Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G. Blais, 3. Solomon (eds.)

A SIMULATION OF AN IMBEDDED SOFTWARE SYSTEM
FOR GLOBAL POSITIONING SYSTEM NAVIGATION

Jon Vavrus
Computing Applications & Software Technology
5450 Katella Ave., Suite 103
Los Alamitos, California 90720

ABSTRACT

A set of software was developed to allow the
execution of a set of real time navigation code on a
host’ computer. This program (STM) allowed the
debugging and testing of the real time software to
be done in an environment containing a large variety
of software tools. The program simulated Global
Positioning System (radio ranging), and Inertial
Measurement System inputs for the target software.
It was found that the simulator performed

adequately and enhanced our ability to deliver the
working real time code.

INTRODUCTION

A program was devised to provide a simulation of an
embedded system environment. Running in this
environment was a set of software designed to do
Global Positioning System (GPS) navigation in
conjunction with inputs from an Inertial Navigation
System (INS). The environment consists of a multi-
tasking, real-time system on a National Semi-
conductor 32016 microprocessor based system.
Whereas the simulator runs on a standard mini-

or main-frame computer.

The software running in this environment performs
the navigation function for a moving vehicle
(plane, boat, truck, etc.). It does this by using
input from both GPS satellites and from an onboard
INS unit. In order to service the various input
data flows and output data needs, the navigation
software was designed to consist of several tasks
running at different rates. These task invocation
rates range from 1 hertz for the input of GPS data
to 100 hertz for the output of certain forms of
receiver loop aiding information.

Thus the simulator had to be capable of running
different tasks at different rates. Plus it had
to have the capability of providing these tasks
with several different types of data (GPS, INS,
altimeter, etc.) at several different data rates.

BACKGROUND

CAST was contracted to develop navigation software
for use in an integrated GPS/INS environment. This
software would run in a multi-tasking real-time
environment in hardware built specifically for the
application.

At an early stage we realized that the task of
testing and integrating this software would present
serious difficulties. The “usual" approach would
have been to integrate the major program

components using special purpose drivers written

586

by the navigation program software developers
themselves. Some Timited testing, on a host
computer, of the fully integrated program would
then be done, this would be followed by integration
on the target hardware system.

There are several problems with such an approach.
In general the testing tends not to be as thorough
as it should be, especially during the stage at
which the fully integrated program is tested.

This lack of testing stems from two primary causes.
The first is that the same person often writes

both the test software and the software to be tested.
This situation can Tead to matching bugs in both
programs. The second cause is the sheer difficulty
involved in adequately simulating a diverse set of
consistent inputs for the integrated program.

In view of this it was decided to initiate a
separate project aimed at writing a simulator of
the navigation program's environment. This
simulation needed to create varied sets of
consistent, accurate inputs for the navigation
program as well as trigger the navigation program's
various tasks at the appropriate rates. It was
also necessary to provide for the comparison of
the outputs from the navigation program with a

set of values representing what they were supposed
to be (a truth model) and to output the results of
the comparison (see Figure 1).

o HEASUEHENT e creen
GENERATION R CO0E

STM Functional Overview

Figure 1:

OVERALL PROGRAM DESCRIPTION

The "Software Test Module" (STM) was designed to
meet these criteria. Initial testing and inte-
gration of the navigation program was going to

take place on an Amdahl V6 computer running U.T.S.
Final testing would be done in a National Semi-
Conductor microprocessor on a commercially available



A Simulation of an Imbedded Software System for Global Positioning System Navigation

board attached to a VAX-11 processor. This implied
that coding would have to be done in a portable
manner. Thus both the navigation program and STM
were written in standard FORTRAN-77.

For a variety of reasons STM was designed as a pair
of stand-alone programs. This allowed all the CPU
intensive tasks to be placed in one program and the
actual navigation code drivers placed in the other
(see Figure 2). The medium of communication

between the two programs consists of a set of files
containing simulated input data for the navigation
software along with information which can be used

as the truth model for comparison with the navigation
program outputs.

THO STAND-ALONE SUBPADERANS

STHCTL
0 > RCNP
STHSIM . DATA o N&Y
BASE -
H s : €0DE
L] P . -
TRUTH MODEL
ANO
MHEASUREMENT
SIHULATOR ACNP
JRIVER
Figure 2: STM as Two Stand-Alone Programs

This separation of function allows repeated runs

of the navigation code using identical input data
with only minimal (simulation) code and CPU overhead.
This allows the turnover from one debugging (of the
navigation program) run to another to be relatively
short, thus greatly increasing the usability of

the program.

A further benefit of the two program design is the
increase in modularity that it provides. If
different data simulation models are needed they
can be implemented without affecting the code that
drives the navigation program. Similiarly if the
navigation program interfaces are modified the
changes can be implemented without affecting the
simulation models.

Due to scheduling constraints, an important benefit
from our point of view was the ability to implement
both programs in parallel. This allowed STM to be

done much sooner than it otherwise would have been.

Finally, a dual program implementation had some
direct impact on the manner in which the program

was to be used in the VAX environment. It allowed
us to actually load only the driver program into the
National Semiconductor board, the data simulation
being done in the VAX itself. This minimized any
effects that might be caused by the presence of the
simulator's code.

The measurement simulation half of the program
(STMSIM) is a relatively standard analytical program.
This program handles the creation of the simulated
input data and the computation of the truth models
to which the navigation output is to be compared.

The task driver half of the program (STMCTL) handles
the driving of the navigation software itself.

587

It must handle formatting of the input data into
the correct form (the form which is expected by the
navigation code), along with the capturing of the
output from the navigation program tasks after they
have been run. It also provides for the comparison
of the output from the navigation program to the
truth model generated by STMSIM.

INPUT SIMULATOR PROGRAM DESCRIPTION

The stand-alone input data simulation and truth model
calculation program (STMSIM) is designed to take
input from a set of text files, and produce a set of
files containing all the information needed by the
navigation software driver program (STMCTL). A
decision was made that input should only come from
files and not directly from the user. This decision
was based upon the desire to be able to file away
entire test cases for later use. Such test cases
would be run to check out the navigation software
after any modifications have been made.

The input information needed from the operator can
be grouped into three different areas: control
information, scenario design, and mission profile
(see Figure 3). The control information consists of:
the test mode in which to run (which is used to
determine the set of data to actually be produced)
and information which determines the rate at which
data should be simulated. The scenario design
information consists of such things as: satellite
orbits, vehicle characteristics, atmospheric models,
etc. The mission profile consists of a set of
“course leg" parameters which specify the maneuvers
through which the movement of the user vehicle is to
be simulated.

FILE FUNCTION
CTL.DAT 1. PROGRAM CONTROLS
2. INITIAL CONDITIONS
3. SENSOR CHARACTERISTICS
4. SYSTEM PARAMETERS
PROF.DAT MISSION PROFILE
SAT.DAT SATELLITE ALMANAC/EPHEMERIS AND
IONO PARAMETERS
ANT. DAT ANTENNA SILHOUETTE
OUTG.DAT GPS OUTAGE PROFILE
Figure 3: STM Simulator Input Files

The STMSIM program is designed as 7 separate modules,
(see Figure 4) each of which is only loosely coupled
to the others. The functions of each of the modules
are described below:



Jon Vavrus

HISSION s STH
PROFILE BENERATOR
RANGE
DATA - ANGE DATA DATA
GENERATON
4 . BASE
AMANACY SATELLITE

KOTION
GENERATOR

Figure 4:

Executive: This is the overall controlier for the
STMSIM program.

User Motion Generator: This module is responsible
for generating the true vehicle position, velocity,
acceleration, attitude, attitude rate, and clock
bias. This user state is then output as part of the
truth model. Since the simulation is designed to
test the navigation program and not as an exact
simulation of the real world, a simplified model of
user motion was employed.

This model consists of simulating the motion of the
vehicle as a series of "course Tegs". During each
of these course legs the vehicle will experience a
combination of: constant acceleration, constant
angular rates, circular turns, and climb/dive
maneuvers. This motion is specified by the user
through a series of vehicle states (pitch, heading,
roll, altitude, speed) and times. The simulator
then uses a combination of the above maneuvers to
enable the vehicle to smoothly change from its current
state to the specified state at the specified time.

IMU (Inertial Measurement Unit) Data Generator:
This module uses the true user vehicle acceleration
and angular rate (as supplied by the user motion
generator) to produce simulated IMU output. When
calculating the IMU output various user specified
error sources are included (eg. gyroscope and
accelerometer biases). The resulting simulated

IMU output is used as input to the navigation
program.

Alternate Measurement Generator: This module is
responsible for simulating output from any non-GPS/
non~INS sensors which may be on the user vehicle
(eg. altimeters). This module is necessary since
the navigation software has the capability of
utilizing such sensor information as input.

Satellite Motion Generator: This module is respon-
sible for generating the true positions, velocities,
accelerations, and clock biases of all the GPS

! CEIVER

588

ALTERNATE
HEASURENENT
SENERATOR

AECEIVE
THACKING

STMSIM Functional Breakdown

satellites. These satellite states are then output
as part of the truth model. Unlike the user motion
generator, this model must be accurate. The reason
for this is due to the fact that the navigation
software also calculates these same values based on
sets of ephemeris data. Thus STMSIM uses the same
model of eliptical orbits (ICP-GPS-200) that the
navigation software employs.

Satellite Selection: This module determines which
satellites are actually visible from the user vehicle.
It will also select an optimal navigation constella-
tion (including backup satellites) based on

geometric considerations. This information is output
as part of the truth model.

Range Data Generator: This module is responsible
for generating the true satellite to vehicle ranges
(distances), range rates, and range accelerations.
A11 of this is output as part of the truth model.

This module also simulates the GPS information that
is used by the navigation software as input. This
information consists of pseudoranges and delta-
ranges for both the L1 and L2 frequency channels.
The pseudoranges are calculated from the true ranges
by taking into account the following factors:

Ionospheric delays

Tropospheric delays

Time of signal transit

Rotation of the Earth during transit

NAVIGATION SOFTWARE DRIVER PROGRAM DESCRIPTION

The driver program (STMCTL) takes the input
information produced by the data simulation program
(STMSIM) and formats it correctly for the naviga-
tion software tasks and routines. After a navi-
gation task or routine has run to completion, its
output is saved in a file along with a selection of
other important (navigation software) internal
variables. The navigation output data is then



A Simulation of an Imbedded Software System for Global Positioning System Navigation

STM
Data
Base

NAY.

Tasks

Figure 5:

compared with the truth model and the result output
to another file. Also provided are some post-
processing utilities which can be used to produce
plots of the navigation program output or plots of
the difference between this output and the truth
model.

The design of the navigation software is such that
the individual navigation tasks are fairly loosely
coupled. This allows the STMCTL program to run
these various tasks sequentially, rather than in
parallel. In our design the only functionality

this costs us is the possibility of Tocating timing
bugs in the navigation program. Previous experience
has taught us that attempting to simulate the exact
nature of the executive (as far as scheduling
multiple tasks is concerned) is not worth the effort.
A significant amount of time is required to develop
such simulation code and when completed it will still
fail to point out the vast majority of timing bugs
that may be present in the system.

Since tasks are invoked sequentially and run to
completion, simulation of different task rates is
handled by invoking high rate tasks several times
sequentially. For example, a 20 hertz task will be
invoked 20 times (running to completion each time)
before a 1 hertz task is invoked. This system
limits the timing information available from the
simulator to the relative lengths of different
tasks, such as task A is twice as long as task B.

In order to run, the navigation code is itself
linked in with STMCTL. This has the benefit of
allowing the simulator to get easy access to the
COMMON blocks used by the navigation code, and

also allows for straightforward invocation of tasks
and routines (through subroutine calls). Being able
to access the navigation program COMMON blocks

589

DIFFERENCES

NAVIGATION
UTPUT

STMCTL FUNCTIONAL BREAKDOWN

allows the simulator to format input data and to
took at output data and internal variables. The
sole means of inter-task communication is through
shared memory either common blocks or an executive
call. 1In either case, the simulator can observe
all such communication.

As well as being able to drive the complete
navigation program in either of two modes (with and
without IMU information), STMCTL was designed to
drive various subsets of the navigation code. This
enables STM to be used to test various functional
modules within the navigation code. It also tested
the documentation of the various internal interfaces
in the navigation code, due to their implementation
by two different people. Testing of the following
navigation program modules is provided:

Transmitter (satellite) State Computation (NTSC)
NTSC & Transmitter Selectioni

NTSC & Pseudorange Computation (NPRC)

NTSC & NPRC & Receiver Aiding

Navigation State Propagation & IMU Preconditioning

This provides for testing 6 out of the 10 major
components of the navigation program. The modules
that were left out (Controller (NCON), Kalman Filter
(NKFL), Library (NLIB), and Alternate Measurement
Computation (NAMC)) were either too simple (NCON

and NAMC) to warrant inclusion as a separate test
case, or better tested at a different level (NKFL
and NLIB).

OPERATIONAL SCENARIO

In general, STM is used as a navigation code debugging
tool, not, as the name implies, a navigation code
tester. A user creates a set of input data



Jon Vavrus

(simulated navigation input and truth model) by
running the STMSIM half of the program. The user
then links STMCTL with the navigation code and runs
the combined STMCTL/navigation program.

At this point, the STMCTL/navigation program can be
debugged Tike any other host computer program.

Tools such as debuggers (sdb on Amdahl U.T.S.)
and/or imbedded print statements are commonly used
for this purpose. This mode of operation enables
the programmer to come as close as possible to
actually debugging the program in the target system,
without actually putting up with the target system's
lack of debuggin tools.

After the navigation program is up and running,

STM has another function, that of a code tester.
This is done on a VAX with an attached National
Semiconductor microprocessor board. The navigation
code is cross-compiled and linked with the cross-
compiled STMCTL code. The STMSIM half of the
program is then run on the VAX itself, followed by
running the STMCTL/navigation program in the
attached microprocessor board. In this way a check
for any bugs inserted by the cross-compilation
process is performed.

CONCLUSIONS

We feel that the design and inplementation of the

STM simulator succeeded in currting out several months

of hardware integration time. In addition, the

use of different programming teams for STM and the
navigation code aided the process of tracking down
bugs in the external interfaces of the navigation
program. This dual programming team also allowed
for a more efficient utilizatjon of manpower. Both
of the above greatly added to our ability to meet
our development schedule.

Overall, the extra expense and effort put into the
simulator at the beginning was & good investment.
The expense was more than made up for during testing
and integration of the navigation software.

590

JON VAVRUS received a BS degree from the
California Institute of Technology in 1979. In

the past, he has done work in Very Long Baseline
Interferometry and Multi-processor operating system
design for the Jet Propulsion Laboratory in
Pasadena, California. At present he is working

in the field of integrated Global Positioning
System (GPS)/Inertial Navigation System (INS)
systems for Computing Applications Software
Technology (CAST) in Los Alamitos, California.

Mailing Address:

CAST

5450 Katella Ave., Suite 103
Los Alamitos, CA 90720

(213) 594-8883




