Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G. Blais, S. Solomon (eds.)

An Optimal Repartitioning Decision Policy

David M. Nicol” and Paul F, Reynolds, Jr.
Department of Computer Science
Thornton Hall, University of Virginia

Charlottesville, Virginia

Abstract

The automated partitioning of simulations for parallel ezecution
is a timely research problem. A simulation’s run-time perfor-
mance depends heavily on the nature of the inputs the simula-
tion responds to. Consequently, a simulation’s run-time behavior
varies as a function of time. Since a simulation’s run-time
behavior is generally too complex to analytically predict, parti-
tioning algorithms must be staristically based: they base their
partitioning decisions on the simulation’s observed behavior.
Simulations which are partitioned statistically are vulnerable to
radical cbanges in the run-time dynamics of the simulation. In
this paper we discuss a dynamic repartitioning decision policy
which detects change in a simulation’s run-time behavior and
reacts to this change. This decision policy optimally balances
the costs and potential benefits of repartitioning a running
simulation.

1. Introduction

Most simulations are executed sequentially despite evidence that
at least the most common class of simulations, namely discrete
event simulations, can benefit significantly from distributed exe-
cution. While numerous protocols have been designed to sup-
port distributed discrete event simulation, the problem of parti-
tioning a simulation for distribution over multiple processors
still remains. The goal of partitioning is optimal or near-
optimal performance as measured by the completion time of the
simulation. = The most promising partitioning strategy is
dynamic; partitioning is performed as the simulation is execut-
ing. Critical to the effectiveness of a dynamic partitioning
strategy are policies for detecting load changes, deciding when
to calculate a new partition, and deciding when to effect a new
partition. In this paper we discuss optimality results with
respect 1o policies for determining when to repartition a simula-
tion.

Dynamic partitioning holds the greatest promise not because of
its naturalness and simplicity as much as the inadequacy of
static partitioning. Static partitioning, where partitioning is per-
formed once on a program before it begins execution, has the
disadvantage of being totally inflexible to changes in the
resource (processor) requirements of an executing distributed
simulation. Static partitioning is akin to making a single
scheduling decision for a queue of jobs in an operating system
and then ignoring opportunities that arise as scheduled jobs
block on other resources. We have observed that many distri-
buted simulations do change their processing requirements as
inputs change [1] .

Dynamic partitioning has the potential disadvantage of being
expensive. Again, lessons from operating systems theory sug-
gest that a simple strategy is required; complex processor
scheduling strategies have rarely outperformed their simpler
counterparts, due primarily to characteristically substantial
growth in implementation costs as the strategy’s complexity
increases. A recent study of models of dynamic load sharing
Suggests that significant benefit can be realized from simple par-
titioning strategies [2].

*present address: ICASE, Mail Stop 132C, NASA Langley
Research Center, Hampton., VA, 23665

This work was supported by Virginia's Center for Innovative
Technology

493

22903

The repartitioning decision policy we present here is statistically
based. We assume that we can observe the current behavior of
a simulation, and given a potential repartition of the simula-
tion, we can predict its behavior. We assume that we are
dealing with a stochastic system; process resource and communi-
cation requirements change as the simulation executes. Despite,
or more appropriately because of, our assumptions regarding the
stochastic nature of the system we are able to demonstrate the
optimality of our policy. The optimality of our policy, in
turn, dictates that any algorithm for performing dynamic parti-
tioning must take our policy into account in order to be
optimal.

2. Statistical Partitioning

Simulations are often thought of as functions; a set of inputs
are presented resulting in a set of outputs. This function is
usually is composed of a large number of components interact-
ing in complicated ways. A central problem in distributed
simulation is how to partition the simulation, assigning its com-
ponents to different processors so that parallelism is exploited.
The most realistic formulation of this problem assumes that the
parallel system's resources such as processors, memory, and
communication bandwidth are all limited. The simulation
should be partitioned so that these resources are shared in such
a way that the simulation’s execution is substantially reduced
over that of a sequential simulation. A good partitioning algo-
rithm needs to examine the simulation’s static structure and
identify functional dependencies between components. It needs
to consider how often a simulation's components are called
upon for execution, and how much of a processor's time is
required to execute each component. Given this information, the
partitioning algorithm attempts to assign componenis 1o proces-
sors so that components that can be executed in parallel are,
and tightly coupled components are assigned to the same pro-
cessor. Components assigned to the same processor should be
chosen so that their competition for the CPU is minimized. It
is critical to observe that the simulation’s execution behavior
depends on the inputs presented to the system. Some inputs
may cause very little simulation activity, while others may
cause a great deal of activity. Furthermore, the level of
interaction between components may vary as a function of the
inputs. Thus a partitioning algorithm must attempt to create a
partition which works well for every expected set of simula-
tion input.

One approach to quantifying a simulation’s run-time behavior is
to mathematically model the behavior of the simulation com-
ponents in response to probabilistically generated inputs. This
approach usually fails to be computationally feasible, due to
the complicated relationships between the simulation’s com-
ponents [1]. An alternate approach is to base the partitioning
algorithm’s assignments on observations of the way the simula-
tion behaves. These observations are taken to be representative
of the overall behavior of the simulation. Partitioning algo~
rithms utilizing such observations are statistical partitioning algo-
rithms.

Statistical partitioning algorithms must presume that future
simulation system behavior resembles the observed behavior.
The performance of a system partitioned with a statistical par-
titioning algorithm is hostage to this assumption. If the run-
ning behavior of the simulation were to drastically change, the
observations governing the partitioning are no longer representa-

David M. Nicol and Paul F. Reynolds, Jr.

tive of the run-time behavior. Co-resident components whose
executions were once nicely interleaved may now demand CPU
service at the same time, causing bottlenecks. Separated com-
ponents which once communicated infrequently may now com-
municate often, tying up the communication channel. To deal
with this potential failing of statistical partitioning algorithms,
we have developed a dynamic repartitioning decision process
that anticipates and detects such a change, and then reacts to
it. This decision process gives rise to a decision policy which
balances the computational costs and risks of calculating a new
partition with the potential speedup benefits. This decision pol-
icy is provably optimal.

3. Problem Statement

Consider a simulation whose components have already been dis-
tributed. We suppose that the total simulation session can be
divided into subsessions that are in some sense identical. One
convenient definition of a subsession is the simulation’s response
to one set of inputs. The sym of processor utilizations during
a subsession is a measure of system performance during that
subsession; we consider the subsessions to be probabilistically
identical if the sequence of utilization sums over each subses-

sion forms a weakly stationary (or covariance) stochastic pro-

cess [3]. We call such a subsession a system cycle; let Z; denote
the sum of processor utilizations over the ith cycle.

We now consider the possibility that at some unknown time 2,
the sequence Z,, Z,;, ' forms a weakly stationary process
that is different from Zy,Z4,---.Z,. If s is a time greater
than or equal to ¢, we will say that a change has occurred by
time s. If a change occurs and the mean measure Z; is
observed to decrease, we can conclude that the system is not
running at the level of performance it once had. This drop in
performance can be caused by a change ih the dynamics of the
running simulation; a change which causes bottlenecks due to
the partitioning. The system performance might be improved
then by repartitioning. We treat the problem of deciding
whether or not a change has occured, and whether or not to
calculate and adopt a new partition by a Markov decision pro-
cess.

A decision process can be thought of as a sequence of actions;
time is divided into intervals, and an action is chosen at the
end of each interval as a function of the decision policy. Each
possible action has an associated cost. The decision process we
envision for our problem must determine, at the end of each
time interval, whether or not a change has occurred. The pro-
cess then has the option of either calculating a new “partition,
or continuing with the old one. If a new partition is caleu-
lated, it is tested against the old partition on the most recent
workload profiles; this test determines if substantial enough
improvement can be expected by using the new partition. The
cost of the decision to repartition has two components. The
system suffers delay due to the calculation and testing of the
new partition: the second component is a benefit, or negative
cost. This benefit is achieved if the new partition is found to
be superior to the old one: the benefit is the expected
differential in system finishing time between the system running
under the old partition and the system running under the new
partition. If the new partition is found superior, and is thus
adopted, the decision process is considered to have stopped. If
the new partition is found inferior to the old partition, we
conclude that the change did not occur, and continue the deci~
sion procedure.

If the decision process does not choose to calculate a new parti-
tion, the system is run for the next interval of time under the
old partition. The cost of this decision is a "lost opportunity”
cost: this cost is incurred if the change has already occurred
and future repartitioning benefits are achievable. The decision
to continue for another interval under the old partition foregoes
the benefit of the new partition for that interval.

The cost of a decision policy is the sum of the costs incurred
at each decision dictated by that policy. An optimal decision
policy is one with minimal expected cost. Intuitively, we see
that the optimal policy must balance the costs and benefits of
repartitioning with the costs of not repartitioning. We have
determmined an optimal decision policy for the repartitioning

494

problem. Similar change detecting problems have been treated
in [4] ; our work differs principaily in that we require the
repartitioning benefit to vary as a function of time. Likewise,
the general statistical field of sequential analysis IS] treats the
problem of deciding when to stop sampling; however, this sort
of analysis generally assumes distributional knowledge of the
quantities involved, and focuses on the minimization of the
number of samples taken. This minimization metric gives equal
cost to each sample: we will observe that a precise model of
our problem will give observations unequal expected costs.

4. Problem Formulation

In this section we model the dynamic repartitioning problem as
a Markov decision process. This requires a precise definition of
Markov decision processes, and the formulation of dynamic par-
titioning within the confines of this definition. This formula~
tion will be seen to depend on our ability at each point in
time to calculate the probability that the anticipated change has
already occurred. This probability is affected by a statistical
procedure which examines recent system behavior and decides
whether or not the change has occurred. We will treat the
statistical issues of detecting change first, and then proceed to
the larger task of formulating dynamic partitioning in terms of
a Markov decision process.

4.1. Statistical Issues in Detecting Change

There are two issues we need to address. Most useful statistical
tests assume that the measurements analyzed are independent;
many assume normality as well. If we are to use such tests
with confidence, we must first transform our measurements to
fit the tests’ assumptions. The second issue is simply how we
intend to detect change. We propose solutions to both of these
problems.

We can expect the sequence of system performance measure-
ments to be correlated. Furthermore, the distribution of these
measurements can be arbitrary. Before we can hope to
confidently use statistical techniques on this data, we need to
transform the data in some way to make it more amenable to
analysis. The "batch means" [6] method is appropriate for this
task. The resulting sequence of group means is the sequence
analyzed.

We detect change in a system's dynamic behavior by analyzing
the distribution of the transformed observations. We must
examine the batch mean observations as they become available,
and determine if, at some point in time, a significant and sus-
tained difference in these observations’ distribution occurs.
Solutions to the so-called model identification problem [7] in
statistics can be used to detect this change. As applied to our
situation, the model identification problem is to decide whether
two groups of independent normal observations are best
described as being drawn from the same distribution, or from
two different distributions.

Using a model identification approach, we detect distributional
change in the sequence of normal random variables by creating
a test cluster of observations. We assume the exzistence of a
base cluster derived from initial observations taken before a
change could have occurred. A test cluster is statistically com-
pared with the base cluster; the test determines whether or not
the two clusters are identically distributed. Positive indication
of distributional difference is evidence for the change having
already occurred.

The model selection criterion provides a statistical means of
testing for change. As a statistical test, it may fail to
correctly identify the true state of nature. If we treat the
problem of identifying change in a Bayesian framework, the
statistical test gives us certain information about the true state
of nature. In particular, if we have a prior probability of the
change having already occurred, we can calculate a posterior
probability of the change having already occurred as a function
of the test result. Calculation of the posterior probability
requires knowledge of the statistical test’s accuracy. We denote
by « the probability that the model selection statistic falsely
indicates a change (type I error); we denote by $ the probabil-
ity that the statistic fails to detect a change (type II error).

An Optimal Repartitioning Decision Policy

4.2, Model Formulation

A Markov decision process is a stochastic process which exam-
ines its state at different points in time; at each examination it
chooses some action. Associated with each action is a cost,
‘which depends on the state and the action. Conditioned on the
action chosen, the next state of the process is chosen in accor-
dance with some transition probability distribution. We may
formulate the dynamic repartitioning decision problem as a
Markov decision process [8]. We identify the points in time at
which decisions are made, the decision process states, the state
dependent action costs, and the state and action dependent tran-
sition probabilities. Each of these topics is addressed in turn.

Time Steps and Process Statess The construction of the model
selection test for change allows us to make this test every b-.¢c
system cycles. where b is the size of the batch means group
and ¢ is the number of observations in a cluster. We consider
time to be divided into a sequence of decision steps, with b-c
system cycles defining the period between two adjacent decision
steps. Time n is thus considered to be the time corresponding
to the nth decision step. Furthermore, we assume that the
system runs for exactly N decision steps.

The definition of our formal model revolves around the proba-
bility that the anticipated change has already occurred. At time
n, we denote this probability by p,. The state of the decision
process al time n is defined to be the pair <p,.n>. Maintain-
ing the probability that the change has already occurred is the
central activity of the decision process.

Maintaining the Probability of Change: We suppose that the
decision process is in state <p,n>. A number of probabilities
are of interest to us. Let p'(p) denote the probability that
the system will have changed by time n+1, conditioned on the
value of p, =p. This probability is dependent on prior
knowledge of the distribution of the time of change. Supposing
that such information is not precisely known, it is reasonable
(and convenient) to assume that the failure rate of this distri-
bution is some constant ¢. Using simple conditioning argu-
ments we have

PPl =p+¢(1—p)
=(1—¢)p + ¢.

The probability p’(p) represents the probability of change at
time n+1 given only the value of p, = p and foreknowledge
of the change time failure rate. The probability of change by
time n+1 is enhanced by an observation of the system at time
n+1 since each observation yields additional information related
to the probability of change. This posterior probability is
given directly by Bayes' Theorem [9] . ¥ p, =p, and an
observation at time n + 1 indicates change, change, the posterior
probability p,+; is equal to

P (pXa-p)
P A= +A -7 pla
Likewise, given a negative indication of change, the posterior
probability is

p(p)=

P (p)p)
P+ —-p (pNA~a)
These equations allow us then to maintain the probability that

the change has already occurred as a function of the prior pro-
bability, and the result of the last test for change.

"(p) =

Decision Actions and Costst Upon arrival at state <p,.n>,
the decision process has the option of choosing one of two
actions. It may choose to continue, or it may choose to fest.
The decision to test is the decision to calculate and possibly
adopt a new partition. The Markov decision mode! requires us
to define action costs that depend on the state <p,.n>. An
understanding of these costs is obtained by considering the
effects of the chosen action.

Test Decision Consequences and Costs: The decision to test inj-
tiates a two step process. The system is halted, and a new par-
tition is calculated on the basis of recent system behavior.

495

Given a new partition and performance traces of recent system
behavior (e.g.. observed precedences. activity execution times),
we predict what the performance of the system would be
under the new partition. [1] and [10] treat this in some detail.
It is possible then to compare the performance of the system
under the old and new partitions, and choose the better one.
‘We will assume that the new partition is chosen if and only if
the system has truly changed and is significant enough to war-
rant repartitioning. As a consequence. if the old partition is
retained, the probability that the system has (significantly)
changed by time n is considered to be 0. The system is res-
tarted once the appropriate partition is selected. The decision
process is considered to have stopped if the new partition is
chosen. If the old partition is chosen, the process resumes, using
Prn =0 as its initial prior probability.

The computational delay of calculating and testing a new parti-
ton is assumed to be some constant D;. If the new partition
is chosen, an additional delay of D, is incurred to physically
effect the repartitioning. When the new partition is chosen, we
expect a resultant speedup over the time to finish the session
under the old partition. This differential speedup can be
estimated when the system initially indicates change; the
speedup, or gain over one decision step’s worth of time is
denoted by G. Given a finite number of N decision steps, the
speedup resulting from a new partition chosen at time n is
G(N —n +1).

Integrating all of these observations, we see that the expected
cost of choosing to test at state <p,.n> is

E[Cost(<p,.n>,test)] = Dy — p,"IG(N —n + 1)~ D,

Continue Consequences and Costs: The consequences of the con-
tinue decision are substantially simpler than those of the test
decision. The decision 1o continue simply allows the system to
run for one more time period under the old partition. At the
end of the time period the system is observed for change once
again, and a new posterior probability of change is calculated.
This posterior probability defines the decision process state at
the end of this time period. The cost associated with the con-
tinue decision is a "lost opportunity” cost. By choosing to con-
linue, the process foregoes any possible benefit from repartition-
ing in the next decision step’s worth of system time. We
presume that our partitioning algorithm can produce a better
new partition only if the change has already occurred: the pro-
bability of this is p,. We incur no cost by continuing if the
change has not yet occurred. Consequently, the expected cost
of choosing to continue at state <p,.n> is simply

E[Cost(<p,.n>, continue)] = p, -G

State Transition Probabilitiess After an action in state
<pp.n>, the process makes a transition; we first consider the
transition after a decision to continue. By continuing, the sys-
tem runs under the old partition until time n+1, at which
point the system is again tested for change. The posterior pro-
bability that the system has changed by time n+1 defines the
next process state <p,4n+1>; poyy is equal either to p°(p,)
or p=(p,). depending on the outcome of the test for change at
time n+1. The state transition probabilities out of <pp.n>
after a continue decision are thus defined by the probability of
observing a change at time n+1.

Let ¢°(p) denote the probability that the change test would
report a change at time n+1, given thai the probability of
change by time n is p. We recall that « and B denote the
type 1 and type II errors of the test procedure; again, direct
conditioning arguments establish that

°(P)=p" (Y1 =B+ (1 —p' (pDa.
The probability of observing no change at time n+1 is

() =1-¢%@)
=p(P)B+(1-p' (N1 -a)
We now consider the transition probabilities out of <p.n>

after the decision to test. The probability that the new parti-
tion is adopted is just p; should this occur, the decision process

David M. Nicol and Paul F. Reynolds, Jr.

stops so that there is no next state. Conversely, the probability
of rejecting the new partition is 1— p. After rejection, we
infer that p = 0; the state of the process at time n-+1 is thus
one of the two states reachable from state <0»2>, and
depends again on the outcome of the change test at time n-+1.
Thus the probability of passing from <p,n> into a particular
state at time n+1 is 1—p times the probability of reaching
that state from <Q,n>.

5. Process Optimal Cost Function

The importance of Markov decision processes lies in a theorem
which allows an optimal decision policy to be identified. This
theorem is simply a statement of dynamic programming.
Applied to our problem, this theorem states that given the pro-
cess is in state <p.n >, the expected future cost of the optimal
decision policy is the minimum of (i) the expected cost of
choosing now to test, and thereafter using the optimal decision
policy, and (ii) the expected cost of choosing now to continue,
and thereafter using the optimal decision policy. We denote the
expected future cost of the optimal decision policy from
<pn> by V(<p.n>). The formal statement of this theorem
is aided by a further notational device. Given that the state
at time n is <p.,n>, we denote the mean expected future
costs at n+1 by E,[<p.n>], and observe

El<pn>1=g°(p)V(<p(@ln+1>) + ¢¥(p)V(<p®(pln+1>).

Then the relationship satisfied by the optimal cost function V
is stated as

V(<pn>)= n

Dy, —p~[G-(N —n+1)=D. |+~ p)E[<On>]

min G +E[<pn>]

Furthermore, the optimal decision to make in state <p.n> is
the action associated with the cost function defining this
minimum. The uppermost function on the right hand side of
equation (1) is the optimal expected future cost function associ-
ated with the test decision, denoted by ECT(<p,n>). The
lower function is the optimal expected future cost function
associated with the continue decision, and is denoted by
ECC(<p.n>).

Since V<p.n> is the minimal expected future costs of the
process in state <p,n>, we define V(<p N+1>)=0: the
process never advances beyond time N + 1.

6. Optimal Policy Structure

Any decision policy whose expected cost function satisfies equa-
tion (1) above is optimal. In [1] we have shown that the
optimal decision policy is characterized by a sequence
y, -+ -y of constants from the interval [0, 1]. The optimal
decision to make in state <p,n> is to test if and only if
p > m,. Theorem 1 summarizes this development. For every
n=12,-- N, ECT(<pn>) and ECC(<p,n>) intersect at
most once for p €[0,1]. Furthermore, whenever ECT(<p.n>)
and ECC(<pn>) do intersect at 1, €[0,1], then
ECT(<p.n>) < ECC(<p.n>) for all p > m,.

Supposing that the intersection points w7, are available, upon
arrival at state <p,n> the decision process compares p with
the threshold 7,. If p < r,, then V(<p.n>) is equal to
ECC(<p.,n>), so that the continue decision is optimal. On the
other hand, if p > m,, then the test decision is optimal. The
utility of this result hinges then on our ability to determine
the points of intersection 7,.

Equation (1) is seen to express the function V(< -,n>) in
terms of V(< :,n+1>). Furthermore, V(<p . N+1>)=0 for
all p. We can therefore derive the points of intersection w,
numerically, by solving this recursive set of equations. An
efficient method of solution is developed in [1l.

496

7. Other Concerns

We have also addressed other concerns arising from the
definition of this decision process. Some of the parameters used
by the model cannot reasonably be estimated before some indi-
cation of change is observed. The problem faced by the sys-
tem then, is the choice of action if no observation of change
has yet occured. We have shown that under such cir-
cumstances, the continue decision is always optimal. Conse-
quently, the model equations need not be solved until some
indication of change occurs.

Another concern considers the parameter defining the expected
repartitioning gain per decision step, G. The precise value of
G cannot realistically be known. However, it may be possible
to bound G from above and below. A point estimate of G
might then be chosen from the interval defined by these
bounds. We have shown that the points of inlersection 7, are
decreasing functions of G. This implies that the use of G's
upper and lower bounds in equation (1) leads to tight upper
and lower bounds on the true w,. Using a point estimate for
G is thus a reasonable heuristic: the resuiting estimations 7,
lie within known tight bounds on the true ,.

8. Conclusions

The costs associated with dynamic repartitioning could easily
overwhelm any potential benefits that might be gained from
repartitioning. A cost effective repartitioning policy must bal-
ance its implementation costs against potential benefits. In this
paper we have presented an optimal repartitioning policy that
assumes a statistical model of execution bebavior. With this
assumption we have benefited twice; the policy we describe is
optimal, due mainly to assumptions the stochastic nature of our
model allows us to make, and the decision analysis our policy
requires is inexpensive. That is not to say that all of our
assumptions are cheap to implement. We have assumed that
we have statistics on the past behavior of an existing partition
and that we have sufficient information to probabilistically
predict the future behavior of a proposed partition. The costs
associated with using this information are not low.

‘We have not discussed architectures which we believe would
support our partitioning policy efficiently and will not do so
here. We note that all of the analysis required for our repar-
titioning policy could be carried on in parallel with an execut-
ing simulation. For this reason we are encouraged from a
practical perspective by our results. From a theoretical per-
spective, the optimality of our repartitioning policy demon-
strates that a relatively simple policy can be optimal. We
have good reason to believe that dynamic partitioning can be
cost effective.

An Optimal Repartitioning Decision Policy

References

[1] D. Nicol, The Automated Partitioning of Simulations for Parallel
Execution, Ph.D. Dissertation, University of Virginia, August 1985.

[2] D. Eager, E. Lazowska and J. Zahorjan, Dynamic Load Sharing in
Homogeneous Distributed Systems, Tech Report 84-10-01, Univer~
sity of Washington.

[3] 8. Ross, Stochastic Processes, Wiley and Sons, New York, 1983.

[4] A. Rapoport, W.E. Stein and G.J. Burkheimer, Response Models
for Detection of Change, D. Reidel Publishing Company, Boston,
1979.

5] z. Govindarajulu, Sequential Statistical Procedures, Academic
Press, 1975.

[6) G. Fishman, "Grouping Observations in Digital Simulation",
Management Science 24, (1978), 510-521.

[7] H. Bozedogan, S. Sclove, "Multi~Sample Cluster Analysis Using
Akaike’s Information Criterion", Annals of the Institute of Statisti—
cal Mathematics 36,1, (1983).

{8] S. Ross, Applied Probability Models with Optimization Applica—
tions, Holden—Day, San Fransico, 1970.

[9] S. Schmitt, An Elementary Intsoduction to Bayesian Statistics,
Addison—Wesley, 1969.

[10] D. Nicol and P. Reynolds, "A Statistical Approach to Dynamic
Partitioning”, Proceedings of the SCS Multi-Conference, San Diego,
January 1985, 53-56.

497

DAVID M. NICOL

David Nicol is a staff scientist with the Institute for Computer
Applications in Science and Engineering, Hampton, Virginia. He
was graduated in 1979 from Carleton College, Northfield, Minnesota,
with a B.A. in mathematics. He spent three years as a programmer
analyst with the Control Data Corporation, designing and develop—
ing distributed real-time signal processing systems. He entered the
University of Virginia in 1982, taking an M.S. in computer science
in 1983, and a Ph.D. in computer science in 1985. His research
interests include distributed systems, parallel algorithms, and per—
formance analysis. Dr. Nicol is a member of the Association for
Computing Machinery, and the IEEE Computer Society.

ICASE

Mail Stop 132C

NASA Langley Research Center
Hampton, Virginia 23665
(804) 865-2513

PAUL F. REYNOLDS

Paul Reynolds received the B.A. degree from Ohio Northern Univer—
sity, Ada, Ohio, in 1970 and M.S. and Ph.D. degrees in computer sci—
ence at the University of Texas at Austin in 1975 and 1979. He was
an Instructor of computer science at the University of Texas at Aus—
tin in 1979-1980. Since the Fall of 1980 he has been an Assistant
Professor of computer science at the University of Virginia. He has
consulted for a number of large corporations, as well as government
agencies. His research interests include distributed systems, language
design, and performance evaluation. Dr. Reynolds is 2 member of the
Association for Computing Machinery, and the IEEE Computer
Society.

Department of Computer Science
Thornton Hall

University of Virginia
Charlottesville, Virginia 22903
(804) 924-1039

