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ABSTRACT

Simulation programs can be quite complex,
sometimes involving a great number of input factors
and parameters. Conventional experiments where each
setting of the input values requires a separate

simulation run can be quite time consuming and
expensive; such experiments will be referred to as
"'run oriented" simulation experiments. An

alternative approach is to allow the input variables
in a simulation to vary according to specific
patterns during a single run. Various output spectra
can then be analyzed to gain information about the
simulation; such experiments will be refered to as
"frequency-domain"  simulation experiments. This
technique was initially developed primarily to aid in
factor screening and to perform a global sensitivity
analysis of the input parameters in a simulation. It
has since ©been developed into a method for
identifying a meta-model for the simulation response
surface.

In this paper an overview of frequency domain
simulation experiments is first presented. A new
technique for including discrete factors in frequency
domain experiments will also be discussed. Recently
frequency domain optimality criteria have been
discovered that can be used to identify local optima
in the simulation response. The focus of this paper
is on these optimality criteria. A brief discussion
of how optimization algorithms might be designed
using frequency domain simulation experiments is
presented. This last topic is the subject of current
research in frequency domain simulation experiments.

1. INTRODUCTION:

In frequency domain simulation experiments,
input variables are changed according to specific
patterns during a run of the program. ‘The patterns
used in such experiments might include sinusoidal
oscillations and rectangular oscillations. The only
requirement is that these patterns of variation form
a complete orthogonal basis for the simulation output
series when it is viewed as a vector in n dimensions

where n is the number of observations collected
during a run. The analogy is drawn between the
simulation program and a 'black Dbox" electrical

system such as an amplifier. This system has an
input port for each input variable. The oscillations
of each input variable are an application of power to
this system.

A key element in the analysis of the output of
such experiments is the assumption that the output
response can be modeled as a polynomial function of

the input variables. Such a function is often
referred to as a meta-model of the simulation
response. See Kleijnen, et.al, 1979 and Kleijnen,
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1980 for discussions of the usefulness of meta—'models
in simulation.

Specifically, if Y represents the simulation
response and xi,xz,...,xp are the inputs, then the
response is given by,

q
E[Y] = Byt E Bt (1)
j=t JJ
where
is the response
ti,...,tq are possible terms in the
polynomial model; they are
prroducts of non-negative
integral powers of
continuous parameters
xl,...,xp.
po,...,ﬁq are real-valued

coefficients.

Initally the experiment specifys a prospective
polynomial response surface model, say, all terms of
order less than some number, k. An experimental
technique for identifying the functional form of the
meta-model in (1) is presented in Schruben and
Cogliano, 1985. That methodology was developed for
continuous input variables only. Extensions to
discrete input variables will be discussed later in
this paper. ¥e next summarize this procedure.

1.1. Meta-Nodel Identification Procedure:
Briefly, frequency domain meta-model
identification experiments are run as follows.

(1) Select a range of interest,

§(x1,--.,xp)lLi $x; <UL,

for each continuous input factor. Here Li
is a lower 1limit and Ui is an upper limit
on the values of factor x5 The larger the

e:;perimental region, the more.power there
will be in detecting input factor effects.
However, just as in dealing with electrical

systems one must take care that the
simulation does not "blow a fuse'. That
is, the values taken on by the input

variables do not put the simulation in an
unstable region for too much of the time.
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Seleet p+1 driving frequencies, o,, i =
1,2,...,p, for each continuous input
variable in the simulation. These
frequencies are between 0 and 1/2 cycles
per output observation. Partial
confounding of indicator frequencies may
occur if driving frequencies are selected
carelessly. Independent spectrum estimates
for different indicator frequencies are
desirable, so indicator frequencies should
be as widely separated as possible in the

interval (0,1/2]. The frequency selection
problem depends on the number of input
factors and the 1list of terms in the
prospective response model. The problem of
selecting driving frequencies can be
formulated as a mixed integer linear program
[Cogliano,  1982]. However, frequency

selection is not critical. Term indicator
frequencies and their aliases should be at
least one bandwidth apart. The selection
of bandwidth is under the control of the
experimenter. If bandwidth is decreased
the same estimator precision can be
obtained by increasing the run length.
Determine the indicator frequencies for
each term in the prospective polynomial
response model. These frequencies are in
the sets given by,

Sl = Eaijai, (aiJ - z)wi"”’_aij“ig’

i=1, ..., q.

for each term involving the aijth power of

the single variable x5 in the prospective

response model given by (1). For terms
involving the interactions of powers of
more than one input variable, the indicator
frequencies are given as the direct sum of
the sets, S for each term in the
interaction. Compute the minimum spacing,
b, Dbetween these frequencies evaluated at
their principle aliases. The value of b
will be the band width necessary for the
spectrum estimators. Some effort should be
made to select driving frequencies that
maximize this band width. The problem of
Maximizing the minimum spacing between term
indicator frequencies is rather difficult.
A method that involves nesting two
univariable integer optimization programs
has been developed [Jacobson and Schruben,
1986]. This method, while heuristic, has
resulted in the optimal selection of
driving frequencies each time it has been
tried and the optimal solution is known.
The problem of selecting driving frequencies
for frequency domain simulation experiments
is a current topic of research underway.

Choose a window size of m and a run
length of n observations such that
m > 4/3b if using the Tukey spectral window

and m > 1.86/b if using the Parzen
sepctral window in step (5) below. Also it
is recommended in [Chatfield, 1975] that

20m>2n 2> 3m . See the book by Chatfield
for an introductory discussion of window
size selection (note that Chatfield revised
his recommendation as to window truncation
point in the second edition of his
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book...the selection of the truncation
point m is an art form; try several
values). I further recommend that n

include at 1least 10 full cycles of the
lowest term indicator frequency.

Run p+1 independently seeded replications
of the simulation program using a Latin
square design to assign input factors to

driving frequencies for each run as
described in Schruben and Cogliano. For
each run the input factors oscillate

according to

x,(t) = 23U, +L.) + 4 (U, - L,) cos 2ru,t
i Vi i 2 Vi i i*®
Compute the sample spectrum

m
I )0 co8 (2ruwk)

(o) =
k=-m k

0 sluls%

for each response series. The xk are the

weightings for a particular spectral
window. The Parzen and the Tukey windows
have both been successfully used for
frequency domain experiments with very
little difference in the results.
Compute the spectrum ratios

1 I oa

w I %)

F(o ) = J
i E} '
= = 5 )
i=1

The spectral estimators with the
superscript, ¢, are for frequencies that
are not changed during a particular run.

The ¢ is for ''control" and this spectrum
estimator measures the ambient noise in the
response at a particular frequency. The
spectral ratios above will have an
approximate F distribution if the term,
tj, has a zero coefficient in the meta—
model. This can be used to compute the
observed significance, denoted as p(ui), of

each term in the meta-model. This
significance level can be computed for
several such ''signal to noise' ratios in
the Latin Square experiment. Finally,
these observed significance levels are
combined into an overall significance level
for each term in the prospective meta-
model. Fisher's method of computing an
overall significance level is used by the
author but other methods might be
considered (see Rosenthal, 1978).

- k
P =-R X log p(s,),
i=1
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This overall significance level, p is wused
to evaluate each term for inclusion in the
prospective simulation response surface
model.

1.2 Frequency Domain Experiments with Discrete

Variables:

Three techniques for dealing with discrete
variables in frequency domain experiments. The most
straightforward technique would be to wuse the
discrete driving functions given by the Walsh basis
to vary the values of these parameters during each
run [Sanchez and Schruben, 1985]. This approach has
the problem that the Walsh spectrum is not invariant
to time 1lags. Since most simulation responses to
changes in input variables are delayed this makes the
direct application of Walsh analysis of little use in
simulation experiments. A second technique would be
to use a conventional run-oriented design for the
discrete factors and embed a frequency domain
experiement involving the continuous factors in each
run of such a design. This approach would not take
advantage of the main benefit of frequency domain
simulation experiments; frequency bands rather than
simulation runs are the experimental units.

A general method for incorporating discrete
valued variables in a frequency domain experiment
that takes full advantage of the frequency domain
approach is to simply map a continuous variable into
the discrete valued variable. Then the continuous
variable is considered as the input to the
simulation; that is, this new variable is oscillated
with a sinusoidal driving frequency. There are
several examples of techniques of making this
continuous variable to discrete variable mapping.
One example of such a mapping is to pick the values
for a discrete variable by inverting a wuniform
discrete cumulative distribution function. The
argument of the inverse uniform distribution function
would be a continuous variable between zero and one
that takes on values according to a sinosoidal
function during the simulation. This is just a
deterministic version of the common technique of
generating the value of a random varible by taking
the inverse of a distribution function with a uniform
pseudorandom number as its argument.

A stochastic mapping that could be used for
converting a discrete input variable to a continuous
variable would be to consider the value of each
discrete variable as determined by an indicator
function. The probabilities for the indicator
function are then oscillated according to sinusoidal
driving functions. The actual value of the discrete
variable used in the simulation program is randomly
drawn from a distribution with oscillating
probabilities. These continuous probabilities are
now the inputs to the simulation. This second
technique of selecting the values of discrete
variables randomly according to oscillating
probabilities has been found to work quite well is
the limited testing so far. .

Regardless of the method for varying discrete
valued variables during a simulaiton run there
remains a serious issue that the experimenter must
address. How are discrete variables to be changed
during a run if their values alter the logic of the
simulation? For example, if a queueing simulation is
being run and the number of servers is being
oscillated, what happens to customers of a server
that is removed? The best approach to this problem
found so far is to let the system change 'naturally”
when values of such variables are changed. In the
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queueing example just mentioned the logic of a server
breakdown (or coffee break) is followed when a server
is removed. This may mean that the current customer
(if any) is served or this may mean that the current
customer may have service terminated. The server may
also simply hang out a 'this 1line closed"' sign
depending on the natural server break behavior in the
real system being simulated.

2. USING FREQUENCY DOPMAIN EXPERIMENTS IN RESPONSE
OPTIMIZATION:

There are several ways that frequency domain
experiments can be useful in simulation
optimization. Fore example: in classical Response
Surface Methodology frequency domain experiments can
be used to assess lack of fit by a linear model and
indicate when phase II of RSM (quadratic model
fitting) should be started.

Here we discuss a more direct use of frequency
domain experiments in simulation optimization. A
criterion for local optimality in the frequency
domain is first presented and illustrated. This is
followed by some approaches to optimization in the
frequency domain.

2.1 A Criterion for Optimality:

¥hen a frequency domain experiment is centered
in a small region about a local optimum, the spectral
amplification at indicator frequencies of all terms
involving the wunit power of the input variables
disappear. Intuitively, this is because the first
partial derivatives of the response function are
zero. These partial derivatives for unit powers of
variables are directly proportional to the
coefficients of linear terms in the response surface
polynomial meta-model.

To illustrate: consider the response surface
given by the function given by

+ 48x2— 960.

1976] as a test
procedure for
In Figure 1 we

B[Y] = -2+ Sxo- 4x x,+ 96x,
This function was used in [Smith,
function for an automated RSM
optimizing a simulation response.
have the spectrum of the output of a single run at
the initial (non-optimal) point of the RSM procedure
in Smith’s experiment. The frequency assigned to the
factor x, was .07 cycles per observation and the

frequency assigned to factor X, was .28. cycles per
observation. Note that in Figure 1 spikes at
frequencies corresponding to the linear terms
dominate the spectrum.
i
- 4.* 'Y rs ' . x +* Y s A, r
.07 .28
Figure 1
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Now consider the same experiment but with the
oscillations centered at the optimal values of Xy and

Xoe The specturm of a single frequency domain run

centered at the optimum is given in Figure 2. Note
the shift in the spectrum. All linear terms have no
spectral amplification at the optimum as expected.
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2.2 Optimization Techniques:

Research is still wunderway on optimization
techniques using frequency domain methods at the time
of the writing of this paper. Adaptations of
classical non-linear algorithms to the frequency
domain as well as completely new approachs are under
study. The 1latest results in this area will be
reported at the conference.

3. SUMNARY AND SUGGESTIONS FOR RESEARCH:

In this paper we have reviewed the application of
frequency domain methods to simulation experiments.
¥e have also presented a new approsch for including
discrete valued factors in such experiments as well
as a new frequency domain criterion for local
optimality of a simulation response surface. Using
frequency domain methods in simulation experiments is
a relatively new idea that holds much promise. The
adaptation of these experiments in simulation
optimization is a particularly interesting area of
research.

The author wishes to acknowledge the help of
Sheldon Jacobson who ran the experiments presented in
this paper.
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