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ABSTRACT

This paper presents a number of solutions to the prob-
lems of data access, concurrency control, transaction seriali-
zation, and deadlock control based on the examples of exist-
ing file systems. Also, policies for file placement and process
assignment are discussed from the viewpoint of their impact
on system performance and reliability. The impact of these
policies depends on the solutions to the problems referred
above. A simulation model of a file system is introduced.
This model is validated using data collected in a small busi-
ness installation. A number of simulation experiments are
presented. It is shown how the decision about where to place
a file or to assign a process can be based on the workload’s
and the system’s characterization. An algorithm for improv-
ing performance and reliability by file placement and/or pro-
cess assignment is finally presented.

INTRODUCTION

The problems of data access, concurrency control [2],
transaction serialization [9], and deadlock control are among
the most difficult ones to be solved when designing a file sys-
tem. The problems of data access are concerned with the
unit of data access, and access control. A concurrency con-
trol policy allows transaction-type access to shared resources.
The unit of concwrrency control is usually the same as the
unit of data access. The protocols determine the policy for
serialization of tranmsactions when accessing the shared
resources. The policies for deadlock control allow to resolve a
deadlock that may appear in the system. There exist a
number of file systems with different solutions to the prob-
lems referred above. There are pros and cons to every solu-
tion, and not all solutions are independent of each other.
Also, depending on the applications, a file system can be
designed in several different ways.

The solutions adopted in the following file systems will
be referred to in this section:

(1) XDFS (XEROX Distributed File System) [31};
(2) CFS (Cambridge File Server) [14, 31, 34];

(8) FELIX (File Server developed at Bell-Northern
Research) [17];

(4) SWALLOW (File system developed at MIT) [45];
(8) CMCFS (Carnegie-Mellon Central File System) [45];

(6) The file system of LOCUS (Distributed operating
system based on UNIX') [33, 36, 47);

(7) F-UNIX (File system developed at Bell Labora-
tories) [29];
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(8) The file system of DEMOS (Operating system
developed at Los Alamos Scientific Laboratory) [37, 38];

(9) The file system of MULTICS (Operating system
developed at MIT) [32, 43].

The unit of data access [25, 40] can be a file (SWAL-
Low), a sequential subset of a file
(CFS, CMCFS, DEMOS), a page
(FELIX, LOCUS, MULTICS), or a subset of a page
(XDFS). A mechanism for access control is necessary to
protect files from unauthorized access. In a capability-based
system usually the file identifier (FID) is used as the capabil-
ity. In an identity-based system, the identity of the user is
also required. Systems CFS, FELIX, LOCUS and SWAL-
LOW have a capability-based scheme, whereas systems
CMCFS, XDFS, and directory access in FELIX are
identity-based.

A concurrency control policy [2] allows transaction-type
access to shared files. Concurrency control can be handled by
the file system (CFS, FELIX, LOCUS, SWALLOW,
XDFS, DEMOS) or by the users (CMCFS). The unit of
concurrency control (i.e., the entity to be locked) is usually 2
file (XDFS, CFS, FELIX, SWALLOW, CMCFS); it can
also be a page (i.e, a unit of storage allocation)
(CMCFS, MULTICS). The usual concurrency control pol-
icy is the single-writer multiple-readers policy, that is:

(a) a transaction can read a file iff the file is not being
written;

(b) a transaction can write a file iff the file is not being
read or written.

The most popular protocols for transaction serialization
are: two-phase locking protocols (XDFS, FELIX, CMCFS)
and timestamps based protocols (SWALLOW). In the first
phase of a two-phase locking protocol, a transaction acquires
locks; in the second phase, it releases all locks. A timestamp
policy requires that all transactions have the values of their
arrival times associated to them and can access files in chro-
nological order of arrival.

A simple example of a deadlock is when two transac-
tions, each having locked a file, require access to the file
locked by the other transaction. The policies for deadlock
control are [19, 27, 39, 46]:

(a) Deadlock prevention (FELIX). A transaction
declares all files it needs before starting.

(b) Deadlock detection and resolution (FELIX ). One of
the transactions (or processes) that has caused a deadlock is
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selected and preempted, and its locks are released; after a
while, that transaction is restarted. The operating system
includes a2 lock manager which detects and resolves
deadlocks.

(¢) Time-limited locks (XDFS). A transaction waits to
acquire its locks only for a certain amount of time, and then
is timed out; after a while, it retries to acquire its locks.
This policy can be acceptable only when the system is not
heavily loaded. When the system becomes more congested,
then more transactions time out due to their waiting for sys-
tem resources and locks, rather than because of a system
deadlock.

(d) Ordering by timestamps (SWALLOW) determines
whether a transaction may wait for locks without creating a
deadlock. A decision about whether to wait for locks or to
abort a transaction is made immediately when a transaction
requests access to a file. This decision is made on the basis
of the order of timestamps.

(¢) None (CFS, CMCFS). The users choose whether in
the case of conflict a request has to be rejected or to be
queued. The latter decision may cause a deadlock.

The solutions outlined above influence the design of a
distributed file system and the policies for file placement and
protess assignment. Among the important problems arising
in such design are (9, 10, 16, 18]: resource management, per-
formance, reliability, and transparency. These solutions, pol-
icies and problems are dependent one on another.

Other actions which may improve performance are file
placement and process assignment [1, 4, 8, 28, 30, 42]. A
process can be assigned to a machine which is less heavily
loaded. Also, a file can be placed on the machine where a
transaction which requires access to this file is executed.

This paper investigates the issues of file placement and
process assignment in a local area network [L1, 16, 26} from
the viewpoint of system performance and reliability. A simu-
lation model of a distributed file system is constructed to
evaluate our approaches and solutions. Our model of con-
currency control represents access to files and sectors, and
distributed locks. The model of system workload consists of
a number of transaction types. Each type of transaction
corresponds to a number of transactions associated with of
terminals. Every transaction type is characterized by its
demands of the system resources. Due to our interest in file
placement and process assignment, special attention is paid
to the number of read versus write accesses to each file for
every transaction type. Also, the amount of sharing of the
files and of the sectors will be considered as an important
factor.

In Section 2, we describe the distributed file system to
be modeled, and especially its mechanism for concurrency
control. Section 3 presents a simulation model of the file
system. The results obtained from this model are
presented in Section 4. An algorithm for improving perfor-
mance and reliability is given in Section 5. The algorithm
considers workload characterization and system architecture
as the important factors of a decision about where to place a
file or to assign a process. Finally, Section 6 concludes the
paper with a brief description of the problems which remain
to be investigated.

THE FILE SYSTEM TO BE MODELED

The file system to be used in our experiments has been
designed for a small business installation. This file system
will be described from the viewpoint of its solutions to data
access, concurrency control, transaction serialization, and

(a) sequence of events to lock index directory

k Unlock

bock e Oc Uniock ID - Index Directory

___.O__O_——O—O———- GFD - File Descriptor Switch
LTS - Lock Table Switch
D GFD GFD D LTES - Lock Table Entry Switch
(b) sequence of events to lock sector

Lock Lock Unlock Lock Unlock Lock Unmlock Unilock
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Figure 1. Sequences of events to lock index directory, file descriptor, and sector.
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deadlock control. These solutions have significant impact on
system performance and reliability, and influence policies for
file placement and process assignment,.

Our file system is identity based, and the unit of data
access is the sector. The file system consists of a set of fixed
size blocks. Concurrency control is handled automatically by
the file system. The concurrency control policy is the single-
writer multiple-readers policy. The unit of concurrency con-
trol is the sector. The sequences of events to lock the index
directory, a file descriptor and a sector are shown in Fig. 1.
Every read or write access to a sector is preceded by an
index directory access and a file table switch access. The
index directory is locked and accessed to locate the position
of a record and possibly to modify the information in a file
descriptor. Then, the index directory is unlocked. In order
to access a sector, the lock table switech of the file has to be
locked to find the entry for the sector, and then to lock the
table entry switch of this sector for read and write access.
Then the lock table switch of the file is unlocked, and other
transactions can lock it for accessing other sectors. A sector
can be accessed for reading or writing while its table entry
switch is locked. After reading or writing a sector, the file
descriptor switch is locked to modify the information, if
necessary, and then it is unlocked. The lock table switch of
the file is locked again to unlock the lock table entry switch
of the sector, and then the lock table switch of the file is
unlocked.

This concurrency control policy allows simultaneous,
parallel access to different sectors of a shared file. However,
every lock requires a certain amount of CPU time to be exe-
cuted. And the performance degradation due to locking can
be significant when the CPU is the system’s bottleneck.

There are two policies for controlling deadlocks. The
first consists of having transactions declare all the files they
will need before starting. This only prevents a deadlock in
file descriptor switches. However, this does not prevent a
deadlock in the file system, since the unit of concurrency
control is the sector. This is why an additional policy is
needed which uses time-limited locks. After a certain amount
of time, a transaction loses its locks and retries to acquire
them again. Several unsuccessful attempts cause 2 request
to be issued to the user to terminate the transaction.

Our description covers only some aspects of this file sys-
tem. This information is necessary for the purposes of its
modeling and analysis. A simulation model of the file system

running in a distributed environment is presented in the next
section.

NETWORK SERVER

— IO

A SIMULATION MODEL OF A DISTRIBUTED
FILE SYSTEM

The system considered in this study is a distributed file
system containing several identical hosts. Each host includes
a number of terminals which initiate the processing of tran-
sactions. The behavior of a transaction is as follows: each
transaction has to be processed in the CPU before it accesses
any other service center; it may also be processed by a file
disk and by the network server; and it may be delayed
because of locks. In its local host, a transaction also pro-

duces several display outputs before returning to a user ter-
minal.

FILE DISK
. fefs
* FILE DISK
—T—O—
]
fofs
CPU
e O—{F—}—~
ps
DISPLAYS
TERMINALS

Figure 2. A model of a host.

HOSTS

Figure 3. A model of a distributed system.
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The model of a single host and that of the multiple host
system are shown in Fig. 2 and 3, respectively. The model of
each host contains the representation of a number of termi-
nals and display output devices, both modeled as infinite
servers (is), a CPU modeled as a processor-sharing (ps)
server, and a number of file disks, each disk drive being
modeled as a first come first served (fcfs) server. Each file
disk contains a number of files. The directory is assumed to
be located in main storage.

The workload of the system comsists of a number of
transactions. It is assumed that each type of transaction
defines its own class (i.e., the number of classes is equal to
the number of transaction types). Each class of transactions
is characterized by the mean resource requirements of each
transaction, the sectors of the files locked and unlocked for
each disk access for each transaction type; and, for every sec-
tor, the mean number of physical disk accesses occurring
while the sector is kept locked.

SOME RESULTS

Ty - the mean "think” time of an interaction;

Tg - the mean time of 2 display output;

Tepy - the mean CPU time consumed by a transaction of
that type;

D - the total number of disk I/O operations in a transaction
of that type;

S - the total number of display outpiutts in a transaction of
that type;

F - the number of sectors of the files accessed by a transac-
tion of that type;

ND - the number of disk I/O operations done while keeping
a sector locked, for every sector.

The following parameter values can be derived from the
measurement data:

T
Average CPU time per interaction (ﬂ)

I

Average number of disk I/O operations per interaction (—?—)

Average number of display outputs per interaction (%)

Average CPU time between successive disk I/O operations

A few simple examples of performance prediction . Teopy
(approached with the RESQ2 queueing network analysis and/or display outputs ( D +S)
package [41]) in a distributed system using measurements bili . R D
collected in a small business installation will now be dis- T robability of accessing the file disk (1+D +S§
cussed to show the applications of the model and to evaluate Probability of a displ toub S
the performance changes due to resource sharing., The robability of & display owspu (1+D +S )

impact of the amount of sharing of the sectors by transae-
tion types on the system’s performance will be discussed on
an example of a single-host system. This does not detract
from the analysis since the amount of sharing is not a pecu-
liar aspect of multiple-host systems. The impact of sharing
of distributed locks by transaction types on the system per-
formance will be discussed on an example of a multiple-host
system. The time delays due to sharing read and write locks
by transaction types will also be presented.

The workload of the system is defined by two types of
transactions. The following data are measured for each tran-
saction type: ’

P - the percentage of the number of transactions of that
type in the workload;
I - the number of interactions;

The estimated values of the parameters of each transac-
tion type (i.e., of each class in the model) are given in Table
L

The average service times for the following two service
centers are the same for all transaction types:

Disk access
Network server

TDISI( = 20 ms
TNET = 0.2 ms

Every access to a sector of a file requires four accesses to
the CPU due to locking. The average service times of these
accesses are:

TPPYU = 508 ms
descriptor lock)

TPV — 2.60 ms
table entry switch locks)

{Index directory lock and file

(Sector locking: table switch and

Table 1. Estimdted mean values of the model parameters for a single-host system.

Transaction Tepy/(D+8) Try Tg

Type [ms] {ms} [ms] D/(1+D+8) S/(1+D+8)
T1 6 900 15 0.45 0.54
T2 8 900 20 0.495 0.495

Table II. Performance measures obtained from measurement and simulation of a
single-host system.

Transac-|Number Performance Measures
tion Jof Tran-| Results Utilization Thrfbgsll)put Respor}:]e Time
Types |sactions CPU[DISK|SYSTEM[T1 _|T2 |SYSTEM|T1 |T2
T1: T2 9:1 measurement}0.28 | 0.12 1.08 0.77] 0.32] 0.8 0.5{ 0.8
’ ! simulation 0.29 | 0.12 1.09 0.78] 0.31} 0.6 0.5 0.8
1T | 9.9 |measurement|0.3210.12| 1.18 | 0.64] 0.55] 065 | 0] 05
’ ! simulation [0.33] 0.12 1.18 0.64 0.54| 0.65 0.8] 0.5
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T§PY =0.94 ms  (File descriptor lock)

TSPV = 6.91 ms (Sector unlocking: table entry
switch and table switch locks)

Note that the average service time for sector unlocking
is much higher than that for locking a sector.

The system was modeled using the simulation method.
The confidence level of the simulations was 90 percent. The
confidence interval width was (-10, -+10) percent. Perfor-
mance measures were calculated for this simulation model.
The model was validated with measurements collected in a
small business installation. Two simple examples of mixed
transactions were run in that installation on a single-host
system. The values of performance measures obtained from
the simulation results and the measurement results were
sufficiently close, as the error was less than 10 percent. The
comparison of results obtained from the simulation model
and from measurement is presented in Table II. Note that
the measurements of system performance were taken on a
different bardware installation (i.e., different CPU) than the

to Resource Sharing in a Distributed System

measurements of the workload, and were used only to vali-
date our model.

Sharing of Sector Locks by Transaction Types

In this example, the performance measures are com-
puted for a single-host system containing one file disk with
one file on it. Three sectors of this file are accessed by tran-
saction types. The average number of disk accesses when a
sector is kept locked is two. A transaction may be sent to a
display or a terminal when it keeps a lock on a sector. This
means that no other transaction can access this sector at
that time.

In the first example, transactions of type T1 access the
first sector only, and transactions of type T2 access the
second sector only. The third sector is not accessed, and no
sector is shared by transaction types. The results of the
experiments are shown in Table IIl (L1 and L2 in that table
represent the table entry switch lock for the first and the
second sector, respectively).

Table IIL. Performance measures for the simulation model when one file is shared

by transaction types (no sector is shared).

Transac-| Number Performance Measures
tion |of Tran- Utilization Thrf)lu/gslllput Respol?[i:]e Time
Types |sactions o ISISKILL L2 [SYSTEM|TL |75 SYSTEMITI 13
T1; T2 1; 1 10.56]0.25 1 0.62] 0.58] 0.56 0.311 0.25 2.68 2.39| 3.04
T1; T2 2;2 10.73]10.33| 0.89] 0.88{ 0.70 0.38] 0.32] 4.79 4.34| 5.31
T1; T2 3;3 10.76]0.34 | 0.98] 0.98] 0.73 0.41} 0.32 7.29 6.38| 8.44
T1; T2 4;4 10.78{0.35 | 1.00{ 1.00{ 0.70 0.36] 0.34] 10.53 |10.22|10.82

Table IV. Performance measures for the simulation model when one file is shared
by transaction types (one sector is shared, P(sharing)=0.1).

Transac-INumber Performance Measures

tion |of Tran- Utilization Thr(ﬁl/gslllput Respor;:]e Time
Types |sactionsioorisieidie o 3 BYSTEMITL T2 |SYsTeMIT T2
T1; T2 1; 1 10.56]0.25 0.53] 0.53| 0.11] 0.54 0.29] 0.25| 2.76 2,52 3.08
T1; T2 2; 2 10.74]10.34 | 0.83} 0.83| 0.19] 0.70 0.38| 0.32| 4.81 4.39] 5.31
T1; T2 3; 3 10.79]10.36 § 0.95! 0.94| 0.24] 0.78 0.40| 0.38| 6.67 6.55 7.00
T1; T2 4;4 10.81]0.37 | 0.99] 0.99] 0.25| 0.80 0.42] 0.38] 9.16 8.67] 9.71

Table V. Performance measures for the simulation model when one file is shared by
transaction types (one sector is shared, P(sharing)=0.3).

I ransac-[Number Performance Measures
tion jof Tran- Utilization ThrFlu/gS?put Resporf:]e Time
Types |sactions|orriniskiT b2 s GYSTEMITL T2 BYsTEMITL T2
T1; T2 1; 1 ]0.5410.25{ 0.41] 0.39] 0.34 0.50 0.28| 0.22[ 3.08 2.68 3.59
T1; T2 2; 2 (0.7110.832 | 0.63] 0.63] 0.56] 0.71 0.40| 0.32| 4.73 4.13] 5.34
T1; T2 3; 3 10.80/0.36 | 0.79} 0.79] 0.69] 0.78 0.42] 0.36] 6.82 6.26| 7.47
T1; T2 4;4 10.8310.37 ] 0.86{ 0.86] 0.76] 0.80 0.42| 0.38] 9.11 8.64) 9.63
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In the second example, transactions of type T1 access
the first and the third sector, and transactions of type T2
access the second and the third sector. The third sector is
shared by transaction types. The results of our experiments
are shown in Tables IV, V, VI, VII and VIII for different
amounts of sharing (the symbols L1, L2, and L3 represent
the table entry switch lock for the first, second and third sec-
tor, respectively; P(sharing) is the probability of accessing
the third sector by transactions of type T1 and T2, and 1-
P(sharing) is the probability of accessing the first or the
second sector by transactions of type T1 or T2, respectively).

The comparison of results show that the table entry
switch lock (L1, 1.2 or L3) of a sector may become the limit-
ing component in the system. The reason for this is that a
transaction can lock a sector and then be sent to a display or
to a terminal where the time spent is very long in com-
parison with the time spent at the other service centers. A
table entry switch lock of a sector may become a bottleneck
even if no sector is shared (Table III). The amount of shar-

ing is also an important factor. The simulation results show
that the performance degradation is crucial when the proba-
bility of sharing is 0.5 or higher. A comparison of the results
presented in Tables III, IV, V, VI, VII and VIII shows that
the bottleneck changes from the table entry switch lock of
non-shared sectors to the table entry switch lock of the
shared sector, when the probability of sharing becomes equal
to 0.5. When the probability of sharing is equal to 0.1 or 0.3

(Tables IV and V), the performance is slightly better than in
the no-sharing case (Table III). The reason is that, in this
case, the system becomes saturated faster when two sectors
of a file are accessed rather than three sectors. When the
numbers of accesses to the sectors are balanced (probability
of sharing equal to 0.3, Table V), more transactions may be
executed in the system without creating a bottleneck. When
the probability of sharing is equal to 0.5, 0.7 or 0.9 (Tables
VI, VII and VIII), the table entry switch lock of the shared
sector becomes the limiting system component. The degra~
dation of performance is significant when the numbers of
accesses to the sectors are unbalanced (probability of sharing

Table VI. Performance measures for the simulation model when one file is shared

by transaction types (one sector is shared, P(sharing)==0.5).

Transac-Number Performance Measures
tion jof Tran- Utilization Thrﬁt;gslllput Respo?ss]e Time
Types |sactions\opriniokli Lz s EYSTEMITL [r2 SYsteEMiTl |12
T1; T2 1; 1 {0.5310.24 | 0.29] 0.29] 0.53] 0.47 0.25] 0.22| 3.36 3.16] 3.59
T1; T2 2;2 [0.66]0.29 | 0.43| 0.43| 0.81] 0.62 0.35] 0.27 5.48 4.77) 6.41
T1; T2 3;3 10.7010.32 | 0.49| 0.48] 0.94] 0.66 0.35] 0.31 8.21 7.66} 8.81
T1; T2 4; 4 j0.7410.33 ] 0.52{ 0.51| 0.97| 0.64 0.33] 0.30[ 11.61 [11.24/12.40

Table VII. Performance measures for the simulation model when one file is shared

by transaction types (one sector is shared, P(sharing)==0.7).

T ransac-[Number Performance Measures
tion [of Tran- Utilization Thr?lu/gs?put Respor?:le Time
Types Jsactionsimorn okl Lo L3 GYSTEMITI [To  SYSTEMITI |2
(T1; T2 1;1 0.50(0.22 | 0.16{ 0.18] 0.67} 0.47 0.25| 0.22[ 3.38 3.12| 3.68
T1; T2 2; 2 ]0.60{0.27 ] 0.23] 0.22| 0.94] 0.56 0.29] 0.27 6.27 5.97] 6.59
(T1; T2 3; 3 0.6110.27 | 0.23] 0.24] 0.99] 0.59 0.31} 0.28] 9.29 8.77 9.86
(T1; T2 4; 4 0.63{0.28 | 0.25| 0.25! 1.00{ 0.61 0.32] 0.29{ 12.18 [11.56{12.90

Table VIII. Performance measures for the simulation model when one file is shared
by transaction types (one sector is shared, P(sharing)==0.9).

Transac-|Number Performance Measures
tion [of Tran- Utilization Thrc{){l/gsﬁxput Respot;:]e Time
Types jsactionsiopriniokly [z s BYSTEMITT T2 sveTEMiT iz
T1; T2 1;1 [0.46]0.21 40‘05 0.05{ 0.82| 0.43 0.23} 0.21 3.77 3.48} 3.86
T1; T2 2; 2 10.5310.24 | 0.06] 0.07} 0.99| 0.49 0.27] 0.22 3.22 2.81] 3.73
T1; T2 3; 3 (0.52{0.24 | 0.07| 0.06] 1.00] 0.50 0.27} 0.24] 7.10 6.48] 7.50
T1; T2 4; 4 10.562{0.241 0.08] 0.07} 1.00f 0.53 0.27] 0.26] 14.21 [13.93114.50
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equal to 0.7 or 0.9, Tables VII and VIII). In this case, the
table entry switch lock of the third sector is the limiting sys-
tem component, and the delay due to waiting for this lock
causes significant degradation of system performance.

These results show that many factors have an impact on
system performance when sectors are shared by various tran-
saction types. The addition of a shared sector may increase
or decrease system performance depending on the probability
of sharing. The results presented above were obtained when
the average number of disk accesses when a sector is kept
locked was equal to two. Also, a transaction could be sent to
a display or a terminal while keeping a lock on a sector. The
time spent at a display or a terminal is very long in com-
parison with the time spent at the other service centers.
This is why the table entry switch locks could become sys-
tem bottlenecks in these experiments. For the same number
of disk accesses made when a sector is kept locked, but when
a transaction cannot be sent to a display or a terminal while
keeping a lock of a sector, the table entry switch locks may
not become system bottlenecks. Note that the number of
disk accesses made when a sector is kept locked is also an
important factor [22]. When this number increases, the lock
of a sector is kept longer, and a bottleneck effect similar to
that of a table entry switch lock may be observed.

It is important to know the reasons which cause
bottlenecks on locks, since these reasons are not exactly the
same as the reasons which cause bottlenecks on a system’s
service centers. Besides the workload's demands on system
resources, the important factors to be considered are the
number of disk accesses made when a sector is kept locked,
and the amount of sharing for every sector.

Sharing of Distributed Locks by Transaction Types

In this example, the workload of the
by five types of transactions.

The estimated values of the parameters of each transac-
tion type (i.e., each class in the model) are given in Tables
IX and X for a single-host system and for a system with two
hosts, respectively. In Table X only the values of parameters
different from those in Table IX are shown. Also, the proba-
bility of accessing a remote host (Pg) is derived assuming
that a number of the disk I/O operations for each transac.

system is defined

tion type is performed in the remote host. The probability of
accessing a file disk (Pp) by a remote transaction is calcu-
lated on the basis of the number of local accesses made by
this transaction. Note that the remote transactions do not do
remote display outputs and do not return to a user terminal
in the remote host.

The average service times for the following two service
centers are the same for all transaction types:

Disk access
Network server

TDISK = 30 ms
TNET = 0.2 ms

The performance measures are computed for a distri-
buted system containing two identical hosts. Each host
includes one file disk with three files on it. Performance
measures were calculated for the analytic model [22] in the
no-sharing case, and when one file is shared. The probabil-
ity of locking delay is estimated as the ratio of the number
of disk accesses occurring while keeping the file locked to the
total number of disk accesses of a transaction of class 7.
The results of the comparison of performance measures are
presented in Tables XTI and XII.

The results presented in Table XI show that, when the
CPU is the bottleneck in the system, then changing the pro-
bability of delay does not have any significant impact on the
system performance.

The results presented in Table XII show that even when
the CPU is the bottleneck in a system in which a file is
shared by transactions of different types, then changing the
probability of locking delay may have a significant impact on
the system’s performance. In this case, when the probability
of delay increases, then the CPU is no longer a bottleneck in
the system.

The comparison of the results from the models shows
that the performance degradation due to locking can be
significant. This degradation is higher when files are shared
by different transaction types. This is why the granularity of
locking is very important for system performance. For
instance, if locks are on records or sectors rather than on
files, then the likehood of sharing is smaller and the perfor-
mance can be higher. Also the number of disk I/O opera-
tions done while keeping a file locked has a significant
impact on performance.

Table IX. Estimated values of the mode] parameters for a single-host system.

Transaction Tepu/(D+S) Ty Ts

Type P fs] [msT ms] | D/(4D+8) | S/(1+D+S)
T1 42 1000 15 0.4 0.49
T2 35 10000 25 0.8 0.19
T3 224 1000 20 0.75 0.2
T4 32 500 15 0.966 0.027
T5 15 2000 15 0.3 0.61

Table X. Estimated values of the model parameters for a system of two hosts.

T’aﬁ‘ﬁm D/(1+D+S+H) S/(14D+S+H) P, P
T1 0.39 0.47 0.04 0.79

T2 0.74 0.17 0.07 0.987
T3 0.7 0.19 0.07 0.943
T4 0.88 0.025 0.088 0.003
TS 0.29 0.59 0.03 0.778
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Table XI. Performance measures for the distributed system model when no file is

shared by transaction types.

Host |Transaction| Number of [Probability Performan‘ce Measures
Number| Types Transactions | of Locking Utilization Throughput {Response Time
of BEach Class| Delay [CPU| Disk [1/s] Is]
1 T1; T2; TS 2; 2: 2 0.1 0.38 [ 0.22 0.59 7.76
2 T3; T4; TS 2;2; 2 0.1 0.991 0.45 1.18 3.24
1 T1; T2; T 2; 2; 2 0.9 0.37 | 0.22 0.58 7.9
2 T3; T4; T5 2; 2; 2 0.9 0.98 | 0.44 1.17 3.3

Table XII. Performance measures for the distributed system model when one file is

shared by transaction types.

Sharing of Read and Write Locks by Transaction
Types

Three simple examples of time delays due to locking a
file show the delay difference due to read and write accesses
for various lock granularities.

In this example, the workload of the system is defined
by types of transactions given in Table IX.

The system was modeled using simulation and numeri-
cal methods {23]. The confidence level of the simulation was
90 percent. The confidence interval widths was (-10; +10)
percent. The experiments were performed with various lock
granularities. Locks were assumed to be on 1 sector, 2 sectors
or 3 sectors. The time delays due to locking for various lock
granularities are presented in Tables XIII, XIV and XV for
the simulation model.

The results presented here show that read and write
accesses cause different locking delays. These delays also
depend on the granularity of locking.

AN ALGORITHM FOR FILE PLACEMENT AND
PROCESS ASSIGNMENT

The policies for improving performance and reliability
through file placement and process assignment depend on the
system solutions to the problems of data access, concurrency
control, transaction serialization, and deadlock control.

In our example file system, the problems of data access,
transaction serialization, and deadlock control depend on the

Host [Transaction| Number of [Probability Performance Measures
Number| Types Transactions |of Locking Utilization Throughput |Response Time
of Each Class| Delay |CPU| Disk [1/s] fs]
1 |T1; T9; T5 222 0.1 0.38 | 0.22 0.59 7.78
2 T3; T4; Tb 2:2;: 2 0.1 0.99] 0.45 1.18 3.24
1 T1; T2; TS 2;2; 2 0.25 0.37 1 0.22 0.57 8.12
2 T3; T4; T5 2:2: 2 0.25 0.96 1 0.43 1.15 3.37
1 T1; T2; T5 25 2; 2 0.5 0.30] 0.18 0.46 10.63
2 T3; T4; T5 2;2;2 0.5 0.781 0.35 0.93 4.60
1 T1; T2; T5 2; 2; 2 0.75 0.210.13 0.33 15.76
2 T3; T4; T5 2;2;2 0.75 0.56 [ 0.25 0.67 7.12
1 T1; T2; TS 2;2; 2 0.9 0.18 0.11 0.28 19.04
2 T3; T4; T5 2; 2; 2 0.9 0.471 0.21 0.56 8.88
concurrency control policy. This concurrency control

mechanism is 2 heavy consumer of processor time, and there-
fore, very expensive.

The important factor to be considered is the workload
(classes of tramsactions and their demands on the system
resources), and in particular the number of read and write
accesses to each file for every transaction fype, and the
amount of sharing by transaction types for every sector.

Let us define a number of parameters, in addition to
those listed in Section 4. These additional parameters are:

N - the number of transaction types in the system;
n; - the number of transactions of type 7;

pr,f - the unconditional probability of read access to file
f by a transaction of type ¢;

pw,f - the unconditional probability of write access to
file f by a transaction of type 7;

ps?#! - the unconditional probability of read /write access
to a shared sector s of file f by a transaction of type 7;

k - the parameter which affects the considered ratio of
the total number of read and write accesses in the system.

Let k£ =2.

The value of &k is based on the experiments of the
presented system. These experiments showed that the criti-
cal value of the probabilities of sharing and writing is equal
to 0.5. In our algorithm, we consider the ratio of the total
number of read and write accesses in the system greater than
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Table XIII. Time delays due to locking of 1 sector.

Transaction Number of Time Delays [ms]
Types Transactions Read Write
of Bach Class Lock Lock
T1; T2 1; 1 0.9 2.4
T1; T2 2: 2 4.16 7.8
T1; T2 4; 4 16.9 18.5

Table XIV. Time delays due to locking of 2 sectors.

Transaction Number of Time Delays [ms]
Types Transactions Read ‘Write
of Bach Class Lock Lock
T1; T2 1;1 8.3 9.95
T1; T2 2; 2 12.1 17.6
T1; T2 4; 4 52.1 57.56

Table XV. Time delays due to locking of 3 sectors.

Transaction Number of Time Delays [ms]
Types Transactions Read Write
of Each Class Lock Lock
T1; T2 1; 1 9.5 15.2
Ti; T2 2; 2 42.6 51
T1; T2 4; 4 57.6 69.3

k:1 (k=2) to make sure that we can apply policies for file
placement without causing degradation of system perfor-
mance. When the ratio of the total number of read and
write accesses in the system is smaller than 1:k (k==2), we
apply only the policies for process assignment. Note that the
value k¥ may be different for different systems, and for
different number of hosts. However, in the experiments
presented, the numbers of files, sectors and hosts were small,
and we expect that, when these numbers increase, the proba-
bility of sharing and writing may be less critical, and the
value & may be decreased even to k=1. When the ratio of
the total number of read and write accesses in the system
varies between those two (i.e., 1:k and k:1), we consider the
amount of sharing as an important factor. If the ratio of the
total number of shared read and shared write accesses in the
system is smaller than 1:k or greater than k:l, then we
apply the appropriate policy; if it does not, then we cannot
predict if the use of any policy will increase or decrease per-
formance.

The performance measures considered in our approach
are the utilization of each service cemter, the system’s
throughput and mean response time, and the throughput and
mean response time for each class of transactions. The relia-
bility measures are the mean time to failure and system reli-
ability.

Our algorithm for improving performance and reliability
has to be applied to every file in the system. It uses measur-
able parameters only, and can be applied to any file system
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whose workload can be characterized using the parameters
introduced in this paper. The detection of bottlenecks on
each host may be done using the approach given in [20].
That approach detects bottlenecks on the basis of the work-
load demands on system resources, using measurable parame-
ters. A bottleneck on a lock is detected in the same way,
but the mean time spent in all service centers when a lock is
kept must be considered. The performance measures may be
calculated using [20, 22, 23]. The mean time to failure and
system reliability may be calculated using (21].

The approaches given in [20, 21, 22, 23] use measurable
parameters only. The performance and reliability measures
may also be calculated using, for instance, simulation tech-
niques.

The algorithm presented here has been constructed for
system designers, but could also be invoked when a file or a
process is created. This algorithm can be used statically to
decide of file placement, and static process assignment. It
may also be used dynamically when a prediction of the
future behavior of processes in the system is possible. This
prediction may be based on the past behavior of processes in
short period of time, assuming that workload demands on
system resources remain the same. Also, performance and
reliability measures may be detected, and any substantial
change in their values may invoke this algorithm. The
dependence of the system solutions to the problems of data
access, concurrency control, transaction serialization, and
deadlock control, is characterized by the values of the
measurable parameters used in this algorithm. This is why
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the algorithm can be applied to any of the file systems
reviewed in Section 1. Note that the algorithm is invoked for
every file in the system, and a decision concerning file place-
ment or assignment of the process which accesses this file is
made for each file separately. The decision of process assign-
ment may be made on the basis of process demands on sys-
tem resources. Another solution is to predict system perfor-
mance and reliability for every process accessing the file, and
to assign the process to a host to maximize performance and
reliability. Since this algorithm is invoked iteratively, in the
next step another process may be assigned, but also the
other decision may be made (for instance, placement of a
file). The other problems arise when a process accesses
several files. In this case the process assignment may increase
the number of remote accesses, and decrease performance
and reliability. The decision which process is to be assigned
takes into account the number of files it accesses, and the
number of read and write accesses. And as in the previous
case, the other solution is to predict system performance and
reliability for every process accessing the file, and to choose
the process that assignment maximizes performance and reli-
ability. ’

The algorithm keeps-on its stack the last two solutions,
and requires a number of iterations. The solution which is
chosen is the last before system performance and reliability
started decreasing.

Algorithm for every file [ :
begin

Initial state: the worst performance and reliability (i.e.,
zero throughput, infinite response time, zero mean time to
failure). '
A : Detect the bottleneck B, on each host &, and the sys-
tem bottleneck BK, .

N N

it Stogprd >k Y mipw/ then B
i=1 f=1
else

N N
if & Y m pr,f < ¥ pw,f

i=1 f=1
and BK, <> network server then C
else D

B: File may be placed on any host where this file is to be
accessed

if BK, = network server then E
else C

for h==1, number_of _hosts do
for H=1, number_of_hosts do
if BIE, utilization on host h
< k * BKjy utilization on host H
and
k * network server utilization

< BKj; wutilization on host h then

File / has to be moved from host & to host A
else
if BIC, utilization on host h
>k # BKy utilization on host H
and
k * network server utilization

< BKy utilization on host H then

The process which accesses file f and that moving of
this process maximizes performance and reliability, is moved
from host & to host H

goto E
D:

N N
it Npsa;pry > k Y pspupw/ then B
f==1 f=1

else

) N N
if &Y, psinipr < > psin; pw/
=1 =1

and BK, <> network server then C

else E

E: Calculate performance and reliability measures. Com-
pare with performance and reliability measures obtained in
the previous step.

if performance and [or reliability increase then goto A

else
choose the previous solution

end.

This algorithm provides a general policy for perfor-
mance and reliability improvement through file placement
and process assignment. A number of files to be placed or a
number of processes to be assigned may be obtained by using
this algorithm iteratively.

CONCLUSION

The approach presented in this paper uses policies for
improving performance and reliability through file placement
and process assignment depend on the system solutions to
data access, concurrency control, transaction serialization,
and deadlock control.

An example file system with its solutions to the prob-
lems referred above was modeled, and the model was vali-
dated using measurement data collected in a small business
installation. A number of simulation experiments were exe-
cuted to evaluate system performance for different amounts
of sharing of the sectors by tramsaction types, as well as
sharing distributed locks by transaction types, and sharing
read and write locks.

An algorithm was also presented which provides a gen-
eral policy for performance and reliability improvements.
This algorithm uses measurable parameters only, and bases
its decisions about where to place a file or to assign a process
on the number of read and write accesses, the number of
transactions, the amount of sector sharing, and the utiliza-
tion of the bottleneck of each host.
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This algorithm can be applied to any of the file systems
reviewed in Section 1; however, more specific policies will
depend on the system architecture and the solutions to data
access, concurrency control, transaction serialization, and
deadlock control. These solutions are not independent of
each other.
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