Proceedings of the 1986 Winter Stmulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

Simulation and Analysis with IMSL Routines

James E. Gentle
IMSL, Inc.
2500 CityWest Boulevard
Houston, Texas 77042-3020

ABSTRACT

The IMSL Library is a unified collection of over 500 FORTRAN
subroutines for applications in statistics, operations research,
and other areas of applied mathematics. Routines are available
for generating random numbers from eighteen unijvariate dis-
tributions, from three multivariate distributions, and from two
time series models. In addition, several routines are provided
for parameter estimation and for goodness-of-fit tests. This
tutorial discusses the use of the IMSL Library in simulation
and statistical analysis.

1. INTRODUCTION

While the general trend in simulation software has been toward
greater degrees of ‘packaging’, resulting in high-level fourth-
generation command languages, theresearcher often needs spe-
cialized computing that cannot be met by any of the standard
program packages. A subroutine library accessed from FOR-
TRAN fills such needs and affords great flexibility. The user
can customize a program by selecting those subroutine mod-
ules that perform the required computations. The results of
the computations are available to the program itself, whereas
most simulation packages merely print the results. Moreover,
a subroutine library is immediately extensible; the library de-
veloper or the user can easily add new routines.

The main difference between a simulation software package
and a FORTRAN subroutine library is the tradeoff between
ease of use and flexibility. The package is probably easier to
use, because it eliminates most of the bookkeeping and pro-
gramming considerations not explicitly part of the problem of
interest. This is an important convenience, since bookkeeping
and the accumulation of simple statistics are major compu-
tational activities in many simulation problems. A packaged
program for simulation, however, may not be able to handle

certain nonstandard models; therefore the user may need the
flexibility that a subroutine library affords. Sometimes it is

possible to combine a simulation package with a FORTRAN
library. This is particularly easy with a package such as GPSS-
FORTRAN.

In choosing between a simulation language and a FOR-
TRAN subroutine library, two minor additional considerations
are the speed of execution and the availability of the system on
different computers. It is likely that the FORTRAN library will
execute more rapidly on a compute-bound problem because the
program will be more tailored to the specific problem. Also, a
FORTRAN library is much easier to port to a new computing
environment than is a simulation package, so it is likely that
the FORTRAN library is available on more machines.

The first edition of the IMSL Library, consisting of just
over 200 subroutines, appeared in 1971. The current, ninth

223

edition, with over 500 subroutines, retains the same general
structure and conforms to similar design principles. The Li-
brary is available on over 30 different computer environments.
The subroutines are organized into seventeen functionally re-
lated areas, which correspond to chapters in the user documen-
tation. These areas include differential equations, eigenanaly-
sis, and optimization. For the simulationist, the main areas
of interest would be random number generation and statistical
analysis.

2. UNIFORM RANDOM NUMBER GENERATORS

The random number generators in the IMSL Library use a

multiplicative congruential method. The form of the generator
is

z; = ez mod (2% — 1),

Each =; is then scaled into the unit interval (0,1). If the
multiplier, ¢, is a primitive root modulo 23! — 1 (which is a
prime), then the generator will have maximal period of 25 —2.
There are several other considerations, however. The lattice
structure induced by congruential generators (see Marsaglia,
1968) can be assessed by the lattice test of Marsaglia (1972)
or the spectral test of Coveyou and MacPherson (1969) (see
also Knuth, 1981, pages 89-113). Also, empirical studies (e g,
Fishman and Moore 1982, 1986) indicate that different values
of multipliers, all of which perform well under the lattice test
and the spectral test, may yield quite different performances,
where the criterion is similarity of samples gerierated to sam-
ples from a true uniform distribution.

The possible values for ¢ in the IMSL generators are 16807
and 397204094. The choice of 16807 will result in the fastest
execution time, but Fishman and Moore’s studies would seem
to indicate that the performance of 397204094 is better. The
multiplier 16807 has been in use for some time (Lewis, Good-
man, and Miller, 1969).

The generation of uniform (0,1) numbers is done by the
routine GGUBS, GGUBT, or GGUW, or by the function analog of
GGUBS, GGUBSF. These routines are portable in the sense that,
given the same seed, they produce the same sequence in all
computer/compiler environments. (See Gentle 1981 for further
discussion of this issue.)

Shuffled Generator

The subroutine GGUW is a shuffled generator using a scheme due
to Learmonth and Lewis (1973a). In this scheme, a table is
filled with the first 128 uniform (0,1) numbers resulting from
the simple multiplicative congruential generator. Then, for
each z; from the simple generator, the low-order bits of z; are




J. E. Gentle

used to select a random integer, 5, from 1 to 128. The j-th
entry in the table is then delivered as the random number and
z;, after being scaled into the unit interval, is inserted into the
J~th position in the table. This scheme is similar to that of Bays
and Durham (1976), and their analysis would be applicable to
this scheme as well.

Customized Generatoré

All of the IMSL random number generators.for nonuniform dis-
tributions use the basic uniform generator GGUBS. If for some
reason a uniform random number generator other than GGUBS
were preferred, the user can write a special subroutine called
‘GGUBS’ with the same calling sequence as the IMSL subroutine
by that name, but which returns random numbers generated
by the user’s own algorithm. Consequently, when the user calls
an IMSL subroutine to generate nonuniform random riumbers,
that subroutine will call the user’s ‘GGUBS’.

3. NONUNIFORM GENERATORS

The IMSL Library contains routines for generating random
numbers from eighteen univariate distributions, from three mul-
tivariate distributions, and from two time series models. The
nonuniform generators in the IMSL Library use a variety of
transformation procedures. The most. straightforward trans-
formation is the snverse CDF technique, but it is often less
efficient than others involving acceptance/rejection and miz-
tures. See Kennedy and Gentle (1980) for discussion of these
and other techniques.

Many of the IMSL nonuniform generators use different al-
gorithms depending on the values of the parameters of the
distributions. This is particularly true of the generators for
discrete distributions. Schmeiser (1983) gives an overview of
techniques for generating deviates from discrete distributions.

Although, as noted above, the uniform generators yield
the same sequences on different computers, because of round-
ing, the nonuniform generators that use acceptance/rejection
may occasionally produce different sequences on different com-
puter/compiler environments.

For most distributions there are choices of algorithms for
generation of random numbers. The algorithms differ in speed,
in accuracy, in storage requirements, and'in complexity of cod-
ing. Some of the faster methods are approximate. The IMSL
generators all use exact methods. Given the current cost of
computing, the speed-up resulting from an approximation is
not worth the accuracy loss. After accuracy, the next most
important criterion is speed. There are two components to the
speed of a random number generation algorithm: the set-up
time and the generation time. In most cases the generation
time is the more important component to optimize. Whenever
the set-up time is significant, the IMSL subroutine preserves
the variables initialized, so that if the subroutine is called again
with the same parameters, the set-up step can be bypassed. In
an extreme case of relatively expensive overhead, a second sub-
routine with less set-up time is provided. The other two crite-
ria mentioned above, storage requirements and complexity of
coding, are generally of no concern in selecting algorithms for
IMSL random number generators.

994

Generators for Univariate Distributions

beta GGBTR
binomial GGBN

negative binomial GGBNR
Cauchy GGCAY
chi-squared GGCHS
discrete uniform GGUD

exponential GGEXN
exponential mixture GGEXT
gamma, GGAMR
geometric GGEOT
hypergeometric GGHPR
log-normal GGNLG
normal GGNML
Poisson 3 GGPOS
stable GGSTA
triangular GGTRA
von Mises GGVMS
Weibull GGWIB

Generators for Multivariate Distributions

multinomial GGMTN
multivariate normal GGNSM
uniform on sphere GGSPH
Generators for Time Series
ARMA FTGEN

nonhomogeneous Poisson process GGNPP

Order Statistics and Antithetic Variates

Order statistics from a uniform distribution can be generated
directly, using the known distribution of any specific order
statistic or the known distribution of the spacing between spe-
cific order statistics. The IMSL subroutine GGUO generates any
specified set of random order statistics from a uniform distri-
bution. For example, the user can specify the largest five order
statistics from a random sample of size 100, and GGUO gener-~
ates these directly, rather than generating the complete sample
and picking out the five largest. The subroutine GGNO perfoms
a similar task for the normal distribution.

For those generators, such as GGCHY and GGNML, that use the
inverse CDF technique, it is possible to generate any set of or-
der statistics directly. This is done with a customized uniform
generator, as discussed above, by generating order statistics in
a custom ‘GGUBS’ or ‘GGUBSF’. Some routines such as GGEXN and
GGWIB that employ an inverse CDF technique use the uniform
(0,1) deviate 1 —u, rather than directly using the uniform (0,1)
deviate 4 from GGUBS. In such routines the ¢-th order statistic
from the uniform will yield the (rn + 1 — £)-th order statistic
from the nonuniform distribution.

A similar technique can be used to get antithetic variates.
For each uniform deviate u, a second deviate 1—u could be pro-
duced by a custom ‘GGUBS’ or ‘GGUBSF’. As with order statis-
tics, this technique would only be reasonable for routines that
use the inverse CDF technique.



Simulation and Analysis with IMSL Routines

Random Samples, Permutations, and Tables

IMSL routines are provided for generating random samples
without replacement from a finite population, for generating
random permutations of sets, for generating frequency tables
with fixed marginal totals, and for generating random correla-
tion matrices. The routine for generating random samples can

be used simply to get index numbers or actually to select the
sample items from a data set.

Data-Based Random Number Generation

A common problem in simulation is to generate additional ran-
dom samples from the distribution from which a given sam-
ple has been taken. Unless the user is willing to make an
assumption about the form of the distribution, nonparamet-
ric techniques must be used. IMSL routines are available for
sorting the data or for computing the empirical distribution
function directly. With a distribution function or an empirical
distribution function, the user can call a general continuous
random number generator that first approximates the distri-
bution function with quasi-cubic splines, and then generates
random numbers from the approximation.

4. TESTING RANDOM NUMBER GENERATORS

Extensive empirical tests of some of the uniform random num-
ber generators available in GGUBS and GGUBSF are reported by
Fishman and Moore (1982 and 1986). Results of tests on the
generator using the multiplier 16807, with and without shuf-
fling, are reported by Learmonth and Lewis (1973b). Several
IMSL routines are provided for the user who wishes to per-
form additional tests. Often in Monte Carlo applications it
is appropriate to construct an ad hoc test that is sensitive to
departures that are important in the given application. For
example, in using Monte Carlo methods to evaluate a one-
dimensional integral, autocorrelations of order one may not
be harmful, but they may be disastrous in evaluating a two-
dimensional integral. The routines for generating random devi-
ates from nonuniform distributions use exact methods; hence,
their quality depends almost solely on the quality of the under-
lying uniform generator. Nevertheless, it is often advisable to
employ an ad hoc goodness-of-fit test for the transformations

that are to be applied.
The tests available in the IMSL Library include chi-squared

goodness of fit, Kolmogorov-Smirov, runs, pairs-serial, triplets,
d?, and poker tests. In addition, several nonparametric tests
are provided that may be adopted to test specific hypotheses.

5. STATISTICAL ANALYSIS OF OUTPUT

The IMSL Library provides many subroutines for statistical
analysis. The routines in the basic statistics chapter compute
frequency tables, sample moments, confidence intervals, and
statistics for several hypothesis tests. There are routines for
regression analysis, for time series analysis in both the time
domain and the spectral domain, for nonparametric statistical
procedures, and for goodness-of-fit tests. The IMSL graph-
ics routines, which are only for line printers, provide scatter-
grams, histograms, stem-and-leaf plots, boxplots, probability
plots, and plots to compare sample cumulative distribution
functions with theoretical cumulative distribution functions.

8]

6. ROLE OF MICROCOMPUTERS IN SIMULA-
TION

Use of simulation and Monte Carlo methods will be even more
common in the future as computing becomes less expensive.
The researcher who ‘turns on’ a personal computer rather than
‘logs on’ to a mainframe is not intimidated with the thought of
letting the computer run all weekend. Simulation will also play
an important role in the solution of very large problems on su-
percomputers since it can often take advantage of parallel pro-
cessing capabilities. Work on a problem involving simulation
and Monte Carlo methods may progress through preliminary
computations on a microcomputer to more extensive compu-
tations on a mainframe, perhaps to produce multi-way tables
over several ranges of values of various parameters.

. Microcomputers have brought an increased importance to
portability of software. Portability is important for transfer
of research and development efforts. Portability reduces the
number of times the wheel is reinvented as well as the amount
of the computer-knowledge overhead that burdens a researcher.
The user may devote attention to the research problem rather
than to the extraneous details of the computer tools used to
address the problem.

Formerly, portability was a concern primarily for distrib-
utors of software, for users who may be switching jobs, or
for computer installations changing or conterplating changing
their hardware. With the widespread availability of personal
computers, all computer users now are much more likely to
use (or to attempt to use) the same program on more than
one machine. There are both technical and tactical reasons
for using a micro and a mainframe while working on the same
program. The technical reasons include the differences in re-
sources (memory, CPU speed, software) available on micros
and mainframes. These differences likely will narrow as new
and better micros are introduced and more software is devel-
oped for them. The availability of the different computers in
different working environments such as home, lab, and office
creates another advantage to using multiple computers on a
single problem. These tactical reasons will persist, and it will
become increasingly commonplace for a researcher to use more
than one computer.

IMSL’s MATH/LIBRARY and STAT/LIBRARY, available
on the IBM PC, make it possible for the user to begin work on
a personal computer and then, if necessary, later to move the
work to the mainframe. The sequence of integers produced in
the underlying multiplicative congruential generator is always
exactly the same on the personal computer as on the main-
frame so long as the same seed is used; hence, if work is done
on both a personal computer and a mainframe, the studies can
be combined because the next point in the pseudorandom se-
quence can be used as the starting point for the continuation.

Furthermore, repetition of a small portion of the study will al-

low the user to determine that the other parts of the program
are performing the same on both computers.




J. E. Gentle

REFERENCES

Bays, Carter, and S. D. Durham (1976), Improving a poor
random number generator, ACM Transactions on Mathe-
matical Software, 2, 59+-64.

Coveyou, R. R., and R. D. MacPherson (1967), Fourier anal-
ysis of uniform random number generators, Journal of the
ACM, 14, 100-119.

Fishman, George F.,.and Loéuis R. Moore, III (1982), A statisti-
cal evaluation of multiplicative random number generators
with modulus 23! — 1, Journal on the American Statistical
Association, T7, 129-136.

Fishman, George F., and Louis R. Moore, III {1986}, An ex-
haustive analysis of multiplicative congruential random num-
ber generators with modulus 23! — 1, SIAM Journal on Sci-
entific and Statistical Computing, 7, 24—45.

Gentle, James E. (1981), Portability considerations for ran-
dom number generators, in Computer Science and Statis-
tics: Proceedings of the 13th Symposium on the Interface,
(edited by William F. Eddy), Springer-Verlag, New York,
158-164.

Kennedy, William J., and Jafes E. Gentle (1980), Statistical
Computing, Marcel Dekker, Inc., New York.

Knuth, Donald E., (1981), The Art of Computer Program-
ming, Volume 2 / Semxfnumerical Algorithms, second edi-
tion, Addison-Wesley, Reading, Massachesetts.

Learmonth, G. P., and P. A. W. Lewis (1973a), Naval Post-
graduate School Random Number Generator Package LL-
RANDOM, NPS55LW73061A, Naval Postgraduate School,
Monterey, California.

Learmonth, G. P., and P. A. W. Lewis (1973b}, Statistical tests
of some widely used and recently proposed uniform random
number generators, in Computer Science and Statistics: 7th
Annual Symposium on the Interface, (edited by William
J. Kennedy), Statistical Laboratory, Iowa State University,
Ames, Jowa, 163-171. b

Lewis, P. A. W., A. S. Goodman, and J. M. Miller (1969), A
pseudo-random number generator for the System/360, IBM
Systems Journal, 8, 136-146.

Marsaglia, G., (1968), Random numbers fall mainly in the
planes, Proceedings of the National Academy of Sciences,
61, 25-28,

Marsaglia, G., (1972}, The structure of linear congruential se-
quences, in Applications of Number Theory to Numerical
Analysis, (edited by S. K. Zaremba), Academic Press, New
York, 249-286. :

Schmeiser, Bruce, (1983), Recent advances in generation of
observations from discrete random variates, in Computer
Science and Statistics: The Interface, (edited by James E.
Gentle), North-Holland Publishing Company, Amsterdam,
154-160.

AUTHOR’S BIOGRAPHY

JAMES E. GENTLE is a software designer with IMSL, Inc. He
received a master’s in computer science and a Ph.D. in statis-
tics from Texas A&M Universtiy in 1973 and 1974 respectively.
Prior to joining IMSL in 1979, he was Associate Professor of
Statistics at Towa State University. His current research inter-
ests include random number generation and robust techniques
in statistics. He is a Fellow of the American Statistical Asso-
ciation and a member of the Board of Directors of AFIPS.

W
L
<]



