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INTRODUCTION

Effective execution of managerial responsibility is a
perplexing task of ever increasing complexity. This
is the result of unpredictable world, national and
local economies, the pervasive impact of federal and
state regulation, the capricious nature of the consum-
ing public and the relentless and accelerating advance
of modern technology. The contribution of each of
these elements of business 1ife has led to the
perceived need for larger and more complicated organi-
zational structures to effectively carry on business
activity. Consequently the manager 1is forced to
recognize and understand the interaction of an
increasing number of components within his own organi-
zation and its environment. With that recognition and
understanding effective management is certainly not
assurred. But the manager who does not recognize and
understand the forces which should affect and are
affected by his decisions has little hope of effec-
tively discharging the responsibilities of a
managerial position.

Fundamentally a manager is a decision maker. The
process of making a decision involves the identifica-
tion, evaluation and comparison of alternative courses
of action. Each action is evaluated on the basis of
the decision maker's objectives in light of a varlety
of conditions which may prevaill during the period for
which the decision will be in effect. Because of the
number of factors which must be considered and the
complexity of their interaction, the manager often
turns to a system model for quantitative analysis of
the impact of each altenative decision under each set
of conditions anticipated. Such an analysis can offer
significant dinsight into the propriety of each
decision alternative.

Before introducing the subject of models and modeling,
a discussion of the context in which the need for
models arises 1s in order. The need for a model
usually is the result of identification of a problem
which requires a solution. The problem solving
process is often referred to as Systems Analysis.

SYSTEMS ANALYSIS

For the purpose of this discussion the systems
analysis process starts with the identification of a
problem and includes those activities which 1lead to
the identification and implementation of a solution.
While the specifies of the activities included will
depend upon the nature and context of the problem and
the people who must deal with the problem, several
classes of activities or stages of the systems
analysis process may be distinguished and include:

l. Problem identification

2. Specification of objectives
3. Definition of the system

4, Model formulation

5. Model verification

6. Model validation

7. Model implementation

8. Model use

9. Solution identification
10. Solution implementation
11. Model revalidation

Of course many problems are appropriately solved
without going through each of the steps outlined
here. Moreover, even when most or all of these steps
are mnecessary, they may not be carried out as
formalized procedures. TFinally even when there is a
need for formalization of each activity, the solution
to the problem may surface prior to the point
indicated in this 1ist of activities, step 10. For
example, at the outset of a study the analyst may
envision the need for a symbolic model to evaluate
potential solution alternatives. Before such a model
can be formulated the analyst must define the system
which is the context for the problem. In the course
of studying the behavior of the system the analyst
may uncover the solution to the problem, eliminating
the need for steps 4 through 8 and step 1l.

When all eleven of the activities of systems analysis
must be carried out as formal procedures, they do not
flow in the simple orderly pattern which the list
given above might suggest. A more realistic repre-
sentation is given in Figure 1. It is not unusual
for several actlvities to proceed im parallel.
Moreover, an activity presumed to have been completed
at one point in the process may require reevaluation
and further study in light of inadequaciles revealed
at a later stage in the analysis. Such inadequacies
often surface during the vallidation stages of the
analysis, and properly so, since the point of valida-
tion 1is to reveal inadequacies in previous steps in
the analysis.

A brief examination of the elements of systems
analysis and thelr interrelationships would seem to
be in order at this time, Hopefully, this examina-
tion will provide a frame of reference for the
introduction to modeling which is given in the
section which follows.

PROBLEM IDENTIFICATION

Problems are recognized by the symptoms which they
display. Falling revenue, rising cost, poor profit
performance, customer complaints, substandard
quality, excessive production down time, declining
sales, labor dissatisfaction, and labor turnover are
just a few examples. Often the remedial action
necessary to resolve the problem is evident from the
symptoms displayed. The symptoms may also polnt to a
problem which requires no remedial action at all
because the problem is minor, because it is viewed as
only a temporary dilsturbance, or because the effort
required to resolve the problem cannot be justified
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Figure 1: Flowchart for Systems Analysis
by the benefits which would result, Simply stated, solved, which objectives should be achieved and which
some problems are just not worth solving. solutions should be implemented. The decision maker
may not be involved in the day to day activities
Organizations are controlled by decision makers who assoclated with the development of a solution to the
"decide” what courses of action should be taken and problem. Nonetheless, he must be convinced that the
see to the dimplementation of their decisions. solution proposed will solve the problem. Otherwise
Decision makers determine which problems should be the solution will not be fmplemented. Thus the role
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of the decision maker is of fundamental dimportance to
the successful solution of a problem. In general, the
more involved the decion maker 1s in the process of
seeking a solution, the greater will be his under-
standing of and confidence in the solution finally
achieved, which in turn enhances the likelihood that
the solution will be implemented.

SPECIFICATION OF OBJECTIVES

The individual who assigns the task of finding a
solution to the analyst is not necessarily the
decision maker or may be only one of the decision
makers concerned with the problems The analyst's
first problem is then identification of who he is
working for; that 1s, the decision maker with the
problem. In a large organization this may not be a
simple exercise. Intergrally related to identification
of all relevant decision makers is the task of
defining the characteristics which a solution to the
problem should possess. Otherwise the analyst has no
way of knowing when a solution has been achieved.

Since a problem solution will be {mplemented only with
the agreement of the decision maker, the analyst must
understand the objectives of the decision maker. An
objective in this context is an outcome of a course of
action which the decision maker desires. Thus, from
the analyst's point of view a course of action is a
solution to the problem i1f it results iI1n outcomes
which lead to achievement of the decision maker's
objectives. 1In this sense the objectives define the
characteristics of a solution. This 1s not intended to
suggest that such a solution is possible. The objec—
tives defined may be in conflict with one another.
Moreover, individual objectives may be unachievable
under any circumstances. Hence, 1n accepting the
decision maker's objectives as characteristics which a
solution to the problem should possess, the analyst
defines aspiration levels to be sought and the
decision maker's objectives become those of the
analyst.

DEFINITION OF THE SYSTEM

Whether or not a decision maker's objectives are
achieved in implementing a problem solution depends,
in part, upon the response of factors outside his/her

control. These factors include elements of the
decision maker's organization and elements of the
organization's environment. Since these factors are
not under the control of the decision maker, the
analyst must Infer how each will respond to a specific
problem solution and how the inferred response will
affect the achievement of the objectives. It follows
that the inferences drawn will be appropriate only if
the analyst has identified all pertinent factors and
understands their behavior and interaction. The set
of all factors within the organization and its envi-
ronment which affect the achievement of objectives
defines the scope of the system with which the analyst
must deal, The operating characteristics of the
system define the collective, interactive behavior of
the elements within the system.

Identifying the decision maker's objectives and defin-
ing the system are not simple, single stage processes.
The analyst's initlal perception of the objectives
will almost certainly change at some point during the
problem solving exercise. More realistically, this
perception will probably go through a series of
changes as the analyst's understanding of the decision
maker and the system improves. In a similar manner

the analyst's perception of the scope and operating
characteristics of the system can be expected to
change also.

Proper specification of objectives and definition of
the system are fundamental to successful solution of
the problem. Because it 1s easy to misinterpret
both, the analyst should maintain.a continuing skep-
ticism on both counts. To reinforce, clarify or
correct his interpretation of objectives and system
definition requires a close working relationship
between the analyst, the decision maker and others
familiar with the system. These individuals are
invaluable in assisting the analyst not only in
formulating an interpretation of objectives and
system behavior but also in validating that inter-
pretation. Baslcally, the anlayst formulates an
interpretation of objectives and system definition
through information provided by others, observation
of the system and the analysis of data. The analyst
validates that interpretation by communicating it
back to those who understand the objectives and the
system, by verification through observation of the
system and by comparing his interpretation with
appropriate historical data.

MODEL FORMULATION

The discussion thus far leads to the conclusion that
a courgse of action 41s a solution to the problem if
and only if its implementation leads to a systenm
response which achieves the decision maker's objec—~
tives. Consequently, the analyst needs a vehicle for
testing potentlal solutions. The vehicle wused for
this purpose must provide a means of determining or
predicting how the system will respond to a given
course of action in a manner that will indicate
whether or not the response leads to achievement of
the objectives. One such vehicle is the system
itself. However, while experimentation with the
system itself is sometimes feasible, more often it is
impractical. In the latter case the analyst requires
a surogate for the physical system which provides an
efficient, economical means for testing alternative
solution proposals.

The surogate used as a testing device 1is called a
model and may be defined as a representation of some
aspect of reality without the presence of that
reality. Models and system modeling will be
discussed in more detail later. For the present a
model may be anything from an iIntuitive concept which
exists only in the analyst's mind to a physical
reproduction such as a pilot manufacturing plant.
Further the analyst's model may be a collection of
separate models each Intended to deal with different
aspects of the problem. While the model is only an
approximation of reality it permits the analyst to
deduce how the system will respond to a solution
proposal and whether that response. will 1lead to
achievement of the decision maker's objectives.

MODEL VERIFICATION AND VALIDATION

Since the results obtained from the analyst's model
will form the basis for evaluating the effectiveness
of a solution proposal in achieving the objectives
sought, an erroneous model may lead to wholly
inappropriate solutions. It follows that the analyst
should seek as much assurance as possible that the
model performs in a manner which adequately describes
the behavior of the physical in response to solutions
proposed and ylelds measures of system performance
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which provide an adequate basis for determining objec—
tive achlevement. The process of determining whether
or not the mdoel 1is an acceptable descriptor of
reality is called validation.

At this point in the problem solution process, model
validation 18 a two stage process. The first stage
involves the determination of whether or not the model
performs in the manner intended by the analyst. Some
authors refer to this process as model verification.
If the model does not describe system response in the
manner intended by the analyst, there is little reason
to believe that it will describe that response as it
will occur in the physical system. Even when the
model does function in the manner intended, there is
no guarantee that the response portrayed will be
indicative of that of the physical system. The
analyst's model i{s based upon his interpretation of
the system and its operation. If it faithfully
reflects that interpretation and that interpretation
is in error, then the system behavior described by the
model will also be in error. Nonetheless, as a first
step toward model validation the analyst should
determine whether or not the model functions in a
manner which reflects his interpretaion of the
behavior of the system.

If the model adequately captures the analyst's under-
standing of the system and that understanding 1is free
of error then the model should provide an adequate
description of the behavior of the physical system.
The second stage of model validation is intended to
determine whether or mnot the model describes the
behavior of the system, given that it describes the
analyst's interpretaion of that behavior. Hence, the
analyst is, in effect, validating his interpretation
of the behavior of the system. While the first stage
of wvalidation d1s based upon a comparison of model
results with those expected by the analyst, the second
stage is based upon a comparison of model and physical
system results to the extent possible.

At this stage of the validation process, the results
of the model may sometimes be compared with those of
the system where data describing system results are
available. It {is important to note that such a
comparison is appropriate only 1if the environmental
conditions governing the operation of the physical
system and those governing the model are the same. In
addition, the analyst should exercise care in select-
ing data from the physical system to assure, if
possible, that the system described by that data is
the same as that which is being modeled. The system
modeled may be one which 1s planned for the future or
may be the system in current operation. In the former
case, comparisons between model and system results may
be Impossible simply because no such physical system
exists.

Under the most ideal conditions perfect correspondence
between the model's portrayal of system behavior and
the actual behavior of the system cannot be achieved.
A model is only an approximation of reality. Bearing
this in mind, a difference between model and system
results must be anticipated. This difference 1is
usually referred to as model error.

The validation process deals with the evaluation of
the magnitude of model error rather than its
existence. The magnitude of model error evident as a
regsult of the validation effort may render the model
acceptable or unacceptable for the analyst's purposes.
This determination calls for the definition of levels
of model error which allow the analyst to classify the
model as acceptable or unacceptable., These levels

define the criteria for model validity and are, more
often than not, multidimensional.

For the purpose of solving the problem at hand, the
model is intended to be used as a vehicle for
evaluating the effectiveness of various solution
proposals. An effective solution is one which leads
to achievement of the decision maker's objectives.
An evaluation by a model that represents the behavior
of the system poorly offers little credible informa-
tion about the effectiveness of the solution proposal
tested. This argument leads to the necessity for the
validation process just discussed. TIf the validation
effort leads to the conclusion that the model can be
accepted as an adequate descriptor of system
behavior, the analyst then has the vehicle necessary
to test the effectiveness of solution proposals.

MODEL IMPLEMENTATION

Having an acceptable model at hand, the analyst might
proceed to evaluate a varlety of solution proposals
until one or several are identified by the model as
leading to achievement of the objectives sought. In
some cases the model itself may identify the solution
proposals to be tested in addition to testing their
effectiveness. Although the process of defining
potential solutions and testing thelr effectiveness
may be time consuming, the process of solving the
problem once the analyst has an adequate model seems
straightforward. Unfortunately this is the case only
in the unlikely event that the decision maker is
willing to place blind faith in the analyst's recom—
mendations. In essence then, before the decision
maker accepts solution recommendations he must be
convinced of the credibility of the model.

Gass and Joel (22) address the subject -of user
confidence in model results in detail. They define
seven criteria for wuser confidence and suggest a
scale for measuring the degree to which each
criterion is met. Shannon (46) identifies seven
properties which a model should possess to maximize
the chance that the model will be found convincing by
the decision maker. Shannon also lists ten points
which should be considered in presenting model
results to the decision maker.

The dImportance of model Implementation i1is often
overlooked. It is not surprising then that inade—
quate implementation 1s cited as a major reason for
the failure of many operations research studies. Even
when the analyst realizes its importance, implemen-—
tation is often 1left largely to others who do not
possess a comprehensive understanding of the model,
As a result model output is often misinterpreted,
input data are not properly maintained and updateéd
and the model may be applied to the analysis of
problems for which it is ill-suited. The inevitable
outcome of incomplete implementation is loss of
confidence in the model and finally its rejection as
useless.

MODEL USE

A model is a means to synthetic experimentation with
the physical system. The design of the experiment ‘to
be conducted includes specification of alternative
solution proposals to be examined and the operating
and environmental conditions assumed to prevall for
the period of time considered in the experiment. The
model describes how the system will behave under the
scenario defined by the experimental design. The
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resulting output of the model should include measures
of system performance which can be used to determine
whether or not the objectives sought are achieved by
the solution examined. The hopeful result of repeat—
ing this process for a variety of potential solutions
is the identification of at least one which satisfies
the decision maker's objectives.

MODEL REVALIDATION

As it has been described here, a model is an approxi-
mation to reality which represents the analyst's
perception of system behavior. The analyst's percep—
tion of the system is based upon his understanding of
the system at the time of model devleopment. Given
that the model is adequate, the problem solution
adopted should yield the results indicated by the
model, at least for a short period of time. That is,
model prediction should prove reliable provided that
the system components do not change and ‘that they
continue to operate under the same rules of behavior
and evironmental conditions as those upon which the
model 1is based. Given sufficient change in the
components of the system, the behavior of those
components or environmental conditions, the initial
solution will become unsatisfactory, requiring a
revised solution to the problem.

Realistically every specific solution to a problem
must be viewed as a temporary measure. As a result
the decision maker may face the same problem
repeatedly. Having used the model to assist in the
selection of a solution to the problem when it was
initially posed, it seems reasonable to reapply the
model each time a solution revision is required.
However, this Immediately leads to the question of
continued adequacy of the model., That 1s, if the
current solution to the problem is or may be obsolete
because of change in the real world, that same change
may mean that the model i1s no longer an adequate
descriptor of the real world. Hence before applying
the model to evaluation of revised solutions, the
analyst should first reevaluate its validity.

Since the model should be used to evaluate potential
problem solutions only if it is an adequate descriptor
of system behavior, model validation should be viewed
as a recurrent process throughout the 1life of the
model. Each time the revalidation effort identifies
inadequacies in the current model, the model may
require structural modification. Hence model develop-
ment occurs in an evolutionary fashion throughout the
life of the model.

Since the need for continued revalidation can be
anticipated at the outset of development of the
initial model, the analyst should identify the data
necessary for revalidation in the course of the model
development effort. As a part of model implementation
the analyst should specify how and when the data
should be collected and the manner in which they
should be summarized. Because the data collection
effort is planned in advance, the data available for
revalidation should provide the basis for continuing
comprehensive validation of the model after it is
implemented.

SYSTEM MODELING

As already mentioned, a model may be described as the
representation of some aspect of reality without the
presence of that reality. In this sense models have
been used by man throughout recorded history. A

photograph, painting or drawing is a two-dimensional
representation of the visual aspects of the reality
portrayed, a sound recording is an auditory represen-—
tation and a scale model is a spacial representation.
While such models may be of use, the manager is
usually concerned with models incorporating a higher
level of abstraction. These include financlal models
such as a balance sheet or profit and loss statement,
simulation models and mathematical models. Mathe-
matical models represent the highest level of
abstraction and simulation models the next highest
level.

The purpose of any model is to describe the essential
characteristics of the system portrayed. A simula-
tion model is only one of many types of models which
might be used to this end. Before discussing
specific types of models and their characteristics an
examination of the pros and cons of system models in
general would seem in order.

The analysis of any system is generally the result of
the need to better understand the behavior of the
system. The manager may wish to know how the system
will function under a variety of conditions, whether
the system should be modified to more effeciently
achieve its intended function, or simply to better
understand the operational characteristics of the
system. Given sufficient time and financial
resources, goals such as these could be achieved
through experimentation with the physical system
itself. For example, one could implement successive
modifications of the system in an attempt to acheive
more efficient performance. To determine how the
system will behave under conditions which might arise
in the future, one might simply wait for those
conditions to arise and observe the resulting
behavior of the system. However, experimentation
with the physical system is usually not economically
feasible since 1t may seriously disrupt the overall
operation of the organization of which it is a part.
Simply waiting for those conditions wunder investiga-—
tion to arise may be self-defeating in that failure
to predict the impact of those conditions may lead to
serious consequences with repsect to the performance
of the system. Thus, experimentation with the
physical system is wusually to be discouraged,
although it 1is occasionally employed with satisfac-—
tory results. Consequently the analyst seeks a
surogate for the physical system which can be manipu-
lated easily and economically.

The logical alternative to experimentation with the
physical system is experimentation with a model of
the system which 1s Intended to approximate the
behavior of the system. The accuracy of the approxi-
mation will usually diminish as the complexity of the
real system Increases. However, models which are
only gross approximations to reality can yield
important information about the system and often lead
to system modifications which result in wmore
efficient and effective performance of the gystem.

MODEL CLASSIFICATION

Models may be classified in a variety of ways. In
this discussion the following five dimensions of
model classification will be considered:

l. the manner in which the model describes the
system,

2. the purpose of the model,

3. the description of the time dependent behavior
of the system,
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4, the description of the random behavior of elements
of the system,
the description of system change as a discrete or

continuous phenomenon,

5.

Considering the manner in which a model represents a
system, a model may be iconic, analogue or symbolic.
The common property of iconilc models 1s reproduction
of a physical characteristic of the entity modeled,
although the scale of the model may differ from that
of the physical entity., That is, an iconic model
looks like the entity modeled. A three dimensional
template representing the layout of an office and a
pilot manufacturing plant are two examples of iconic
models,

The common feature of analogue models 1s replacement
of a property of the physical system by a substitute
property in the model. For example, a graph of the
price of a stock over time is an analogue model where
stock price and time are the properties modeled. In
the graph time is replaced by distance along the
x-axis and stock price 1is measured by wvertical
distance on the y-axis. A thermometer 1s another
analogue model where temperature is replaced by the
height of the mercury in the thermometer.

gimulation models are classes of
symbolic  models. The common characteristic of
symbolic models is the replacement of properties of
the physical system by symbols. For example, if C is
the unit cost of an itemy; x d4s the number of units
purchased and y is the total cost of x units, then y =
Cx is a mathematical or symbolic model relating total
cost to the number of units purchased.

Mathematical and

A model may be classified by the purpose for which it
is developed. 1In this context a model may be descrip-
tive or normative. A descriptive model is one which
simply describes the behavior of properties of the
system modeled, The output of such a model is not
intended to recommend a course of action but rather to
describe what happens. A model which is intended to
recommend or prescribe a course of action is called a
normative model. Such models are also referred to as
prescriptive. More often than not a normative model
results from the manipulation of or operation on a
descriptive model.

Elmaghraby (14) didentifies five important uses of
models. First models are an ald to understanding. The

very process of attempting to develop a model requires
a thorough understanding of the entity modeled.
Further, once developed, experimentation with the
model often provides insight into relationships which
govern the behavior of interacting system components.
Second, models are of assistance in
particularly in explaining interactlve relationships.
Third, models are frequently used for the purpose of
instruction and training. Business games are a prime
example of this use of models. Fourth, models play an
important role in prediction. Among the most
important applications of mathematical and simulation
models is that of predicting the response of the
system under study to a variety of conditions which
may arise and decision alternatives which may be
applied in the future. Finally, models provide a

vehicle for synthetic experimentation with and control

of the sgystem. By varying input parameters to the
model the analyst may study the behavior of the
physical system, as represented by the model, under a
variety of operating conditions and decision alterna—
tives. The result of such experimentation might be
the selection of the decision alternative which leads
to optimum control of the system.

communication
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discrete.

Models may be further categorized  according to
whether or not they portray the behavior of the
physical system over time. A model which describes
the behavior of a system throughout a given time
interval is called a dynamic model. A model which
portrays the behavior of a system at a single point
in time is called a static model. As an illustration
consider a system model which describes the mean .cost
of production per unit manufactured. If the model
portrays the fluctuation in the mean throughout the
period of production then the model is dynamic. If
the model yields only the mean for the entire
production period then the model is static. Quite
often static models result from operation on or
manipulation of dynamic models. For example, if one

is concerned with the steady state behavior of a
system, the steady state model may be obtained by
exanining the 1limiting behavior of the analogous

dynamic model.

The fourth dimension of model classification deals
with whether or not the model explicitly recognizes
the presence of random variation in the system
modeled. Very few real world systems, if any, are
free of the influence of unpredictable or random
behavior of the elements of the system and its
environment. A deterministic model is one which does
not recognize the random component of such behavior.
While a system may be influenced by random behavior,
the d1mpact of that behavior may be sufficiently
slight that the random component may be ignored for
practical purposes. In such cases a deterministic
model i1s entirely appropriate. A model which
explicitly captures the random components of system
behavior 1s called a probabilistic or stochastic
model. .

The final dimension for model classification deals
with the manner in which the model represents change
within the system. If a model describes change in
the status of the system as occurring only at
igsolated points in time, the model is called
On the other hand, if the model treats
change as a continually occurring phenomenon then the
model 1s called continuous. Simple queueing systems
are representative of discrete change systems in that
the status of the system, measured by the number of
units 1in the system or the number walting for
service, may change only at those points in time at
which either an arrival or a service takes place.
If, however, the measure of system status 1s the
percentage of time the system is busy, then the
system must be considéred one of continuous change.
While the process modeled may be continuous, a
discrete model may provide an adequate approximation
to the behavior of the system.

By their mnature mathematical and simulation models
are symbolic, While both types of models may be
either descriptive or normative, more often than not
simulation models are descriptive. A review of the

1iterature on modeling would indicate that static
mathematical models are more prevalent than their
dynamic counterpart. Conversely dynamic simulation

models are reported more frequently than static
simulation models. A wide variety of deterministic
and stochastic mathematical models are reported in
the 1literature, the type of model being dependent
upon the nature system modeled. However, simulation
modeling 48 applied to the analysis of stochastic
gystems more frequently than it is to deterministic
systems. Finally, change 1is treated as a discrete
phenomenon more often than a continuous phenomenon in
the case of both mathematical and simulation model-
ing., While continuous mathematical and simulation
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models are
systems
models.

certainly not uncommon, continuous change
are frequently approximated by discrete

SIMUiATION AND/VS. MATHEMATICAL MODELS

Mathematical and simulation models are used to
describe the interactive behavior of a system and its
environment under prescribed conditlions of operation.
The input to either type of model usually defines the
operating conditions assumed and the decision alterna-
tives considered while the output of the model
describes the resulting response of the organization
and its environment. Model output usually includes
measures of system or organization performance such as
profit, cost, level of service, sales volume, product
quality, etec. Through analysis of the measures of
performance associated with a given decision alterna—
tive one can often determine whether or not that
decision alternative will lead to achievement of the
decision maker's objectives. Whatever the measure of
performance, an important feature of mathematical and
simulation models is their ability to provide quanti-~
tative information, providing a basis for assessment
and comparison of alternative decigion strategies,

Mathematical Models. Mathematical models are charac—
terized by one or a series of equations relating the
measure(s) of sgystem performance to the variables
which affect system performance, and equations or
inequalities which define constraints on the range and
character of values which the variables of the system
may assume. The variables of the system may be
classified as decision variables, varlables under
direct control from within the system, and variables
which cannot be directly controlled. Uncontrollable
variables may be further classified as those which are
not influenced by other varlables, independent
variables, and dependent variables whose values are
determined by the values of the decision variables,
the independent variables and other dependent
variables.

The equations defining a mathematical model usually
attempt to describe system behavior in aggregate form.
To d1llustrate, consider a facility which serves
customers in the order in which they arrive. Suppose
that the time between successive customer arrivals is
an independent exponential random variable with mean
arrival rate A and that the time required to provide
the service is also an independent exponential random
varible with mean service rate yp. Under appropriate
assumptions the steady state mean total time a
customer gpends in the system is given by W where

Wt = 1/(u-x) (1)
The equation for Wy is a mathematical model for the
steady state mean total time a customer spends in the
system as a function of A and y fory > . This model
describes steady state mean total time in the system
in aggregate form in that it makes no attempt to deal
with the behavior of individual customers.

Mathematical models have long been a basic tool of the
physical sciences and engineering. During World War
IX such models were used as a basis for the analysis
of military operational problems. With the successful
experience gained during World War II, similar model-
ing efforts were appllied to the analysis of organilza~
tional systems after the war, leading to the emergence
of the discipline of operations research. This
discipline 1s also referred to as management science,
systems analysls and systems engineering, although the
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latter two terms are also applied to other disci-
plines as well. More recently mathematical modeling
has been successfully applied to problems in agricul-
ture, forestry, soclology, psychology and education.

Simulation Models. The distinction between a mathe-
matical and a simulation model is not one which may
be definitively drawn. In fact, there are many who
use the terms synonymously. However, the distinction
recognized here may be i1llustrated by a simple
example. Consider again the service facility example
cited in the preceding section. A simulation model
of this system would attempt to track the behavior of
the system on a customer by customer basis, in much
the same manner as would an observer of the physical
system who attempts to estimate the mean total time a
customer spends in the system. The difference lies
in the manner in which the times between successive

customer arrivals and customer service times are
generated. In observing the physical system,
customers define the points in time at which they

arrive, and thereby customer interarrival times, and

the time to complete the service of a customer is
generated by the service facllity. The observer
merely records when each customer enters and exits

the system, the difference between the exit and entry
times and computes the average of these differences
after observing a long series of customers. The
simulation model also "observes" the system and
carries out the same computations as the observer of
the physical system. However, in addition the
simulation model defines or "generates" the times of
arrival of customers and the times required for the
service of each. The method of generation of these
random variables 1nvolves synthetic sampling from the
appropriate probability distribution. The synthetic
sampling technique used 1is called the Monte Carlo
Method.

In the walting line example the simulation model was
described as attempting to mimic the event by event,
activity by activity, customer by customer behavior
of the system. This approach to modeling the
behavior of systems is a common denominator of what
i1s generally regarded as discrete event simulation.

The distinction just drawn between a mathematical
model and a simulation model is somewhat idealized.
In a simulation model one often employs a mathe—
matical model to describe phenomena which influence
the behavior of entities which are in turn "tracked"”
by the model on an individual basis. In the service
facility example one of the activities performed by
the simulation model is generation of exponential
times between customer arrivals. In applying the
Monte Carlo method to do so, the simulation model
employs a mathematical model for the exponential
probability distribution.

The fundamental operation of a time dependent simula-
tion model is shown graphically in Figure 2. As
Figure 2 illustrates each event initiates a reaction
by the system. The system reaction may include the
initiation or termination of activities. Activity in
the system leads to changes in the status of system,
The model then moves forward in time to the next
event and the process repeats until the simulation
experiment is completed.

Some authors trace the origin of simulation modeling
to the early sampling experiments of W.S. Gosset, who
published under the name Student (48). However, the
foundations of modern simulation methodology are
usually attributed to the works of Ulam (50) and von
Newmann (51). Their work, conducted in the late
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1940's, dinvolved the analysis of nuclear-shielding
problems through a technique which they termed "Monte
Carlo Analysis." However, it was not until the early
1950's, with the arrival of high~speed computing
equipment, that the horizons for application of simu-
lation were broadened to the point where it became
available and practical for the analysis of engineer—
ing, business, and behavioral problems. Since that
time simulation has been applied in such diverse areas
as:

The Analysis of Air Traffic Control Systems
The Analysis of Large-Scale Military Operations
Communication Systems Analysis

Job~Shop Scheduling

Analysis of the U.S Economy

Production Planning and Inventory Control
Determination of Manpower Requirements
Instructional Modeling for Higher Education
Energy Supply and Demand Analysis
Competitive Market Analysis

Housing Market Analysis

Transportation Planning

Financial Investment Analysis

Man~Machine Interface

Corporate Planning

Advantages of Mathematical and Simulation Models.

The advantages of mathematical and simulation model-
ing are viewed here in relative terms since each is
the most probable alternative. to the other, The
principle advantages of mathematical modeling 1ie in
the interpretation of model output and the efficiency
of execution on a digital computer. Given that the
pertinent behavior of a physical system can be

captured with equal validity either through a mathe-
matical model or a simulation model, the mathematical
model will usually execute more quickly on a digital
computer. This advantage accrues to a mathematical
model since models of this type deal directly with
the aggregate behavior of the system while a simula-
tion model tends to focus on the behavior of
individual entities; computing aggregate measures of
system performance, for example, by averaging indi-
vidual component behavior. The second advantage,
clarity of output interpretation, arises when the
system modeled is subject to the influence of unpre-
dictable or random variation and when that component
of system behavior is to be captured by the model.
Since a mathematical model deals directly with
aggregate measures of system behavior such as means,
medians, variances or quantiles, the output of the
model for a given dinput data set is one or more
constants. That 18, 1f the scenario modeled is
repeated using the same input data set the output for
the scenario will not change. However, in dealing
with a stochastic system a simulation model generates
specific values for the random variables which
influence system behavior, the aggregate measures of
performance being computed at the end of the simula-
tion experiment or scenario. Output measures of
performance for a simulation experiment are then
functions of the values of the random variables
generated in the course of the experiment. If the
same scenario is again analyzed through simulation a
new set of values of the random variables will be
generated which, although possessing the same proba-—
bilistiec characteristies, will Thave different
numerical values than the sequence generated in the
first simulation experiment. Since the measures of
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Figure 2: Fundamental Operation of a Time Dependent System Simulation Model
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system performance from the two simulation runs are
functions of different sequences of values of the
random variables, differences between the numerical
values of the output variables for the two simulation
rung are inevitable., This difference in results
occurs because the output of the simulation run is
composed, at least in part, of random variables,
clouding the interpretive value of the output. Proper
interpretation of such output usually requires the
application of statistical techniques while such is
not the case when a mathematical model is used.

One often hears or reads phrases such as 'the only
game in town," "the court of last appeal" and "when
all else fails, simulate," applied in reference to
simulation modeling. Such references relate to one of
the principle advantages of simulation modeling - the
versitility of its application. At least in theory,
any physical system which can be understood can be
simulated., Many systems which have not been success~
fully modeled mathematically may be simulated with
little difficulty. In general the level of mathe-
matical sophistication necessary to model a system
mathematically exceeds that required for development
of the corresponding simulation model; frequently the
difference is substantial, Thus a system which is
intractible f£rom a mathematical point of view, at
least as far as the analyst is concerned, may well be
within his grasp when approached through simulation.

The importance of the decision maker's confidence in
the problem solution proposed was discussed in
describing the stages of the systems analysis process.
Since the model is the vehicle used to evaluate
solution alternatives, the confidence the decision
maker has in the solution proposed will wusually
depend, at least in part, upon his confidence in the
model which in turn may depend upon his ability to
understand how the model works. Typically managers
have a limited knowledge of mathematics. As a result
the task of explaining how the model works and
convineing a manager that the equations included in a
mathematical model do in fact describe the behavior of
the physical system may be a challenging one indeed.
This task is not usually as difficult in the case of a
simulation model. A simulation model traces the
behavior of the system on an event by event basis,
appropriately modifying the status of the system as
each event occurs. This can be demonstrated for the
manager by displaying each event as it occurs and the
status changes which take place coincident with each
event., While the manager may not understand "how" the
model works, the display of event by event behavior is
often convincing evidence that it "does" work.

In summary, the advantages of mathematical modeling
are efficiency of execution on a digital computer and
simplicity 1in dInterpreting model output. However,
efficiency of computer execution may not be a signifi-
cant consideration i1f computer time is a resource in
abundant supply or i1f the run time of the simulation
experiment is not significant. The principle advan-
tages of simulation modeling 1lie in the varlety of
systems which may be successfully modeled, the avail-~
ability of the technique to professionals who do not
possess a strong background in mathematics or proba-
bility and the relative ease in demonstrating what the
model does. However, a reasonably strong background
in statistical analysis may be required for proper
interpretation of the output of a simulation model.

MODEL_TRANSLATION

With the exception of very simple models, model
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execution is carried out on a computer.
is used for one of two reasons. First, a computer
possesses the capability to carry out a serles of
complex computations, either logical or mathematical,
at speeds far beyond human capability. Second, a
computer possesses the capability to store and
accurately retrieve information. While the limits of
the capacity of the human mind to store and retrieve
information have not been precisely defined, it is
well known that conscious human recall is subject to
significant error particularly where large volumes of
data are concerned.

A computer

can be
of a

Translation of the model into a medium which
interpreted by the computer 1s the purpose
programming language or program package. TFor the
purpose of this discussion a distinction needs to be
drawn between a programming language and a program
package as the terms will be used hence—-forth. A
programming language is a well defined set of
commands or statements which the analyst may use to
define the loglec and calculations necessary to
execute operation of the model. Once the appropriate
commands are read by the computer, the analyst need
only define the data set necessary to describe the
scenario to be modeled, feed that data set to the
machine and execution of the model takes place. A
programming language offers the analyst the ability
to construct and translate a wide varlety of models
for execution on a computer.

A program package includes the code or sequence of
commands necessary for model execution allowing the
analyst to bypass the programming effort otherwise
necessary. The program package requires definition
of input data only for model execution. Because the
code 1is already incorporated In a program package,
the user may possess no knowledge of programming nor
is he required to acquire such knowledge. However,
the fact that the code is predefined implies that the
model is 1imited to description of the behavior of
those systems which fall in the class for which the
package was developed. For example, specific pack-

ages have been developed for quality control,
inventory, facilities planning, materials handling
and network systems to name but a few. While an

inventory control program package may describe the
behavior of a large variety of inventory systems it
would be of little use to the analyst concerned with
quality control or a communication network. On the
other hand, a programming language might be used to
develop a model for any of these applications and
many others as well.

LANGUAGE CATEGORIZATION

Programming languages are divided into two categories
for the purposes of this discussion, general purpose
languages and speclal purpose languages. General
purpose languages are designed to provide a transla-
tion mechanism for a broad range of problems and
thelr solution, extending well beyond the generic
applications which the analyst has in mind. Examples
of general purpose languages are FORTRAN, PL/I and
BASIC. A special purpose language i1s designed to
provide a translation mechanism for a broad range of
problems also, but in this case the range i1s limited
to a specific gemeric class of problems. Of partic~
glar interest here are simulation languages. A
simulation language may be used to translate a
virtually limitless number of simulation models for
execution on a computer but iIn general would be of
little value in mechanizing an accounting system,
maintaining and retrieving personmel information or
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solving a linear programming problem.

The principle advantages offered by general purpose
languages are flexibility in the design of the
computer program used to execute the model, flexi~
bility in the presentation of results from the model
analysis, more efficient utilization of memory, and
reduced running time. Simulation languages usually
lead to reduced programming and debugging time and
because of their structure actually assist the analyst
in designing the model. Perhaps the most significant
advantage of general purpose languages lies in the
fact that if the analyst knows anything about computer
programming he is probably more familiar with one of
the general purpose languages than with a simulation
language. Thus the advantages of reduction in pro-
gramning time offered by a simulation language may be
offset by the additional expenditure of time required
to learn the language. On the other hand, if the cost
of the learning experience is spread over a variety of
anticipated future applications the payback on the
investment of time may be handsome indeed. Shannon
(46) presents an excellent discussion of general
purpose languages and simulation languages including
an elaboration of the relative advantages of each.
Sargent (44) compares the characteristics of five
widely used simulation languages.

Just as a simulation language is appropriate for only
a small portion of the applications for which a
general purpose language may be used, a simulation or
model package is designed to deal with a relatively
small portion of the applications for which a simula-
tion language might be used. For example, consider
the problem 1) of simulating the movement of air
carriers in and out of a major air terminal throughout
a one year period and 2) of simulating the behavior of
demand for a particular product for a one year period.
In either case one might choose to translate the model
through a general purpose language or through a
simulation language. Further the analyst may f£ind
that models for both systems have already been
developed .and coded (a special purpose package),
eliminating the need for extensive programming.
However, it is unlikely that he would find a single
package which could be used to successfully describe
the behavior of both systems. Hence a special purpose
package 1s developed to model the behavior of a
specific class of systems only. A special purpose
package may be coded in one of a variety general
purpose or simulation languages.

The principle advantage of a special purpose package
is reduced programming time. In many cases the
analyst need only define the input data required by
the package to define the system modeled. Different
system configurations may be modeled simply by alter-
ing the input data. Desplte their convenience, the
decision to wuse a special purpose package should be
taken with caution. All such packages include assump~
tions about the manner 1n which the systems modeled

operate. All too frequently ecritical assumptions
concerning the operation of the system are not
expressed in the package documentation. Failure to

recognize the assumptions underlying the package often

leads to results which bear little relationship to the
system under study or, worse still, to serious error
in interpreting the behavior of the system which the
package purports to describe.
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