Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

SIMULATION IN

Claude C.
Department
Walla Walla College
WA 99324, U.S.A.

Physics

College Place,

ABSTRACT

The micro PASSIM package 1is designed to
support combined simulation modeling in
Pascal, including the coordinated sequencing
of discrete events and the integration of
continuous variables. The package features
dynamic interaction through user and system
menus, resource and qgueue management, random
fiumber streams and generation of statistical
diastributions, the collection of statistics,
report generation, tracing of transactions,
dynamlc model interaction and character
graphics display of model evolution. Event
scheduling and process interaction world
views are supported. The modeler writes the
model in Pascal using the procedures from the
simulation 1library for support. The model
and support procedures are compiled together
to provide a stand-alone simulation program.
Version mP 3.1 using Turbo Pascal supports
high resolution graphics. Complete source
code is provided for either Turbo or Vax
Pascal. Version mp 3.1 M2 in Modula-2 is now
available.

1. INTRODUCTION TO MICRO PASSIM

The decision to implement micro PASSIM in
the high level language Pascal is based on
the premise that a complete simulation
language will have all the structures of a
good high level language. The argument to
support this premise begins with the
observation that the same expressive power is
needed to program a model as to write a
program in general.

The high level language does need a
supporting environment to organize model
construction, facilitate model verification
and experimentation and generally reduce the
work of modeling by supplying frequently used
simulation constructs. micro PASSIM is
designed to fill this need. The simulation
library provides the special support needed
for simulation, while Pascal ensures power of
expression and extensibility. Modelers need
a simulation system that allows choice of
different world views and simulation
metaphors. Pritsker (1984) has recognized
the importance of simulation languages with
the capability of alternative modeling
strategies. Zeigler (1984) has presented a
cogent case for multifaceted modeling and
simulation.

PASSIM was first coded by Uyeno (1980) in
Pascal to rum on a main frame and adapted by
Barnett (1981) to run on a nmicrocomputer as

151

PASCAL WITH MICRO PASSIM

Barnett

micro PASSINM. The original versions were
GP5S~1ike, supporting transaction flow. Now
versions of micro PASSIM have been extended
by Barnett (1983, 1985) and Anderson (19886)
to allow discrete-event scheduling, network
modeling, and continuous state variable
integration as well as process interaction.

An example model introduces some of the
features of micro PASSIM and illustrates a
degree of multifaceted modeling.

2. EXAMPLE MODEL

Model construction is only one phase of
an iterative process leading to a successful
simulation study (Balci, 1985). It is wvital
that the method of model implementation make
provisions for experimentation that lead to
specific results that address the formulated
problenm. The development of a simple model
will illustrate the features of micro PASSIM
that support such a simulation study.

The micro PASSIM package contains a model

"template” that serves as a guide to model
construction. Iterative entries into the
seven main segments of this template will

lead to a working model. The seven segments
are designed to emphasize important aspects
of model design: (1) describe the model, (2)

identify and declare the model entities and
their attributes, (3) specify typical values
of attributes of entities, (4) select

entities and attributes to be changed during
the model experimentation phase, (5) specify
the initial configuration of the system, (6)
specify reports and statistical results, and
(7) specify the model structure. These steps
are to be done iteratively.

Each of the procedures described here are
needed for system control of the simulation.
The effort to construct the model will be
rewarded by a program suited to interactive
experimentation.

2.1. Model Description

A carefully worded description of the
system being modeled is helpful to both the
modeler and to the model user. Instructions
to the user can also be provided here. This
documentation is accessible from the main
menu. In the example model we include in
MODEL _DESCRIPTION statements of the form
"WRITELN(OUT,'...text..."');", or a file
called by the library procedure SHOW _FILE. A
communicated model describing the Bobwhite
Quail life cycle is used as an example:

C. C. Barnett

“Quail im a region increase in number in
the spring during mating season, die from
natural causes at a rate that changes with
the seasons, and are hunted in season. The
quail population growth rate equals the
product of the current population and the
difference between the birth rate and the
death rate. The death rate equals the sum of
the natural death rate and the death rate due
to hunting minus the product of the two. The
latter product is the compensatory effect of
hunting quail that might have died anyway.
The natural death rate is a function of the
ratioc of the current quail population to the
carrying capacity of the region. The birth
rate also depends on this ratio. The problem
is to determine which wildlife management
policies will ensure a stable quail
population.”

Programing of a part of this communicated
model will now be described as a tutorial.

2.2. Model Entities

An early step in model conceptualization
is to ddentify the system and the dynamic and
static entities of ! the system together with
their attributes. The data structures
available for modeling will influence this
choice. The activities engaged in by the
entities and the existence of causal
relationships will also influence the
representation of entities. In our example
we choose to model' the quail population with
a continuous state variable:

VAR QUAIL STATE PTR;

This choice is influenced by the observed
causal relationship between quail population
and birth and death rates. The plan is to
describe this causal relationship by a
differential equation, which will be
integrated by micro PASSIM.

will be represented as a
state variable, primarily to make it easy to
plot their number. Similarly, the number of
hunter kills, the bag, will be represented as
a state variable:

The hunters

VAR HUNTERS STATE _PTR;

BAG : STATE PTR;
Pascal pointers allow access to each
record field containing attributes of the

state variable, such as initial and current
levels, the rate of change of the levels, and
plotting information. For examaple the quail
level would be QUAIL".LEVEL.

The hunt will be represented by one of
the two main resources of micro PASSIM:

VAR HUNT : STORE _PTR;

This choice is made ‘to allow the hunters
to be modeled as discrete events, knowing
that the micro PASSIM library contains
several procedures for managing the STORE
resource., For each STORE, the system creates
a CHAIN, the other micro PASSIM resource, to
model waiting for the resources of the STORE,
active hunters, to become available.

152

The HUNTERS will be updated as the HUNT
progresses by statements of the form:

HUNTERS™ .LEVEL := HUNT".USE;

The birth and death rates change with the
seasons of the year, and may be represented
by empirical data tables expressing the
fertility and mortality factors as functions
of time of year:

VAR FERTILITY TABLE PTR;
MORTALITY : TABLE _PTR;

A number of other model parameters may be
declared as REAL, INTEGER, BOOLEAN, CHAR, or
any of the other Pascal types:

{carrying capacity}
{fall population }

VAR QUAIL MAX : REAL;
QUAIL FALL: REAL;

Model entities, attributes and activities
may also be represented by functions or
procedures the user may choose to write in
Pascal. All of the declared variables will
be given initial or "default" values as a
modeling step.

2.3, Model Defaults

Pascal does not initialize any variables
declared by the user. Although micro PASSIM
does take care of as much initialization as
practical, it 4is an important part of the
modeling process to choose typical starting
values for model variables. The MODEL _MENU
will allow changing any selected variables
during a model run.

Within the Bobwhite Quail example the
QUAIL record is created by the micro PASSIM
procedure NEW_STATE and initialized to a
level of 3000 with the name ‘quail‘. Plot
parameters are set for QUAIL by SHOW_STATE to
choose a high resolution plot mode, to set
the data window between 0 and 6000 quail, te
set the y-axis data port between 180 and 20
screen units, and to set the pleotting offset
to 0. All of these values can be changed at
run time from the plot menu:

QUAIL := NEW _STATE('quail', 3000);
SHOW _STATE(QUAIL,CHR(1),0,6000,180,20,0);

QUAIL MAX := 1.75*3000;

The carrying capacity for the region is
set to an experimentally determined factor
above the fall population. The carrying
capacity can be changed if it is included in
the procedure MODEL _MENU, to be written by
the modeler.

2.4. Model Menu

An important part of any simulation study
is experimentation. The micro PASSIN menus
allow system and user defined properties to
be changed at run time,. The MODEL _MENU is
specifically designed to make it easy to
change variables defined by the user, and not
known to the system, A8 an example, menu
items for the hunting season, the average
number of hunters per day and the daily bag
would be coded as follows:

Simulation in Pascal with micro PASSIM

PROCEDURE MODEL MENU;
BEGIN CLR _SCREEN(OUTPUT); PREVIEW;

REPEAT
ACCEPT R(4, ‘'open hunting season day '

, 0, 865, HUNTING OPEN, DEC PL);
ACCEPT R(5, 'length of hunting season !

, 0, 365, SEASON H, DEC PL);
AGCEPT R(68, 'average number of hunters '

, 0, 5000, HUNTERS AVE, DEC PL);
ACCEPT R(7, 'daily bag per hunter !

, 0, 100, DAILY _BAG, DEC PL);
UNTIL PREVIEWED;
BAG _RATE := (DAILY BAG/DAY)/QUAIL".LEVELO;
BAG _INDEX := BAG _RATE*HUNTERS AVE;

HUNTERS MAX := 2*ROUND(HUNTERS AVE);
END; (* MODEL MENU *)

2.5. Model Initialization

For each new scenario the model needs to

be initialized. The procedures MODEL _INIT
and MODEL RESET do this.

The HUNT resource is created and set to
initial conditions by a micro PASSIM library
procedure called in MODEL _INIT:

HUNT := NEW _STORE('hunt',200,TRUE);

The maximum amount of the HUNT resource
allowed, number of active hunters, is set to
200. The TRUE signifies that statistics will
be kept for this STORE. The user has access
to the fields of the created resource from a
micro PASSIM menu at run time.

The system resets the statistics on any
STORE created by NEW_STORE and on any CHAIN
created by NEW_CHAIN. The user may use the
MODEL _RESET procedure to reset any special
statistical variables, 'RESET' 1s available
from the main menu, and is called by the
system at 'CLEAR' time, also selectable from
the main menu.

2.6. Model Reports

Statistical reports will be generated by
the system on resources for which statistics
were kept. These may be selected from the
main menu, and redirected to a file or to a
printer.

In addition to the system generated
reports on resources, other information that
would be of value for our model would be the
fall quail population, the total number of
quail taken in hunting, and the total number
of hunters.

The character graphics and the high
resolution plot of the state variables gives
a dynamic picture of system evolution. The
screen may be printed periodically as part
of the record of system performance.

2.7. Model Structure

The activities of the model entities are
captured and expressed in the procedure
MODEL. This procedure controls calls to the
procedure DERIVATIVES where the model's
causal relationships are expressed as the
time rate of change of the levels of the
state variables.

153

The main factors affecting the growth of
the Bobwhite population are expressed in the
following segment of DERIVATIVES:

PROCEDURE DERIVATIVES;

CONST

DF = 1.240; {empirical density factor}
CF = 0.940; {empirical carrying factor}
VAR

NaturalDR, BagDR, RelPop:REAL;
BEGIN

RelPop := QUAIL".LEVEL/QUAIL _MAX;
NaturalDR := INTERPOLATE (MORTALITY, CLOCK)
*(1 + DF*RelPop - CP*SQR(1 - RelPop));

BagDR = BAG _RATE*HUNTERS".LEVEL;

QUAIL™ .RATE - QUAIL".LEVEL*
*(NaturalDR + BagDR - NaturalDR*BagDR);
IF MATING
THEN QUAIL”.RATE := QUAIL".RATE
+ INTERPOLATE(FERTILITY,

* QUAIL".LEVEL;

CLOCK)

IF HUNTING
THEN BAG".RATE
END;

BagDR*LEVEL;
(* DERIVATIVES *)

The PRIME node of MODEL is called by the
system to start the simulation, processing
discrete events first. In our example this
node is used to start the timing segments
that will control the yearly seasons, the
mating season, and the hunting season.

PROCEDURE MODEL;
BEGIN IF DISCRETE THEN
WITH CUR™ DO CASE NX _BLOCK OF

PRIME:BEGIN
SEASON := SUMMER;
SCHEDULE (WINTO, TOP _PRIORITY,

WINTER START, NEW _XACT(CUR)):
HUNTING FALSE;
SCHEDULE (HUNTO, TOP _PRIORITY,

HUNTING OPEN, NEW _XACT(CUR)):;
MATING := FALSE;
SCHEDULE (MATEO,

(*>> required <<¥)

TOP PRIORITY,

MATING _START, CUR);

DAILY BAG := BAG _INDEX*DAY
“QUAILO/HUNTERS _AVE
END;
In the hunting cycle the number of

hunters hunting on a given day is chosen
randomly from a triangular distribution using
random number stream 1. The mean of the
distribution is equal to the previously
specified average number of hunters.

HUNTO:BEGIN
IF HUNTING
THEN HUNTERS".LEVEL := TRIANGLE(O,
HUNTERS AVE, 2*HUNTERS AVE, STREAM1)
ELSE HUNTERS".LEVEL := 0;
ENTER(HUNT1, ROUND(HUNTERS".LEVEL),
END;
HUNT1:ADVANCE (HUNTZ2,DAY);
HUNT2:BEGIN (* end of daily hunt *)
HUNTERS SUM := HUNTERS SUM + HUNT".use;

HUNT)

HUNTERS".LEVEL := 0;
LEAVE(HUNT3, HUNT".use, HUNT)
END;

HUNT3:ADVANCE(HUNT4, 1 ~ DAY);

HUNT4: TRANSFER(HUNTS5, HUNT1,
HUNTS: TERMINATE(1);

TRUE, HUNTING);
(* count hunting days *)

C. C. Barnett

In the hunting season segment the fall
quail level is saved and the relative quail
harvest is writtem to OUT, the redirectable
output buffer. The procedures ENABLE and
DISABLE act on the HUNT STORE to enable and
disable use of the STORE by hunters.

HUNSO:BEGIN (* hunting timing segment *)
HUNTING := TRUE;
QUAIL FALL := QUAIL”.LEVEL;
ENABLE (HUNS1, HUNT) END;
HUNS1:ADVANCE (HUNS2, SEASON H);
HUNS2:BEGIN ‘
HUNTING := FALSE;
GOTOXY(28, 2);
WRITELN(OUT, 'BAG = !
» BAG”.LEVEL/QUAIL FALL:5:3);
BAG _SUM := BAG _SUM + BAG".LEVEL;
QUAIL SUM := QUAIL _SUM + QUAIL _FALL;
BAG".RATE := 0; BAG".LEVEL := 0;
DISABLE(HUNS3, HUNT) END;
HUNS3:ADVANCE (HUNSO, YEAR - SEASON H);

The mating ‘timing segment sets the
boolean variable MATING true during the
mating season and false otherwise. This
information is used in setting the level of
the fertility variable.

MATEO:BEGIN (* mating timing segment *)
MATING := TRUE;
ADVANCE (MATE1, SEASON M) END;
MATE1:BEGIN
MATING := FALSE;
ADVANCE (MATEO, YEAR - SEASON M) END;

The seasons are controlled by the
following timing segment:

WINTO:BEGIN (* winter timing segment *)
SEASON := WINTER;
ADVANCE (WINT1, SEASON W) END;
WINT1:BEGIN
SEASON := SUMMER;
ADVANCE (WINTO, YEAR - SEASON W) END;

Reports can be generated at periodic
intervals set from the main menu. These
reports can be sent to the screen, a file, or
the printer.

REPTS:IF REP _INT<=0
THEN TERMINATE(O)
ELSE BEGIN

ADVANCE (REPTS, REP _INT);
IF DISPLAY THEN PLOT ALL([STATES])
END;

(*>> required <<¥*)

STOP:HALT SIMULATION; (*>> required <<¥*)

END (* CASE *)

The integration of the state variables is
controlled by this last part of the MODEL
procedure. The sequencer and integrator
procedures control the advance of time either
by discrete steps when the discrete part of
the model is active or by user specified
uniform time steps between events when the
continuous part of the model is active.

ELSE IF DE ON

THEN REPEAT
INTEGRATE; DERIVATIVES
UNTIL TIME _OUT END;

{(*>> required <<*)

(* MODEL *)

The general part of the code for MODEL is
already contained in the TEMPLATE file
supplied with the systenm. The modeler adds
the model specific code to the TEMPLATE to
produce the final model.

3. CONCLUSIONS

The micro PASSIM simulation package gives
the model builder a supportive environment
for combined discrete-event and continuous
state variable simulation. The simulation
library helps organize and simplify the
implementation of modeling concepts, allows a
multifaceted approach to simulation, and
provides for model experimentation through
model interaction.

4. AVAILABILITY

The micro PASSIM simulation package is
currently available in version mP 3.10 for PC
compatibles using Turbo Pascal version 2.0+
and for the VAX using VNS 3.0+ and DEC Pascal
2.0+, Full source code and users manual with
documentation is supplied with each version.
The compiled library and system commands are
supplied with the VAX version. The Modula-2
version and version mP 4,00 used. in this
tutorial are available for field testing.

ACKNOWLEDGMENTS

Work on the example quail model was done
at the University of Arkansas Department of
Zoology for the Arkansas Game and Fish
Commission by David J. Stewart, Charles J.
Amlaner, Jr. and Claude C. Barnett.

REFERENCES

Anderson, T. L., Barnett, C. €. (1986).
Modula-2 With An Enriched Library As A
Simulation Environment: micro PASSIM M2,
Modeling and Simulation on Microcomputers,
Claude C. Barnett, Editor, Society for
Computer Simulation, San Diego, pp240-242.

Balci, Osman (1985). Guidelines for
Successful Simulation Studies, Report
Number TR-85~2, Naval Sea Systenms
Command, Office of Naval Research.

Barnett, Claude C.(1981). micro PASSIN, A
Discrete~Event Simulation Package For A
Microcomputer Using UCSD Pascal, Modeling
and Simulation on_Microcomputers, L. A.
Leventhal, Editer, Society for Computer
Simulation, La Jolla, pp 60-64.

Barnett, Claude C.(1983). micro PASSIN: A
Combined Simulation Package PFor A
Microcomputer Using UCSD Pascal, Modeling
and Simulation on Microcomputers, Ralph
Martenez, Editor, Society for Computer
Simulation, La Jolla, pp 92-95.

Barnett, Claude C.(1985). micro PASSIM: A
Modeling Package for Combined Simulation
Using Turbo Pascal, Modeling and
Simulation on Microcomputers,

154

Simulation in Pascal with micro PASSIM

Greer Lavery, Editor, Society for Computer
Simulation, La Jolla, pp 87-41.

Pritsker, A.A.B. (1984). Intreduction_to
Simulation and SLAM II. Second Edition,
Balstead Press, New York.

Uyeno, Dean (1980). PASSIM, A Discrete-
Event Simulation Package for Pascal,
Simulation, Vol 35, No. 6, pp 479.

Zeigler, B.P. (1984). Multifacetted Model-
ing and Discrete Event Simulation.
Academic Press, London, England.

AUTHORS' BIOGRAPHIES

CLAUDE C. BARNETT is a professor of
physics in the Department of Physics at Walla
Walla College. He received a B.S. degree in
physics from Walla Walla College in 1952 and
M.S. and Ph.D. degrees in physics from
Washington State University in 1956 and 1960
respectively. He has been teaching modeling
and simulation classes since 1968 and is the
author of the micro PASSIM simulation package
for microcomputers. HHis simulation related
interests are 1in physical and biological
models, simulation methodologies, languages,
and information theory. He is a member of
A.A.P.T., A.P.S., O.R.S.A., 8.C.S8., and the
Society for Sigma Xi.

Claude C. Barnett

Department of Physics

Walla Walla College

College Place, WA 99324, U.S.A.
(509) B27-2881

155

