Proceedings of the 1986 Winter Simulation Conference
J. Wilson, J. Henriksen, S. Roberts (eds.)

Object oriented simulation - Ada, C++, Simula

Brian W. Unger
Dept. of Computer Science
University of Calgary
Calgary, Alberta, Canada T2N 1N4

The object oriented design of simulations is based on

the concept of abstract data types. An early mechanism
for defining abstract types was incorporated in the
Simula Language. Constructs were also included in Ada
that support this view. Ci#+ is a general purpose
programming language in which facilities for defining
abstract types have been added to the C language.

An abstract type can be defined as a data structure and
a set of operations on instances of that structure.

The simplest example is the integer. An integer may be
represented by a data structure which consists of a
sequence of zeros and ones which are interpreted as in
ones complement arithmetic. The operations on
instances of type integer, i.e., integers, are the

integer :=, +, -, ¥, and /. Thus, the integer abstract
type has an underlying data structure which is used to
represent instances of type integer, and it has a set

of operations defined for instances of type integer.

Obi . i hod

Instances of an abstract type are called "objects”.
Thus an integer can be said to be an instance of type
integer and the integer operations are defined for
objects of this type. The implementation of the
underlying data structure and operations are of little
interest to the user of integers. Few programmers are
interested in whether integers are represented in ones
or twos complement form or what algorithms are used to
multiply integers in one of these representations.
However, the programmer needs a clear idea of how to
use integers in a program.

The concept of abstract types extends this idea to
enable user defined abstract types. For example, the
user may want to define an abstract type “stack” with
operations pop and push. Objects of type stack may
then be defined and items pushed onto or popped off one
of these objects.

The concept of writing programs that define abstract
types and then create and manipulate objects of these
types is one of the most important programming language
developments of the decade. Not only is the structured
implementation of programs easier but the design
process is directly supported. The integration of

design and programming in the development of
simulations is an extremely important aspect of this
technique.

The world that we are trying to create when building
programs can be thought of as consisting of objects
which interact. This world of objects can be divided
into classes of different kinds of objects. i.e.
different abstract types, and then multiple objects of
each type. Thus design involves dividing the world of
interest into different kinds of objects. Objects
within each class or type will be similar but not
identical. That is, objects of type stack are all
similar in that they contain a linear list of elements,

and that elements can be pushed onto this list or
popped off. However, multiple objects of this type can
also be quite different in that they will have unique
contents and relationships with other objects.

The objective of design is to decompose the system into
a set of modules with simple interfaces. We now have
genuine help in this process. Different types of
modules are defined which will have identical functions
or operations but may also have important differences.
Modularity is strongly supported because the internal
implementation of these object types need not concern
the user of these objects.

Programming languages as tools

The use of structured programming using a high order
language, and abstract typing during both the design
and programming phases, hold the greatest promise for
dramatically improving productivity in the development

of simulations. Both of these objectives are strongly
supported within the Simula, Ada, and C++ languages.

An excellent presentation of the history of programming
languages before the appearance of Ada is contained in
[Wegner, 76]. A few of the major points of this paper
are summarized in Figures 1, 2, and 3. Wegner
describes 30 milestones in the history of language
development. He characterizes the 1950s as the
empirical discovery of programming methods with Fortran
identified as one of the major milestones of this
period. Fortran’s contribution was primarily in the
representation of arithmetic expressions and the
introduction of subroutines. The ability to directly
write arbitrary expressions in a familiar form was a
large advantage over assembly languages. The
subroutine was the first unit of program modularity.

The 1960s are described as a period of theoretical
development. Major languages of this decade were Cobol
and Simula. Cobol introduced new ways to characterize
data, and Simula introduced many concepts and
constructs that would take some time to be recognized.
The design of a general purpose language with
simulation as a target application was an excellent
model for later language developments. The world of
interest to the modeller consists of multiple
concurrently operating objects. Simula introduced
classes and class objects to characterize this
phenomena. This also happens to be the model of the
modern operating systems, such as UNIX, where the
support of concurrent processes is a major objective.

Wegner considers the 1970s decade to be one of
consolidation where many of the results of language
theory were applied to construct new languages and
systems. Pascal and the concepts regarding program
modularity were major developments of this period. The
Simula class was a new unit of program modularity.
Twenty years after the subroutine, function, and
procedure are introduced we finally see a truly new

construct that supports program modularity. This
construct forms the basis of abstract types and the
methods of object oriented design.

1950’s - Empirical (discovery & description)

1960’s - Mathematical (elaboration & analysis)

1970’s - Engineering (technological & management of
complexity)

1980's - ?? Networkiné, Expert Systems ??

Figure 1. Wegner's First 25 years of Programming

Mi: EDVAC Report 1944
M2-M4: subroutines, macro-assemblers

M5: Fortran 1954-1958
Mé6: Algol 1957-1960
M7: Cobol 1959-1961
M8 PL/1 1964-1969
M9: Algol 68 1963-1969
M10: Simula 67 1965-1967
Mii-M13: IPL, LISP, Snobol 1962-1967
Mi4-M23: Language Theory.... 1960-1970”
M24: Pascal : 1967-1975
M25: Apl 1960-1967
M26-M27: Structured Programming 1969-1979
M28 Software Life Cycle

M29 Modulatity 1955-1975
M30 Data Oriented Languages

Figure 2. Wegner’s 30 Milestones

The impact of the Simula class is jllustrated in Figure
3. Many experimental languages appeared in the 1970s
that incorporated some form of class construct within a
Pascal based syntax. The class also embodied a new
approach to the structuring of data and provided the
first mechanism that enabled user defined abstract
types. An abstract type could now be declared, objects
or instances of that type could be created, and a
unique set of operations defined for these objects.

The modularity concepts that originally appeared in
Simula, the new data structuring concepts, and the more
attractive syntax of Pascal all contributed to the
design of both Ada and Ci+.

The Ada package, structured types, and generics were
all outgrowths of these 1970s language developments.
The goals of Ada however, were still more ambitious.
Ada’s. objectives included all encompassing generality,
i.e. the support of scientific, financial, real time,
and embedded applications. One language was desired
that would satisfy the needs of all of these
application areas.

B. Unger

124

M29: Modularity 1955-1975
~-Fortran SUBROQUTINE

--Simula CLASS

b

-CLU cluster hierarchical models
-Alphard form enviromment

-Concurrent Pascal process class, monitor
-Modula module

-Euclid module

-Mesa, Gypsy, ..

Data Oriented Languages 1960-1975
--Cobol

-~-Simula

-~ IMS/IDS

--DBMS

e

Ada 1975-1983

Figure 3. From Pascal and Simula to Ada

Portability was also a major goal. Not only program
portability, but the ability to easily move software
development tools, projects, and programmers from one
Ada system to another. This is one of the primary
reasons for the reluctance to allow language subsets.

The extremely ambitious goals of Ada have resulted in a
very complex language. This complexity significantly
effects the value of Ada in improving productivity in
the development of simulation. C++, however,
incorporates most of the abstract typing facilities

that originally appeared in Simula while retaining the
simplicity, portability, and efficiency of C.

REFERENCE

Wegner, P. (1976) "Programming Languages - the First 25
years” IEEE Transactions on Computers, 25 (12),
December.

