation
environment.

procedures require
distributed

a situation

ranking and selection

independent and identically
observations within each population -
which

Goldsman (1983,1985) for relevant surveys.

is rarely present in simulations. See

ACKNOWLEDGMENT

The author thanks Prof. Robert E. Bechhofer for

his encouragement.

REFERENCES

Bechhofer, R.E. (1954).
for Ranking Means of Normal
Math.

"A Single-Sample Multiple
Decision Procedure
Populations with Known Variances.'” Ann.

Stat., 5, 16-39.

Bechhofer, R.E. and D. Goldsman (1986). Technical
Report (in preparation), School of OR&IE, Cornell

Univ., Ithaca, NY.

Bechhofer, R.E., J. Kiefer, and M. Sobel (1968).
Sequential Identification and Ranking Procedures.
The Univ. of Chicago Press, Chicago.



Tutorial on Ranking and Selection Procedures

Fabian, V. (1974). '"Note on Anderson’s Sequential
Procedures with Triangular Boundary." Annals of
Statistics, 2, 170-175.

Gibbons, J.D., I. Olkin, and M. Sobel (1977).
Selecting and Ordering Populations. John V¥iley,
New York.

Goldsman, D. (1983). "Ranking and Selection in
Simulation." Proceedings of the 1983 Winter
Simulation Conference, 386-393.

Goldsman, D. (1985).
Procedures Using Standardized Time Series.”
Proceedings of the 1985 VWinter Simulation
Conference, 120-124.

"Ranking and Selection

Gupta, S.8. (1956). On a Decision Rule for a
Problem in Ranking Means. Ph.D. Dissertation
(Mimeo Ser. No. 150). Inst. of Statist., Univ. of
N. Carolina_,\ Chapel Hill.

Gupta, S$.8. and S. Panchapakesan (1979). Multiple
Decision Procedures. John Yiley, New York.

Hartmann, M. (1986). 'An Improvement on Paulson's
Sequential Procedure for Selecting the Largest
Normal Mean.' Technical Report, School of OR&IE,
Cornell Univ., Ithaca, NY.

Paulson, E. (1964). "A Sequential Procedure for
Selecting the Population with the Largest Mean
from k Normal Populations." Ann. Math. Stat., 35,
174~180.

Ramberg, J.S. (1966).
Performance Characteristics of Two Sequential

A Comparison of the

Procedures for Ranking Means of Normal
Populations. Master’'s Thesis, School of OR&IE,
Cornell Univ., Ithaca, NY.

Tamhane, A.C. and R.E. Bechhofer (1977). '"A Two-
Stage Minimax Procedure with Screening for
Selecting the Largest Normal Mean.” Comm. Stat. -
Theor. Meth., A€, 1003-1033.

Tamhane, A.C. and R.E. Bechhofer (1979). "A Two-
Stage Minimax Procedure with Screening for
Selecting the Largest Normal Mean (II): An
Improved PCS Lower Bound and Associated Tables."
Comm. Stat. — Theor. Meth., A8, 337-358.

AUTHOR'S BIOGRAPHY

DAVE GOLDSMAN is an Assistant Professor of
Industrial and Systems Engineering at Georgia
Tech. He holds degrees from Syracuse and Cornell,
where he spent last summer as a Visiting
Scientist. His research  interests  include
gsimulation output analysis, and ranking and
selection.

Dave Goldsman
School of ISyE
Georgia Tech
Atlanta, GA 30332
(404) 894-2365




