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ABSTRACT

After a general simulation model is
built, coded, verified, and validated, it is
used to learn about the system(s) under
study, requiring careful prior design of the
runs and appropriate analysis of their
output. This paper surveys methods for
effective and efficient design and analysis
of simulation experiments.

1. INTRODUCTION

Most computer simulations may be
classified as being either deterministic or
stochastic.

In a deterministic simulation, there are
no random components or inputs; an example
would be a differential or difference
equation model with no random components that
is being simulated (as opposed to being
mathematically solved) due to its complexity.
Deterministic simulations are simpler from
the analysis point of view since a single run
of the simulation, under a fixed set of
operating and parametric conditions, will
always produce the same output. This mode of
study is akin to "traditional'" computer work
where repeating a run is redundant.

On the other hand, stochastic
simulations involve as part of their input
the generation of random numbers which in
turn propagate through to the output, making
it random as well. Thus, stochastic
simulations will, in general, not produce the
same output values if run repeatedly with
independent random number streams (called
repllcatlng) For this reason, it is
important to realize that it is generally not
sufficient to go the "usual' programming
route of debugging the program, running it
once, and accepting the resulting output as
"the answer." The purpose of this paper is
to provide an introduction and overview of
the statistical methods that can be brought
to bear in stochastic simulation.

As a simple example which will be
carried throughout, consider a single-server
queueing system with exponential interarrival
times and service times with means 1/ = 1.0
minute and 1/ux = 0.5 minute, respectively.
{(This is usually called the M/M/1 dqueue.)
The system begins empty and idle, and runs
until the 1000th customer has completed his
delay in queue (exclusive of service time).
The output measure of performance is the
average delay in queue,
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Where Dj represents the delay in queue of the
ith individual customer.

This model was simulated, and resulted
in a value of D(1000) 0.501 minutes. Since
this particular result depended on the
partlcular random numbers generated for this
simulation (which are determined by the

generator and seed values specified), we

‘might have obtained a different result with

different (but just as valid) random numbers.
Indeed, Table 1 shows the results of ten
independent replications of this model, using
separate random number streams for each
replication. As can be seen, there is
considerable variability from replication to
repllcatlon, and had we stopped with just a
single run of the system (and the average
delay of 0.501), we would have been somewhat
mislead about the system's expected
performance. Even worse, we might have
obtained (with other random number generator
seeds) a value from the table such as 0.378
or 0.544, which would be quite misleading.
The danger is that we would have no way of
knowing this unless we made multiple
replications.

Table 1: M/M/1 Queue Replications

D(1000)

0.501
0.449
0.540
0.460
0.406
0.485
0.456
0.378
0.408
0.544

Replication
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For simulations such as this one, which
involve specific starting and stopping
conditions as part of the model, the above
approach of replicating the whole model
independently is an appropriate technique for
the basis of a valid statistical analysis.
For other types of simulations, however,
replication may not be a fruitful tack.
formalization of what to do with the
replication results, as well as possible
approaches to steady~state simulations!
statistical analysis, is taken up below in
Section 3.

The
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The remainder of the paper is divided
into two main sections, along the lines of
statistical aspects concerning the input
(Section 2) to simulations and those

involving the output (Séction 3). Section 4
contains some general conclusions. The

purpose of this paper is to draw attention to
these kinds of problems in simulation, rather
than to provide a complete compendium of
‘problems, goals, and methods. On the input
side, Kelton (1984) contains additional
information and references. The reader is
referred to Law (1983) and Welch (1983) for
comprehensive treatments of the statistical
aspects of output data analysis, and for many
references to the simulation methodological
literature; additional classifications of
types of simulations, as well as further
examples, can be found in Kelton (1983,
1985) .

2. INPUT -~ EXPERIMENTAL DESIGN

In this section we describe some of the
statistical concerns that enter into the
simulation process on the input side. In
more traditional laboratory-type
experimentation, these concerns would be
covered by the term experimental design,
in the traditional sense. In simulation
experiments, however, more general kinds
"design" must be done; this is discussed
Section 2.1.

used

of
in

Although the focus of this paper is on
stochastic simulation, it is interesting to
note that many experimental design methods
can be used as well in deterministic
simulations. If there are many parameters in
a deterministic simulation model whose
effects are of interest then a screening
design (see Section 2.4) could be used to try
to identify the important ones. The use of
experimental design in deterministic
simulations is, in a way, easier than in
stochastic simulations, since we don't have
to be concerned about noise, replication,
significance of effects estimates, etc.

The remainder of the section discusses
the use of traditional experimental design in
simulation.

2.1 sSimulation Experimental Design

There are several issues in designing
statistically valid and effective simulation
issues that do not come up in laboratory
experiments. Some of these are discussed
below.

Run Conditions. A simulation must be
started and stopped somehow, and the
decisions on how these tasks are done can
have a dramatic effect on the simulation's
results, and thus on the ensuing decisions.
In our example, we chose to start the system
out empty and idle and terminate it after
1000 customers had completed their delays in
queue. The choice of these conditions is
really a modeling issue, in the sense that
different start/stop rules really define a
different model. More on starting and
stopping simulations will appear in Section 3
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in connection with the difference between
terminating and steady~state simulations.

What to Watch. In our example
simulation, the output variable of interest
was the average delay in queue of the 1000
customers. Most real simulations consume
large amounts of computer.time (not to
mention modeling and coding time on the part
of the analysts), so we would usually want to
get more than just a single number out of a
simulation run. The decision about "what to
watch” as the simulation proceeds must be
made before the simulation is run (unless we
are saving a complete Ytrace" of the
simulation, which typically is a very large
file if the simulation is complicated or
long). Returning to the example, we could
also have observed the maximum of the 1000
delays, or the time~average number in queue,
given by

_ T(1000)
Q(T(1000)) = |Q(t) dt / T(1000),
0

where Q(t) is the number of customers in
queue at time t, and T(1000) is the time (on
the simulation clock) required to observe the
desired 1000 delays; other output measures of
interest would be the maximum value of Q(t),
the utilization of the server (i.e.,

:proportion of time busy), and the value of

T(1000) itself. In addition, we often would
like to know the value of a antile, a value
that "cuts off" a certain proportion of
observed values. For example, it could be of
interest in our example to determine a value
above which it is only 5% probable that the
queue will ever grow; this would be the upper
95% quantile of the distribution of the
maximum value of Q(t).

Random Number Allocation. In some
simulations, it is possible to reduce the
variability of the output by exploiting the
ability to control the random number
generator. Such variance reduction

techniques (the subject of a subsequent

tutorial in this conference, by Professor
Russell Cheng) usually require devoting
particular random numbers from the generator
to particular purposes, and this requires
design, often of the simulation code itself,
beforehand. In particular, one must decide
whether to use the methods of common random
numbers or antithetic variates in designing
the simulation code as well as the runs. See
Schruben and Margolin (1978) for more on
random number allocation.

Identifying Factors. 1In laboratory
experiments, attention is usually restricted

‘to varying the factors that would be

controllable in the real world. -Other
uncontrollable factors are usually not
considered, simply because the experiment
can't control them either. In simulation
experiments, however, all factors are
“controllable" by simply changing the input
parameters. In our example, the  mean
interarrival time 1/) would not usually be
controllable in the real world (or in a
physical experiment with.the corresponding
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real-world system), but there is no reason
why we couldn't vary it in the simulation.
IThis would provide a means for investigating
hypothetical "what if" questions that could
not be investigated in a physical experiment.
Thus, we should be more broad-minded about
what constitutes a "factor" in simulation
experiments.

Determining Factor Combinations. Before
doing the simulation, we must decide at what

levels to set the factors, and in what
combinations. This is where "traditional®
experimental design can help, and is the
subject of the rest of this section. A
comprehensive treatment of experimental
design in general is Box, Hunter, and Hunter
(1978).

2.2 Factorial Designs

Once the run conditions, output
measures, random number allocation scheme,
and factors to be studied have been
determined, it remains to decide exactly
which variants (in terms of particular
combinations of factors) will be considered.

For each factor, we must decide on how
many different values it will take on; these
are called levels of the factor in
traditional experimental design parlance.

For numerical factors (such as the arrival
rate 1/)), there may be a theoretically
‘unlimited number of values possible; for
.other non-numerical factors (such as the
‘queue discipline or whether there is a
‘capacity on the queue length) there may be
‘'only a few that physically make sense. In
'any case, we must decide how many levels each
factor will assume in the experimentation,
and what those levels will be (called the
coding of the factors). These issues will be
‘discussed in Sections 2.3 and 2.4 below.

Just as we must decide what to watch in
the simulation model itself, we should also
ask what kind of information we want from the
‘experimental design. Typically, a good
design will provide information on the effect
of each of the factors alone (called the main
effects of the factors), as well as possible
ijoint action between different factors
+(called interactions between the factors).
Depending on the “richness" of the design
(basically a function of how many simulation
‘runs we are willing to make), varying amounts
of such information can be obtained from the
design. A more ambitious goal would be to
learn something about the functional
dependence of the simulation output
measure(s) on the factors; this is called a
response surface, and usually requires a
reasonably large number of simulation runs.

Finally, all of the design information
discussed in the preceding paragraph (main
effects, interactions, response surfaces) are
possible for each of the simulation outputs
(or responses). For example, the effects of
the arrival rate and the service rate on both
the average delay in queue and the maximum
length of the queue could be studied.

2.3 2¥ Factorial Designs

A useful and economical starting point
for designing simulation experiments is to
allow each factor to assume only two levels.
What these levels are is sometimes a murky
issue; typical advice is to use prior
information about the system to set the
levels at what is felt to be "high" and "low"
values for the factor.

Although it may seem limiting to allow
only two levels per factor, the reason for
this is economy. If there are k different
factors, each of which can assume two levels,
then the number of factor combinations is 2
(whence the name of this technique). For
example, if there are five factors (a modest
number for a complex simulation), then there
are 32 different combinations, each
corresponding to a different simulation model
that must be run (and perhaps replicated).

If we instead wanted to study each factor at
four levels, then the number of combinations
would instead be 4% = 1024. Thus, limiting
to two the number of levels each factor can
assume allows a higher number of factors to
be considered, which is usually desirable, at
least in the beginning stages of simulation
experimentation.

Returning to our example, suppose we
want to study the effects of three factors:
The mean interarrival time 1/, the mean
service time 1/x, and the number of customers
m whose delays are to be observed
(originally, we took m = 1000). For each
factor, we "code" the values using a "+" or
"-" sign; Table 2 gives the coding for the
three factors.

Table 2: Factor Coding for M/M/1 Queue

Factor
1/x 1/u m
- 1.0 0.5 100
Level |
|+ 1.1 0.8 1000

Notice that the (-,-,+) factor
combination is the one originally used. Now,
we would like to learn about what happens if
the mean interarrival time is increased to
1.1, the mean service time is increased to
0.8, and the length of the simulation is
decreased to 100 customer delays.

The first four columns of Table 3 spell
out exactly what each of the factor levels
will be for each of the 23 = 8 factor
combinations, or runs of the experiment.
This is called the design matrix for the
experiment, and is important for setting up
the simulations as well as for the later
analysis of the design's results.
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Table 3: Design Matrix and Results for M/M/1
Queue '

Factor

/p

Response

ﬁ(m)

g
=3
[
~
>

0.681
0.805
0.674
1.256
0.449
0.574
2.463
2.091

ONA AW l
U+
+H 1L+
44+ 00

The final column in Table 3 gives the
results of the average delay in queue of the
m customers for each factor combination.
{Note that run 5 -- the original
configuration =-- has a response of 0.449,
different from the 0.501 originally obtained,
again displaying the randomness of output
from stochastic simulations.)

To study the effect of changing a factor
from its "-" level to its "+" level, we
simply look at the average response when that
factor is at its "+" level, minus the average
response when the factor is at its "-" level.
For factor 1 (1/)), this is

(0.805 + 1.256 + 0.574 + 2.091)/4
- (0.681 + 0.674 + 0.449 + 2.463)/4,

which is 0.115. The interpretation is that
the average, or main effect of changing the
mean interarrival time from 1.0 minute to 1.1
minutes was to increase the average delay in
queue (of m customers) by 0.115 minute.
Similarly, the main effect of changing the
mean service time (from 0.5 minute to 0.8
minute) was to increase average delays by
0.994 minute, and the main effect of changing
the number of customers from 100 to 1000 was
to increase average delays by 0.540 minute.

It is also possible from designs of this
type to study how two (or more) factors
JAnteract with each other; for this we refer
the reader to Box, Hunter, and Hunter (1978).

This example, in addition to
-demonstrating how factorial designs can be
applied in simulation, illustrates two
important shortcomings as well. First, the
results obtained are in general dependent on
the particular levels we chose for the factor
coding (except in the unlikely situation that
the output response is really a linear
function of the factors). The second (and
.probably more serious, at least in stochastic
simulation) defect is that the above analysis
was based on a single replication of each
model variant. (Does it even make intuitive
physical sense that increasing the mean
interarrival time from 1.0 to 1.1 -- thereby
making arrivals further apart -- should make
the queue more congested, as evidenced by the
positive main effect estimate of 0.115?) A
better tack would be to replicate the entire
experiment some number (say, n) times, and
obtain n independent estimates of each main
effect, interaction, etc. These could then
‘be averaged across replications of the design
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to obtain much more stable effects estimates.
2.4 Screening Designs

Many simulations involve a large number
of parameters, operational rules, and
structural features that are potentially
interesting factors in a course of simulation
experimentation. The 2® factorial designs
just discussed may not be practical for such
situations. For example, a simulation with
ten. factors (not an unreasonably sized model)
would require 2 = 1024 separate factor
combinations; if the design were replicated
five times (a modest amount of data
collection from the statistician's point of
view), then we would have to make some 5120
separate simulation runs.

This being clearly unworkable for large
simulations, a single run of which may be
quite expensive, we must either reduce the
number of factors (which may be undesirable),
or turn to a different type of experimental
design. Fractional factorial designs have
been developed that call for only a fraction
(half, fourth, eighth, sixteenth, ...) of the
2K runs in the "full" factorial designs
discussed in Section 2.3; see Box, Hunter,
and Hunter (1978). Basically, in carrying
out a fractional rather than a full design,
we give up the ability to estimate higher-
order interactions (which may not be of much
interest anyway) and receive in return a more
modest requirement in terms of the number of
runs. This is particularly useful for
"screening out" factors which appear to have
little or no effect on the responses,
reducing the number of important factors for
more intensive study later. Further types of
screening designs, specifically in the
simulation context, are discussed by Smith
and Mauro (1982).

3. OUTPUT —- STATISTICAL ANALYSIS

A carefully designed course of
simulation experimentation sets the stage for
an appropriate and effective analysis of the
output from these simulations. Many of .the
ideas of "standard" statistics can be used in
the analysis of simulation output data, but
care must be taken to apply them
appropriately. Failure to do so can result
in serious errors of interpretation,
rendering the simulation effort not just
useless, but actually harmful. As was
demonstrated in Table 1, the output from
stochastic simulations is variable, or
random, and thus requires some sort of
statistical analysis for its proper use and
interpretation. Also, the experimental
design example from Section 2.3 illustrated
the questionability of making a decision on
the basis of single runs of systems. (The
problem in that example is that increasing
the time between successive arrivals appeared
to lead to an increase in congestion -- as

measured by average delay in queue ~~ rather

than the more likely decrease.)

In this section we will mention the main
threads of problems, goals, and solution
approaches, without attempting to provide a
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complete compendium of the (by now) extensive
literature on the statistical analysis of
simulation output data; again, the reader is
referred to Kelton (1983, 1985) for previous
presentations in prior years' Winter
Simulation Conferences, and to Law (1983),
and Welch (1983) for more complete surveys of
the subject.

3.1 Time Frames of Simulations

Traditionally, dynamic simulations have
been classified as being either terminating
or steady-state.

In a terminating simulation, the model
is defined relative to specific starting and
stopping conditions, and the output responses
are thus also defined relative to these
beginning and ending rules. In our M/M/1
queue example, we said that the starting
conditions were that the system was empty and
that the server was idle, and the terminating
conditions were that 1000 customers had
completed their delays in queue. As we saw
in Section 2.3, changing one of these
(specifically, altering the 1000 to 100) led
to a change in model behavior, and really
constituted a different model (parametrically
if not structurally). Establishing
appropriate start/stop conditions for a
simulation model greatly simplifies the
statistical analysis problem (see Sections
3.2 and 3.3 below), but is by no means
obvious in many applications. This is really
a modeling issue, and should be made, so far
as possible, in accordance with the way the
corresponding real-world system actually is
thought to start and stop.

on the other hand, a steady-state
simulation has as its goal the estimation of
Jong-run (or steady-state) system performance
measures. A steady-state simulation of the
M/M/1 queue might seek to estimate the long-
run expected average delay in queue, or the
steady-state expected proportion of time the
server is busy. Notice that no initial
conditions or terminal conditions for the
simulation are specified, which creates a
real difficulty for the simulator, since such
obviously must be specified in order to run
the simulation. In particular, the
performance measures are specified in a way
that is independent of the initial conditions
used in the simulations, and over a
theoretically infinite period of time. The
reality is, however, that in a simulation we
must both start and stop, and it does matter
how these tasks are done. These problens
indicate that steady-state simulations are
much more difficult and costly to carry out
than are terminating simulations, and the
statistical analysis problem is also much
more difficult (see Section 3.3). It is
probably good practical advice.to aveid doing
a steady-state simulation if possible, but
there are situations in which a steady-state
simulation is really the appropriate goal
(for example, in telecommunications systems).

Some simulations may not fit into either
the terminating or steady-state mold. For
example, we might alter the arrival process
in our example M/M/1 model to allow for peaks
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and troughs of arrival rates, perhaps in a
periodic or cyclical way. In this type of
model, it could conceivably be of interest to
carry out a terminating-type simulation
defined across some number of complete cycles
of the arrival pattern. We might also want
to do a steady-state~type analysis in which
system performance is measured over a large
number (theoretically infinite) number of
arrival cycles. In the latter case, care
should be taken that it makes sense to think
of some sort of steady state's being reached;
for example, in a model with an upward trend
in the arrival rate cycle, it would probably
be expected that congestion would grow
without bound, rendering a steady-state
simulation meaningless.

3.2 statistical Methods for Terminating
Simulations

We have already seen the basic
methodology for providing information for
appropriate statistical analysis of
terminating simulations -- replication of the
entire simulation. Perhaps the most
important idea here is that an entire
simulation run provides only a sample of size
ocne. To be sure, a single replications
produces many numbers (e.g., 1000 separate
delays in queue), but these numbers go
together in concert to determine the final
output measure of performance. In order to
obtain additional data for the purpose of
statistical analysis, it is necessary to
replicate the entire simulation some number
of times.

In general, let X+ represent the output
measure from the jth o% a total of n
replications of the model, and let

_ n
X(n) =32 Xj / n
j=1

and

s2(n) =2 (X5 - X())2 / (n - 1)

=1

be the sample mean and variance of the
replication data. These statistics provide
the basis of several usual statistical
descriptors, such as a hypothesis test for
the expected value of the output measure,
E(Xj), or a confidence interval for E(Xj).
The”latter is particularly useful, and ¢an be
formed (at confidence level 1 - ) as

+

X(n) * tnoy,1-0/2 s(M)//A,

where ty_q 1-2/2 is the upper 1-eo/2 critical
point of Student's t distribution with n-1
degrees of freedom. The validity of this
interval depends on the assumption that the
X4's have a normal probability distribution,
a”fairly reasonable assumption in most (but
certainly not all) cases. Carrying this
computation out for the n 10 replications
from Table 1 (where X; = 0.501, X, 0.449,
etc.) we get a 95% (i.e., o = 0.05)
confidence interval of 0.463 % 0.040, which
provides an easily interpreted statement of
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how accurately we feel we have estimated the
expected average delay in gueue of the first
1000 customers to this system.

There are several drawbacks to this
methodology. First, the normality assumption
may not be reasonable, rendering the above
confidence interval invalid; in this case, a
nonparametric method might be considered.
Secondly, the interval in a given case might
be too wide to be of any practical use; more
replications (i.e., higher n) can remedy
this, but only at the ébvious cost in
computing. Finally, it may be difficult to
choose a confidence level appropriate for the
application; higher confidence is certainly
desirable, but this would have the
undesirable side-effect of increasing the
interval width.

The replication approach provides the
basis for appropriate statistical analysis
(of many types, in addition to confidence
intervals), and should always be done in a
terminating simulation. Law (1980) considers
additional statistical aspects of terminating
simulations.

3.3 Statistical Methods for Steady-State
Simulations

Finding an appropriate, reliable, and
efficient method for statistical analysis of
‘steady-state simulations is much more
difficult, and has been the subject of a
substantial amount of recent research; see
Law (1983). We will only briefly indicate
here some of the possibilities.

Replication could be used for a steady-
state simulation as well as for a terminating
simulation, but one must take care to start
and stop the simulation so that steady-state
conditions are observed. Naturally, this
involves long simulation runs, but it is
usually difficult to decide just how long is
long enough. Furthermore, some attempt
should be made to initialize the simulation
in a way that is thought to be reasonably
representatlve of steady state conditions.
While it is easy 'to say all this, it is often
difficult to carry it out for a complex
model. If replication is used in steady-
state simulations, however, it is very
Amportant that attention be given to these
matters to avoid biasing the simulation
results; this difficulty is known as the
initial transient or startup problem in the
simulation literature.

To get around the initial transient
problem, several methods have been developed
which call for only a single "long" run, so
that the transient period will have to be
passed through only once. This is really a
single “"replication," and we thus lose the
1ndependent observations we got from multiple
repllcatlons. The difficulty comes in
obtaining an estimate of the variance of the
point estimator, and several methods have
been proposed. Batch means breaks the single
output record into some number of "batches"
of contiguous points, whose averages are then
taken to be independent; they aren't really
independent, and so one usually takes the
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batches to be quite large (hundreds or
thousands of individual points) in an attempt
to reduce the correlation between the
batches. Time series modellng fits a
relatively simple time series model (e.q.,
ARMA) to the output record and uses the
estimates of the parameters to obtain a
variance estimate. Spectral analysis is a
way of estimating the autocorrelation in the
output record to estimate the desired
variance. The redenerative method makes a
special probabilistic assumption about the
process being simulated, and uses this to
obtain a more rigorously justified confidence
interval. Standardized time series makes a
weaker assumptlon about the process, and also
yields a rlgorous method for statistical
analy51s that is in addition general and
simple to apply.

No method for steady-state statistical
analysis is really cheap and simple.
Probably the best one can do in practice is
to become familiar with the available
methods, and attempt to use an appropriate
technlque for a given problen.

3.4 Additional Statistical Problems, Goals,
" and Methods

The above discussion focuses on the
estimation of a single output measure from a
single simulation model. Usually, our goals
are quite a bit more ambitious than this,
including simultaneous estimation of several
output measures from the same model,
comparison of several alternative model
designs, selection of one or several "best"
designs from among the alternatives, and
optimization of design by means of
simulation. These subjects will be taken up
in a subsequent tutorial at the conference,
by Professor Peter Glynn.

There also exists in simulation the
opportunity to "control" the randomness, due
to the controllable nature of computer-
generated random numbers. We can take
advantage of this ability to reduce the
instability, or variance, of the simulation
output. The result is that we get more
accurate estimates for a given computing
budget, or are required to do less computing
to attain a desired degree of accuracy. Such
variance reduction techniques are the subject
of another subsequent tutorial at the
conference, by Professor Russell Cheng.

4. CONCLUSIONS

The purpose here has been to call
attention to the fact that statistical
analysis has an important role to play in a
simulation project. There has been an
understandable tendency to ignore these
aspects, since they are to some extent
Youtside" the modeling and coding effort,
vhich typically consumes substantial
resources. However, unless some attempt is
made to recognize and estimate the
uncertainty in a stochastic simulation's
output, the very real possibility exists that
all the work that went into modeling and
coding will be wasted.
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