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ABSTRACT

We present a new method of obtaining derivatives of
expectations with respect to various parameters. For example,
if X is the rate of a Poisson process, Ny is the number of
Poisson events in (0,T), and ¢ is nearly any function of the
sample path (eg. a performance measure in a queuing
network), then we show that

N
5e-1))

which yields an obvious algorithm. We have proven that the
method works for a wide class of parameters and performance
measures in regenerative simulation. We also report on the
method’s limitations and on some numerical experiments.

% E\({) = E,

1. Introduction

This paper outlines a new method of sensitivity analysis
that applies to transient quantities and to regenerative
simulation of steady-state quantities. We interpret sensitivity
as derivatives of expectations with respect to parameters. To
emphasize the dependence of the expectation of a random
variable ¥ on a parameter A, we will write E,(¢) for the mean
of Y. The probability measure of the stochastic system under
study will be written P,, so that

E\®) = [¥() dPy(w).
Q

The most important assumption we make about P, is that it is
composed of a product of two measures, R, and Q
(P, (4) = R,(4)-0Q(4)), where Q does not depend on A, and
R depends on A only in the simplest manner. For example, if
A represents the rate of a Poisson process associated with a
queuing network, then P, = R,:Q, where R, is a standard
Poisson process, and Q represents all the rest of the dynamics
of the system. This requirement will become clear in the
course of the paper; in practice, it is not a restriction on the
systems we can analyze.

The random variables we consider, denoted ¢, are perfectly
general. For example, in a queuing network, we might have
T

v =71 f g(s)ds, where T is the time we observe the
0

system, and g (s) is the queue length at a particular station.
We might have = T" where T is a stopping time; we could
have ¢ = f(X(T)) where f is an arbitrary function and X (z)

is the state of a system; in short, ¥ is any $Fr-measurable
function. (We have in mind a probability space
(Q, Py, {#F)) where &, is a natural increasing set of o-fields
associated with a stopping time T'.)

Our method is reminiscent of importance sampling
[Siegmund (1976)], and special cases of our theorems are well
known to statisticians [Bickel-Doksum (1977) eq. 4.3.10] and
workers in statistical mechanics [e.g. Tolman (1979) Sec. 931.
Rubinstein (1986) has come up with a method that may be
regarded as a special case of ours. Our contribution appears
to be mainly the synthesis of existing techniques into a
coherent method; however, our theorem 4 seems to be new.

2. The Basic Theorems

In this section we will outline the main theorems that
underlie our method. The applications to sensitivity analysis
will be discussed subsequently. Our first theorem concerns
Poisson rates.

Theorem 1: Let A denote the rate of a Poisson process in a
stochastic system, and let T be a stopping time, ¢ an Fp-
measurable random variable, and N the number of Poisson
events in the interval (0,T]. If E, () is the expectation of y
over time (0, T, then under A1*

d N
7)‘— E)‘(!P) - E>‘ [ [T - T]¢] .

Proof: (outline)

@1

dPyys
apP,

Ers® = [¥(0) dPy 14 = [¢(w) (@) dP,(w)

dR)+;
dR,

120 (@) aPy(w),

dR
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A dR),
Now if limits and integration are

dPy+s

and

where of course (w) are Radon-

Nikodym derivatives.
interchangeable,

d . Exeys—E()
W) = Jlim

.‘uﬁﬂ ()
A

8

-1
- ¥ lim dP,(w).
We claim that (see below for an explanation)

*  The technical conditions under which our theorems are proved appear

in the appendix.
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dR)+;

(w-1
. dR, N(w)
i 5 =\ T,

2.2)

so that

L@ = fyw [i"—fj"—) - T(w)]dP;‘(w)

X -1

This more or less completes the proof. For more details,
including the proof that the interchange is valid, see Reiman
and Weiss (1986).

In order to make (2.2) plausible, consider the likelihood of
a Poisson path w- on (0,7) that has events at times
t1, 3, ...,ty. The probability that there is mo event in
(0,¢,) is e~™ the probability that there is an event in
(¢, t;+dt) is Adt; the probability that there is no event in
(1) is e A=t ; the probability that there is an event in
(15, ty+dr) is Ad1; etc That is,

Likelihood, (w) =
e Madte M \gp L
= MANGN “m' R, ().

If we consider the likelihood of the same path under a Poisson
process with rate A+35, then

Likelihoody 4 5 (path) = e=®IT(\+5)NdetN “m" dR) ;(w).

Hence we obtain

—X(t)v—lzv-l) At e—)\(T—lN)

dR)"H _e—ﬁT 1+ i ol
4R, x|

so that (2:2) follows.

Corollary 1: Under the assumptions of Theorem 1, for

K>1,
K
N
g W) - =-T

d)\K A‘l’ [[A 0 ‘P
where

A o j-O
and

N=NW-1 - - (N—j+1).
Corollary 2: If (A, ...,Ag) denote the rates of K

independent Poisson processes, and N} denotes the number of
type i events in (0, T], then
N} N3 NE ] ]

ViEA@) = E, [\!/ [-}:—— T, 'Kz— -T,... -

where V, means the gradient with respect to A.

We now turn our attention to simple random variables.
We start with a

Definition: X is a simple random variable if it has a finite
number of possible outcomes (xi,...,xx) with associated
probabilities py, . . ., pg.

We wish to estimate the effect of changing }t(he weights

Pis---.Pg o p1+8vy, ..., pgt+dvg. Clearly 3 v; =0in

Jj=1
order for the probabilities to sum to one. We let IV; denote
the number of instances of X that turn out to be x; during the

period of observation.
Theorem 2: Under conditions A2,

. Ep+5v (‘l’) - Ep (l//) K _I_VL
lim 5 =-E, |V 25 2.3)

Proof:
dP +5 v [

and argue as in Theorem 1.

We now consider continuous random variables. Suppose
that we have a family of densities f;, —¢ < § < ¢, with

;l_!{(l]fa(?c) -fo(X)

f5x)—fo&)
m ———————— R

§—0 [

vix).

We denote the outcomes of the random variable during the
period of observation as x, ..., xy.

Theorem 3: Under conditions A3,

daE';(‘I/)Is.o EO[ [.-1 (xi)]] (OX)]

Remark: The three theorems have many generalizations and
corollaries. For example, state~- and time-dependent rates and
probabilities can be handled, as can higher and mixed
derivatives. For more details see Reiman and Weiss (1986).

3. Discussion.

The preceding section contains mathematical theorems
rather than algorithms for simulation. There are three topics
we will discuss in this section: heuristics for understanding
the theorems, difficulties in implementing algorithms based on
the theorems, and some resolutions of those difficulties. The
following section will address sensitivity analysis in
regenerative simulatiori, where the difficulties disappear.’

First we want to discuss why the theorems are true —
after all, it is not cléar a priori that one can obtain derivatives
without changing something. The proofs provide one form of
understanding, and the following discussion should provide a
more intuitive one. Consider equation (2.1), where A is a
Poisson parameter
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d N
EE)‘(#') = Ey [ [—)‘— - TM @

= E\((N/T - NQATW).

The first factor on the right hand side of (3.1) is the
difference between the observed rate N/T and the theoretical
rate . When, by random fluctuations, N/T is larger than A,
then the system behaves as if the rate is higher than ), and we
multiply the response { by a positive quantity. When N/T is
less than A, the system acts as if the rate is less than A, and ¢
is multiplied by a proportionally negative quantity, Now the
other factor AT represents the confidence we have in our
observation y; if AT is small, then we do not have many
observations and so the estimate of Y will have a large relative
error, but if AT is large then we have a good deal of faith in
the observation, so put a large weijht on it. In summary, it is

the correlation between -1)-:,- — T and ¢ that gives us the

estimate of KE)‘(‘II)’ and we hope that the reason for this is

clearer now.

At first it would seem trivial to implement sensitivity
analysis using formulae such as (2.1) or (2.3). It appears that
keeping an extra statistic during the course of simulation will
provide an unbiased estimate. However, this will not always
work: the variance of the estimator can be prohibitively large.
For example, even if ¥ settles down as T —oo, then

A

run will give a poor estimate! This is not a problem in
regenerative simulation, as will be seen in the next section,
because there we take T to be the length of a regeneration
cycle. Also, the formulae can be used quite freely for
transient analysis. There one takes many replications of runs
of length T. Hence the problem is in the standard simulation
of steady-state quantities.

Ty will have variance proportional to T, so a long

Unfortunately, we do not have a satisfactory solution as
yet to this problem. The most obvious method of lowering the
variance of the estimator is to take T small, as in the method
of batched means, by dividing time into many intervals.
However, this leads to biased estimates of steady-state
quantities, as the following simple calculation shows:

4 gp () =
o BT @) (.2

3 3 )
P W + (5 ELP W, —’%}

where E{ r () is the mean value of Y over an interval of
length T with initial distribution p, and u(\) is the steady-
state distribution. Our theorems give estimates of the first
term in the right hand side of (3.2); that is, the change of
initial distribution with A is not modeled. It is usually true
that

im (2- Suy
Jm (3 Ehr @, =0
when 7l'im E)(‘,(}‘)(yb) exists. Now we see the tradeofl: as T

becomes large, our estimator has higher variance, and as T
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becomes small, the bias in the estimator increases. [Under
some reasonable assumptions one can estimate that the
optimal value of T is proportional to N /4 for a simulation of
length N, so that the standard error of the estimate of

%Ex(\b) is ON"'4), making a fairly poor estimator.] All

this means that more work needs to be done before the
method can be easily applied to the non-regenerative
simulation of steady-state quantities,

4. Regenerative Simulation

We give a very brief introduction to regenerative
simulation, the main intent of which is to introduce our
notation. For a more thorough and detailed treatment the
reader is referred to Iglehart and Shedler (1980).

It is well known from the theory of regenerative processes
that many steady state quantities (for a regenerative process)
can be expressed as the ratio of two expected values, e.g.

ElY]
Elal’

where (¥,a) depends only on one regenerative cycle. The
basic idea of regenerative simulation is to simulate the system
for n cycles, generating iid random vectors (¥j,e),
1 € i € n. We can then form the estimates

r=E[X]= 4.1

-— -1 n
¥, =n 3 ¥,
iml
- n
oy = n! 2 o,
i=1
and
Py i’-,,/&',, ’
for E[Y], Elal, and ELX], respectively.
To show how to apply our method to obtain derivative
estimates we will consider a system having a Poisson arrival

process with rate A and differentiate with respect to A. Note
that the quotient rule applied to (4.1) yields

d 4
T a? E,lal E\al  E\lal - ’
We define
Y® -y, (4.32)
Y? - [% - TJY, (4.3b)
and ¥Y® = [% - T]a. (4.3¢)
Using equations (2.1) and (4.3) we can rewrite (4.2) as
E\Y?] EIY®] E\YW]
A g ix] -2 it x 4.9)
dX E)[o] E\odl  E)ldd
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If we wanted to differentiate with respect to a different
parameter, we would (by equation (2.3) or (2.4)) end up with
different expressions for Y® and Y®. The important point is
that the form of (4.2) and hence (4.4) would be unchanged.
Higher derivatives can be obtained by repeatedly
differentiating (4.1).

To obtain a point estimate for d, we simulate for n cycles,
(Y(l) Y(2) Y(3) o),

generating iid random vectors
1 € i < n, and form the estimates
p— n
79O anrt3y®, 1<k<3
i=1
— _.,1 n
o, = n z O,
i=1
2P = 7O, 1<k <3,
and
d, =D WO
Confidence Intervals

An appealing feature of regenerative simulation is that the
iid random vectors used to form point estimates also yield
confidence intervals, via the central limit theorem. We will
simply present expressions for the covariance matrix
associated. with first derivative estimates; for a derivation, see
Reiman and Weiss (1986).

Theorem 4: (7, d,) => N(0,C), where
Cu
Cpp =By + )8y + -9)2By
—2r0p,, — 2,Op 4+ 2,0, 0p
and Cjp= Cy = By — r(l)BB - r(3)Bu,
with

=By,

By = cov (2, 29 ) /(ELaD?.

The covariance matrix B can be estimated in the simulation,
leading to an estimate of C. Confidence intervals can then be
constructed in the standard manner.

Experimental Results

We applied the method described above in the regenerative
simulation of an M/G/1 queue. We chose a hyperexponential
distribution with two phases, so that with probability p the
service time is exponential with parameter 2/3 and with
probability 1—p the service time is exponential with
parameter 2. This gives us two parameters to differentiate
with respect to, A and p.

In the simulation we estimate the mean sojourn time as
well as its derivative with respect to A and p. We also
obtained the covariance matrix associated with each
derivative. Five trials of 20,000 busy periods were run at

Forn>1land1 £k <3let A=1/2, p = 1/2. The results are presented in Table 1.
Z) = ) — D, 1<i <, The derivative calculation added about 20 lines of code to
) 20 _ 0 the simulation program (written in FORTRAN), most of
Fp = = Vn [’ n ] which are assignment statements. With covariance
. u calculations the derivatives required 25% extra cpu time;
and d, = i ‘[dn - d] ’ without the covariance calculation the overhead was under
where r® = E[Y®VE[®)]. 3%.
Elwl  ow) EE[W] a[ d)‘E[w]] corr IE[w] E[w]] EE[W] cr[E-E[w]] corr |Elw], E[w]]
Theory 2.250 -  5.000 - - —4.250 - -
Trial 1 2.246 .040 5.032 522 673 —3.754 .448 -.350
Trial 2 2236 .040 4.326 402 .649 —4.719 437 —.579
Trial 3 2247 .042 4.336 452 .624 —4.960 473 —.623
Trial 4 2.239 .039 4.415 480 655 —4.660 440 —.512
Trial 5 2.233 045 5.521 .764 754 —4.864 .644 —.654

Table 1. Mean sojourn time
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APPENDIX

Definition: An Fr-measurable random variable ¢ is amiable
with respect to (f,c,B8,s) if there exists a nonnegative Frp-
measurable random variable f and positive numbers ¢,8, and
s withs > B and

¥l < e
and
E(@¥) < o.

Assumption Al:  is amiable with respect to the same
(f,c,8,s) for all A in an open neighborhood, and
f > T+Ny.

Assumption A2: v; = 0 whenever pj =0, and ¢ is amiable
with respect to the same (f,c,B,s) for all vectors (p+8v),
where 6 is in an open neighborhood of 0, and
f>N1+"' +NK'

Assumption A3: ¢ is amiable with respect to the same
(g,c,B,s) for all § in an open neighborhood of 0, and
1 Ss
g2 — log——(x )
. i§l fo '
for all 6 in the punctured neighborhood.

Note: See Reiman and Weiss (1986) for a discussion of why
(A1)-(A3) are not restrictive.
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