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ABSTRACT

In this article, we introduce the reader to
discrete~event simulation. The concepts of system
and model, system state, entities, attributes and
delays are defined in the general context of simula-—
tion. Using these concepts, event-scheduling, pro-
cess—interaction, and activity-scanning perspectives
are briefly described. To demonstrate the use of
the concepts, a discrete system is modeled using the
event-scheduling perspective., Simulation languages
are classified in terms of the type of system being
modeled, the application level, and the perspective
taken. The features of a simulation language are
discussed. Lastly, basic information is provided
about an assortment of discrete~event simulation
languages.

1. INTRODUCTION

This tutorial provides an introduction to the
main concepts of discrete-event simulation, a simple
example illlustrating these concepts, and a discus-
sion of the main classifications and features of the
many simulation languages available for discrete-
event simulations. The article is introductory in
nature and is meant for the reader new to discrete
simulation.

Many important aspects of conducting a simula-~
tion project are not discussed in this article, for
example, choosing probability distributions to
represent input random variables, validation and
verification, and analysis of the output statistics.
(See Banks and Carson [1984] for a discussion of all
the important aspects of a simulation study. See
Carson [1986] for a practical discussion of valida-
tion and verification of simulation models.)

2. CORCEPTS OF DISCRETE-EVENT SIMULATION

In this section, we discuss the concepts of
system and model, system state, eantities and attri-
butes, events, activities, and delays. Then dis-
crete-event simulation is defined, and contrasted to
continuous simulation. Using these concepts, three
modeling perspectives have been developed: event~
scheduling, process-interaction, and activity-scan~-
ning. We show how these concepts are used to model
a discrete system using the event-scheduling per-
spective. The process-interaction and activity
scanning perspectives are discussed briefly in
Section 3.
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2.1. Main Concepts

A model is a representation of a system. The
model may be mathematical, descriptive, logical, or
some combination of these elements,

System state, or merely state, is a collection
of variables that contain all the information neces-
sary to describe the system at any point in time.
Thus, state is a functiom of time. Time itself will
be represented by a variable called CLOCK.

An entity is any object or component of the
system which requires explicit representation in the
model . Examples of entities include parts, pro-
ducts, machines, etc. Each entity may have one or
more attributes. The priority and due date of a
part are two possible attributes of the part entity.
Speed and changeover time for a machine are possible
attributes of a machine entity.

An activity is a duration of time of definite
length. The length of an activity may be constant,
random (specified by a probability distribution), or
given as a function of present or past system state.
At the instant that an activity begins, its duration
is known within the model. 1In contrast, a delay is
a duration of time of indefinite length. At the
instant that a delay begins, its duration is not
known; it is conditional in nature and will last
until the occurrence of some future event whose time
of occurrence is presently not known. Two examples
of activities are a processing time which is always
4.3 minutes; and the time to failure of a machine,
which is defined to be exponentially distributed
with mean 2.4 hours. An example of a delay is the
waiting time for a mechanic to reach a down machine.
The length of the waiting time may depend on compli-
cated system conditions such as the number of other
machines that are down, what (if any) other machines
break down before the mechanic can reach the machine
in question, and the relative importance of this
machine. In other words, its duration is not known
when it begins.

A discrete-—event simulation model is one in
which system state changes only at a set of discrete

points in time called event times. Between two
successive event times, system state does not
change. The system state at an event time is called

a snapshot. A discrete—event simulation is carried
out by increasing simulated time in some manner and
updating system state when necessary. Thus, such a
simulation proceeds from snapshot to snapshot until
it is stopped. In contrast to a discrete-event
simulation, in a continuous simulation the system
state is allowed to change continuously over time.
Continuous simulations are not discussed in this
tutorial,
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Finally, observations of the simulated system
are collected over the course of the simulation and
are used to estimate the system performance measures
of interest,

2.2 Modeling Perspectives

The three most prevalent modeling perspectives
taken by computer simulation languages for discrete-

event simulations are event scheduling, process-—
interaction, and activity scanning. We briefly
discuss the first, namely, event scheduling, and

give an example. The other two perspectives are
discussed in Sectiom 3.

2.3 Event Scheduling

When using the event scheduling perspective,
the modeler concentrates on events and their effect
on system state. To model a system, the modeler
must identify all events, when they can occur, and
how system state is affected., The simulation pro-—
ceeds by arranging all events in chromnological order
(not all at once, but as the simulation is being
carried out) and proceeding from snapshot to snap-
shot. In this manner, an artifical history (or
simulation) of the system is developed.

In simulation languages which take the event
scheduling perspective, algorithms and utilities are
provided to manage the occurrence of events. Those
events which at any given simulated time will occur
at some known, definite future simulated time, are
listed on the so~called future event list (FEL).
Each event on the FEL has an associated event time.
The event on the FEL with the smallest event time is
called the imminent event, i.e., it is the next
event to occur.

EXAMPLE : Consider a single molding machine. We
assume that raw material is always available, and
that molding time for one part is exactly 1 minute.
When one part finishes being molded, the next one
begins molding immediately, provided the machine is
running. The machine is subject to random failures.
The time until failure is 5 minutes with probability
0.6, or 7 minutes with probability 0.4. Repair time
is always 2 minutes. We wish to simulate for 20
minutes of operation.

Clearly, this example is an over-simplified
version of any real system. We use it merely to
illustrate the concepts previously discussed:

System state: The status of the molding machine (up

or down)
Entity: Machine at speed 1 part/minute
Events: Failure of the machine

Repair of the machine

Stop the simulation (at time 20)
Activities: Time to failure (random)

Time to repair (constant)

Delays: (Nome)
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First, we need a way to simulate randém activi-
ty times such as the time~to-failure of the machine.
All simulation languages provide a random number
generator which will generate a sequence of numbers
between 0 and 1. These numbers are sometimes called
pseudo~random numbers, because they are supposed to
be uniformly and independently distributed on the
interval (0,1). For manual simulations, ome could
use dice, shuffled cards, or a table of random
digits appearing in many simulation and statistical
textbooks. Next, the original random numbers have
to be transformed into the desired random values, in
this case either a 5 or a 7. If the random number,
call it R, is between 0 and 0.6, then return with a
time~to-failure of 5 minutes; but if R is between
0.6 and 1.0, then return with a value of 7 minutes.
This technique can be generalized to generate values
representative of any probability distribution. For
the purposes of this example, we assume that random
numbers have been generated and transformed into the
following values:

Successive times-to-failure: 5 7 7 ...

In a longer sequence, the 5's and 7's would appear
in random order with about 60% fives and 40%
sevens.

Next we need a way to generate event times
during the course of the simulation. As a general
rule, event times are not all generated at simulated
time O, but rather are generated only as needed. In
this simulation, the event time for the next failure
of the machine will be generated at the simulated
instant when the machine has just been repaired and
is beginning a runtime, by the formula:

event time for next failure event =
CLOCK + time-to-failure,

where CLOCK, the current simulation time, is the
instant of repair, and time-to-failure is generated
at random (and will be 5 oxr 7).

Before beginning the simulation, we need to
make assumptions concerning initial conditions. We
assume that at simulated time 0, the machine is
freshly repaired and just beginning a runtime.

Finally, we set up a standard simulation table
to display the simulation snapshots. (See Table 1.)
The left-most column is labelled "CLOCK" and repre-
sents current simulated time. It is initialized to
a value of zero. The second column is labelled
system state, and in general would be a list of
variables; in this example, it is merely machine
status (up or down), The third column is labelled
"FEL" for future event list. The right-most column
is labelled "“Statistics"; in cthis example, only one
statistic is computed, namely, number of parts pro~
duced from time 0 to the current simulated time.
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Table 1: Simulation Table for the Single Machine Problem
CLOCK System State FEL Statistics
No. parts
Machine status produced
0 up Next failure at 0+5 0
Stop at 20
5 down Next repair at 5+2 5
Stop at 20
7 up Next failure at 7+7 5
Stop at 20
14 down Next repair at 14+2 12
Stop at 20
16 up Stop at 20 12
Next failure at 16+7
20 up Next failure at 23 16

Each row of the table represents a snapshot of
the system at the simulated time given by CLOCK.
For example, the first row, with CLOCK set to O,
represent initialization; it gives machine status as
up, the "Stop the simulation event" with event time
20, the first failure to occur at time 5, and number
of parts produced initialized to zero. The simula-
tion proceeds by moving from one snapshot to the
next until the "stop" event is executed. Note that
at any given simulated time, the FEL consists of a
list of all known future events which have been
generated at the current or some past simulated
time. Thus the "Stop at 20" event is carried along
until time 16, at which time it becomes the imminent
event,

In interpreting the simulation table, note that
system state does not change between two successive
snapshots, For example, machine status is up from
time 0 to time 5, while machine status is down from
time 5 to time 7. Finally, the event times are
written as "a + b" simply to illustrate how they are
computed.

3. SIMULATION LANGUAGES

In this section we classify simulation Llan-
guages on the basis of the type of system being
modeled, the application of the simulation language
for a general or special purpose, and the modeling
perspective taken. Next, we describe many features
that a simulation language may possess. Lastly, we
provide some basic informtion about the various
discrete—event languages that are available.

3.1. Level of Application

Simulation languages can be classified at

three different levels:

1. System
2, Application
3. Structural
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3.1.1, System Level

A language can be classified on the basis of
the type of system modeled. The two types of sys-—
tems that are generally recognized are discrete and
continuous,

In continuous systems, system state can change
continuously over time. Continuous simulation
models employ differential equations or difference
equations which describe the rate of change of the
state variables over time. These equations are
usually solved at specified increments of time to
determine the current value of all state variables.

In discrete systems, the state variables change
only at discrete points in time. These times were
referred to previously as event times. Systems
involving waiting lines, inventory operations, many
manufacturing operations, and material handling
systems are usually regarded as discrete systems.

3.1.2. Application Level

Discrete—event simulation software can be
classifed as special purpose or general purpose.
Special purpose simulation languages are designed to
model specific’ environments. Special purpose lan-
guages offer speedier model development. An example
application of a special purpose language is the
modeling of a batch manufacturing facility which
uses conveyors and AGVs as the material handling
devices. ;

A special purpose language which requires only
the definition of the environment being simulated is
called a "simulator." This is in contrast to gene-
ral purpose simulation software products which are
commonly called a "simulation language.”" In recent
years, general purpose simulation languages have
been adding modules for conveniently modeling vari-
ous material handling aspects. Thus, some general
purpose languages are adopting the features of simu-
lators.
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3.1.3. Structural Level

The structural devel is concerned with the
modeling perspective taken by the discrete-event
language., Classification at this level is meaning-

ful for general purpose simulation languages only,
as the simulators can be considered as data driven.
The three most prevalent orientations are as
follows:

Event Scheduling: In this perspective, a sys-—
tem being modeled is viewed as consisting of a num-
ber of possible events at which state changes take
place. The modeler defines the events, and develops
the program and logic associated with each event.
The event scheduling perspective was discussed pre-
viously.

Process Interaction: Simulation languages that
adopt this perspective allow a modeler to represent
a system as a set of processes. A part flowing
through several workstations is an example of a pro-
cess., Another name used to represent process inter-
action simulation languages is mnetwork simulation
languages. In virtually all network simulations, a
block diagram or network is drawn first, followed by
statements. which represent the blocks.

Activity Scanning: In this perspective, the
modeler defines the «conditions necessary to start
and end each activity and delay in the system. As
mentioned previously, an activity is a duration of
specified length and a delay is a duration of un-
specified length. Simulation time is advanced in
equal increments, and if the conditions are appropri-~

ate, an activity will be started or terminated.
Activity scamming is not popular in the United
States.

3.2. Features of a Simulation Language.

There are numerous features that a modeler may
expect from a simulation language. A few of the
prominent features are as follows:

1. Graphics/animation

2., Database management

3. Material handling/manufacturing

4. Interactive debugging

5. Support/documentation

6. Microcomputer version

These features will be discussed briefly in the

following paragraphs:

3.2.1. Output Graphics.

Qutput graphics can be divided into two cate-
gories, static and dynamic. Static graphics are
those in which the picture is a constant, i.e, the
picture is not changing over time. Static graphics
may take the form of pie charts, bar charts, histo-
grams, line graphs, and plots. Dynamic graphics are
those in which the picture depicts a variation in the
state of the system, i.e., the picture is changing
over time. Dynamic graphics may be divided into
statistics/states and animation. Dynamic statis—
tics/states take the same forms as the static graphic
pictures except they change over time as the statis-
tics and states change. Animated graphics look like
the system being simulated, in varying degrees of
sophistication and detail. Animations can be further
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divided into two categories. The first category are
those which use character graphics. The second cate-

gory wutilizes pixel (picture element) graphics.
Cartoon animation is accomplished with pixel
graphics.

3.2.2, Database Management.

Some realistic simulation models require signi-
ficant amounts of problem specific input data.
The amount of data may increase if there are various
input scenarios which are to be simulated., Usually,
many replications of a simulation are conducted, and
the outputs and/or their summaries are to be saved.
Combine these data management tasks with the analy-
sis of input data to determine frequency distribu-
tions and the storage of externmally loaded sequen-
tial files, and the need for a database management
system becomes apparent.

3.2.3. Material Handling/Manufacturing

In realistic manufacturing simulations, the
material handling aspects are critical. Using a
general purpose simulation language without special
features for material handling causes difficulties
in the modeling task. A very lengthy program is
necessitated. Modules that provide the capability
to model couveyors, cranes, AGVs, towlines, etc.
can reduce model development time substantially and
also reduce the debugging effort.

3.2.4. Interactive Debugging

Traces are a common method employed for debug-
ging a simulation model. However, debugging is
greatly simplified if the modeler can control the
simulation, one step at a time, and can access simu-
lation output during the stepping process.

3.2,5. Support/Documentation

Users should consider the support provided by a
vendor when selecting a simulation language. Ade-
quate support implies clear and understandable docu-
mentation. The vendor must have staff persons who
are readily available to answer user questions. The
best way to determine the quality of the support
offered by a vendor is to ask other users of the
software about their experiences,

3.2.6. Micro Versus Mainframe

The number of simulation languages available on
the microcomputer is large and growing. The ques-
tion often arises concerning the selection of a
simulation language, i.e. "Should we purchase the
microcomputer or mainframe version?". Small simu-
lation models can be run on the microcomputer, but
large models are very time consuming using these
machines. The problem is compounded when numerous
runs must be made to attain confidence in the output
that is generated, 1In defense of the microcomputer,
the user is not at the mercy of the system operators
who take the mainframe down for repairs, change
operating systems, lock files, and so on. Some
simulation languages have versions which are compat-
ible on both levels.
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3.3, Additional Factors

In selecting a simulation language, the poten-—
tial purchaser must consider a number of factors in

addition to those mentioned above. Briefly, these
factors include the following:

Syntax: The syntax used in the simulation
language should be easy to decipher and mot require
an excessive amount of innocuous information from
the user.

Structural Modularity: Simulation languages
should allow development in modules such as model
description, experimental conditions, output report
requirements, etc.

Modeling Flexibility: A wide range of problems
can be simulated when the language allows event
scheduling, process interaction, and some combina-
tion of the two perspectives.

Modeling Conciseness: Whether using the event
scheduling or process interaction approach, powerful
blocks/nodes or subroutines can enable timely
development of models.

Statistics Generation: Comprehensive statis-
tics should be provided by the simulation software,
or the statistics should be easy to develop.

Cost: The cost of the various simulation pack-
ages varies widely from a few hundred dollars for a
microcomputer version to over $50,000 for a material
handling software package with animation.

3.4, Basic Information on Discrete-Event Simulation
Languages,

. There are many simulation languages that are
ava:!.lable, a number of which are being described
during this Winter Simulation Conference and many of
which are being exhibited. 1In Table 2 we offer a
concise guide to the features of some of the more
popular of these languages. This table is a modifi-—
cation of a similar ome in a recent series on simu-
lation (Haider and Banks, 1986), Since there are so
many discrete simulation languages, it is not pos-
sible to describe all of them. We apologize to

those vendors whose language is not represented in
Table 2.

I?ote in Table 2 that references are given in
the right hand side., These references offer addi-
tional information about the languages. Some
further explanation of Table 2 is warranted as
follows:

'Letters G and S denote general purpose or
special purpose software, respectively. If the
software is special purpose then NA for not appli-
cable is indicated in the orientation column.
Otherwise, the perspective is indicated as E for
event scheduling, N for network or process inter—
action, and U for user written process interaction.

_ Interactive debugging capability in SLAM II is
avalllable through TESS for its mainframe version;
and in SIMSCRIPT II.5, it is available for the PC
version.

Table 2: Basic Information on Simulation Software
General Built in
Purpose Material BC/ Interface
Simulation Special Interactive|Handling Mainframe| With a
Software Purpose|Perspective| Debugging | Feature| Animation Version |Data Base References
AutoMod s NA x x{AutoGram) M AutoMod User's Manual
GPSS V G N M Gordon
GPSS/H G N x x (TESS) M x (TESS) |Henriksen & Crain
GPSS/PC G - N x P GPSS/PC User Manual
MAP/1 s NA x M x (TESS) [Rolston & Miner
PCModel G u x x P White
RESQ [ N x - Chow, MacNair, & Sauer
SEE WHY G E x x P/M Tom
SIMAN [ E, N x x x {Cinema) P/M Pegden
SIMFACTORY H NA x x P Not available
SIMPLE_1 G N x x P Cobbin
SIMSCRIPT YI.5 G E, U X x
(PC only) (Simanimation) P/ Russell
SLAM 1I [ E, N x (TESS) | x (MHE)| x (TESS) P |x (TESS) [0'Reilly
XCELL s NA x x P Conway, Maxwell, & Vorona
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Under the column entitled
Feature", M

""Material Handling

an "x" indicates that the capability to

model some aspects of material handling systems

exists in the software. SLAM II offers material

Eandling capabilities in a special extemsion called
MHE,"

In simulation

some software, animation is
available as a special module. For example,
AutoGram provides animation for AutoMod. Animation

for SIMAN and SIMSCRIPT II.5 is currently available
for the PC versions of the language. In SLAM- II,
animation is available only for the mainframe ver-
sion,

The next column indicates whether the software
is for the mainframe (M) or the personal computer
(P) or both (P/M). Although the distinction between
the personal computer and the mainframe is clear at
present, the différence between the two is narrow-
ing. Machines of the size of an IBM PC AT and below
are personal computers to us, and machines in the
IBM 43xx class and larger are mainframes, Although
some simulation software £alls between these two
extremes, the purpose of the information in this
column is to indicate the relative nature of the
hardware requirements.

Interfacing with a database management system
is available in MAP/1, SLAM II and GPSS/H using
TESS. TESS is available only for selected minicom-
puters and mainframes of SLAM II.

The complete references indicated in the last
column of Table 1 are given at the end of this
tutorial. :
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