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A methodology is being developed to map the hierarchical abstract simulator onto dis-
tributed simulator architectures. The hierarchical abstract simulator is a multicom-
ponent, multilevel discrete event models communicating via message passing. This
paper reports on an alternative mapping realization of the hierarchical abstract simula-
tor by using DENELCOR’s FORTRAN 77, an extension of FORTRAN 77 for parallel
programming, on the Heterogeneous Element Processor (HEP) computer. Several runs
were made on the implementation and it was found out that there are three constraints
that affect the performance {(execution time) of the HEP implementation: number of pro-
cessors available, degree of synchronization and intercommunication, and workload.

1. Introduction

A distributed simulation methodology based on Discrete
Event Specification System, DEVS, [9] was introduced in
Concepcion [2] in which multicomponent discrete event
models may be simulated by employing multiprocessor archi-
tectures. The main thrust of that research is the mapping of
the hierarchical multicomponent models onto distributed
simulators so that correct and efficient simulation Iis
obtained. The advantages of such distributed simulators over
conventional sequential simulation are:

1. The mapping of a network of discrete event components
onto the network of processors can better preserve its
structure. In the best case, each processor might
represent 2 single model component. This enhances
comprehension of the simulator-model relationship, and
therefore also, simulation experimentation and model
exploration.

Advantage may be taken of intrinsic parallelism in the
operation of model components by having concurrent
execution by each processor of its component’s state
transitions.

The distributed simulation methodology consists of 5 layers
and 4 steps. The lowest layer is the real system to be simu-
lated. By means of the DEVS formalism, the real system is
specified as a distributed model. This produces the second
layer. From the specification of the distributed model, a
transformation is applied to obtain the hierarchical abstract
simulator. This third layer is the interpretation of the
dynamics specified by the DEVS formalism. The fourth
layer is reached by applying to the hierarchical abstract
simulator a schema for synchronization and intercommunica-
tion among components. This fourth layer is called the dis-
tributed simulator. Finally by a mapping process, the distri-
buted simulator is implemented on a hardware/software
architecture.

In Concepcion I_&2], a design of a distributed simulator was
proposed, thf’ ierarchical Multi-Bus Multiprocessor Archi-
tecture (HM"A). This design can be readily implemented
with ofi-the-shelf technology and directly reflects the abstract
simulator specification. The architecture is designed around a
primitive which is a cluster of processing elements communi-
cating via a local bus and each cluster communicates via
inter-cluster bus. Mapping the hierarchical abstract simulator
onto the proposed architecture was shown to be a straight
forward recursive manner [3].

428

This paper discusses the fourth step in the distributed simu-
lation methodology, mapping the hierarchical abstract simu-
lator onto a hardware/software architecture. This step serves
as a convenient starting point in studying a variety of

alternative physical simulator implementations. Also this
paper presents an alternative realization of the hierarchical
abstract simulator by using DENELCOR’s FORTRAN 77,
an extended FORTRAN for parallel programming, on the
Heterogeneous Element Processor (HEP) computer. Section 2
reviews the dynamics of the hierarchical abstract simulator
and its algorithms while in section 3, the translation of the
algorithms to DENELCOR's FORTRAN 77 is discussed. Sec-
tion 4 presents the performance (execution time) of the
implemented hierarchical abstract simulator on the HEP
computer. Finally, section 5 proposes future directions on
this work.

2. Hierarchical Abstract Simulator

The hierarchical abstract simulator is an intermediate state
in realizing the model on a physical implementation of the
distributed simulator. The hierarchical abstract simulator
consists of a network of coordinators where each controls a
set of subordinates. If a subordinate is also a coordinator,
then it too controls a set of subordinates, and so on. A
subordinate which is not a coordinator is called a simulator.
The algorithms for the hierarchical abstract simulator define
the procedure in computing the state of the DEVS com-
ponent, updating the simulation time and scheduling new
events.

Six types of messages were identified in [2] as sufficient for
current execution of DEVS models: (x,7), (*,7), (0,7), (¥,7),
done and t., respectively, these carry external event informa-
tion, interﬁral event notices, output information, processor
termination and next event information. In this paper, the
0,7) message is not included in the implementation. The
0,7) message is used to increase the degree of parallelism in
the hierarchical abstract simulator when several simulators
have output available from the last computation. These
messages are exchanged among the coordinators in the inte-
rior and root of the hierarchical structure and the workhorse
simulators at its leaves. The routing tables and code
schemés for the coordinators and the process descriptions for
the simulators were specified in terms of functional units to
facilitate their realization at the implementation layer. The
resulting logical structure was shown to be a correct imple-
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mentation scheme, and to be free of interferences and
deadlocks [2]. This contrasts with other approaches which
attempt to maximize parallelism by loosening up on the
strict timing requirements of simulation. These approaches
must necessarily allow for rolling back the simulation when
an out-of-sequence event is detected. In summary, our
approach aims for simplicity and uniformity of design, with
guaranteed deadlock prevention.

Procedurally, the algorithms that describe the dynamics of
the hierarchical abstract simulator are given in Figures 1 and
2. Note that each algorithm is guarded by a lock/unlock
operation to assure mutual exclusion.

The following is a list of variables used in the algorithms:

t. = time of last event.
T = global time.
t,, == time to next event.

t:L = time advance function.

i = immiment component (minimum b

e = elapsed time in this state.

s == state of the model component.

6exb = external transition function.

5int == internal transition function.

y == output from model component.

A = output function.

(%,7) = input external message x occuring at time 7.
(*,7) = input internal message occuring at time 7.
(y,7) = output message occuring at time 7.

EXT_IF TABLE = external interface table.

INT_IF TABLE = internal interface table.

OUT_IF TABLE == output interface table.

MINTN = function that determines the minimum tN'

There are two groups of algorithms, one for a coordinator
and one for a simulator. Each group is divided into: when
recewing an Sx,*r) message and when receiving an (*,7) mes-
sage. The following gives a summary of the actions taken by
the components of the hierarchical abstract simulator when
receiving a message.

When a simulator receives an (#,7) message: it checks first
the simulation time t, then it sends its output as (y,7) to its
coordinator. Simultaneously, the simulator computes its new
state which includes determining a new t,. which is sent to
the coordinator. At termination of computation, the simula-
tor sends its done signal.

1. when receive an input (x,7):

2. lock (bit)
3. done := false

i < <
4. if tL_ 7 £ tN then
5. [ e:= 7 ~ tL
6. 5= Sext(s,e,x)
7. tL:= T
8. t]:N:= tL+ ta(s)
9. else error
10. done := true

11. unlock (bit)
12. end when receive

(a) Algorithm when receiving a (%,7) message.

1. when receive an input (*,7):

2. lock (bit)

3. done := false

4. if ¢ = t, then

5. [ cobegin

6. yi= A (s)
7. send (y,r) to coordinator
8. s:= §,. _ (s)
9, coend int
10. tL:= T

11, 1]:N:= tL+ ta(s)
12. else error

13. done := true

14. unlock (bit)

15. end when receive

(b) Algorithm when receiving a (*,r) message.

Figure 1: Algorithms for a Simulator

1. when receive an input (x,7):

2. lock (bit)

3. done := false

4. if tLS T < ty then

5. [ send input (xi,r) to all the affected
simulators i“via a  table look-up of
EXT_IF TABLE

6. wait until all simulators i's done are true

7. t, =7

8. t§:= MINTN(all subordinates under

coordinator)

9. else error

10. done := true

11. unlock (bit)

12, end when receive
(a) Algorithm when receiving a (x,r) message.

1. when receive an input (*,7):

2. lock (bit)

3. done := false

4. if 7 = t, then *

5. [ send the input (*,r) to i "

8. when receive an input Y sent by i

9. :Y is used in the same enclosure: *

10. send the message (x,7) to each i
influencees via a table look-up
of INT_IF TABLE

*

11. wait until i influencees' done
are true

12. tY is used outside of the enclosure:

13. send the message (y,7) to the
next level coordinator via a
table look-up of OUT_IF TABLE

*

14. swait until i done is true

15. end when receive

23. tL:= T

24. tN:= MINTN(all subordinates under

coordinator)
25, else error

26. done := true

27. unlock (bit)

28. end when receive

(b) Algorithm when receiving an input (*,r) message.

Figure 2: Algorithms for a Coordinator
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‘When a coordinator receives a (g*,r) message: it checks the
simulation time, ¢, then it sends the (%,7) message to the
component with the minimum t,,. This component is called
the Imminent component. The coordinator then waits for
done signal from the imminent component. Afterwhich the
coordinator proceeds to determine the new imminent com-
ponent.

When a simulator receives an (x,r) message: it checks the
mmulatan time first and then it computes its new state, s. A
new tN is determined which is sent to the coordinator. At

termination, the simulator sends done signal to the coordina-
tor.

When a coordinator receives an (x,7) message: it performs a
check on the simulation time and then it sends the reformat-
ted (x,7) message to the affected subordinate by a table
look-up of EXT IF TABLE. The coordinator waits for all
affected components to send done signals. Afterwhich the
coordinator proceeds to determine the new imminent com-
ponent.

‘When a coordinator receives a (y,7) message from its subordi-
nate, it determines whether this message is used within its
enclosure or not. If the message is used within, then the
coordinator sends the (y,7) message as an (x,7) message to the
affected subordinate by a table look-up of the INT_IF
TABLE otherwise, by a table look-up of OUT_IF TABLE,
the coordinator sends the message (y,r) to the next higher
level coordinator.

3. Implementation on the HEP

The architecture of the Heterogeneous Element Processor
(HEP) has been described in [6,7]. As shown in Figure 3, the
main components are the Data Memory Module, the Packet
Switch Network and the Process Execution Module. A pro-
gram consists of one or more tasks while each task consists

of one or more processes. Bach process is composed of a |

sequence of instructions. Both the tasks and processes are
executed in parallel in the HEP while the instructions of each
process are executed in sequential pipeline fashion. Each
PEM has a program memory where active tasks and
processes instruction streams are selected for execution. Up
to 50 instruction streams can be active at any given time.
Notice that each PEM has a number of functional units
which allow pipeline execution of multiple instruction
streams for multiple data streams. This makes the HEP com-
puter an MIMD machine.

For software support, HEP has the DENELCOR’s FOR-
TRAN 77 [5]. It provides the parallel programming environ-
ment for the HEP computer. It generates fully reentrant
{sharable) code and provides synchronization among these
codes. As shown in Figure 4, CREATE commands initiate
processes A, B and C which execute in parallel with the
MAIN. Synchronization among these processes is done via
F/E (full/empty) bit that is tagged on special shared vari-
ables called asynchronous variables. These variables are
prefixed with a ”$” character. The following are some of the
functions of the asynchronous variables:

J == $I, wait for full and set empty (integer).
X = $A, wait for full and set empty (real).

$Y = B, wait for empty and set full.

.{X =1) WAITF($B), wait for full, but do not set empty
real).

L = EMPTY($Q), test for empty access state

A = VALUE($Q), read regardless of state and leave
unchanged (returns logical result).
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Flgure 3: The HEP Functional Organization

PEM

For process initiation,

CREATE MYSUB(X,Y,Z), causes referenced subroutine
MYSUB to execute in parallel with the creating routine
with parameters X, Y and Z.

RETURN, terminates the parallel process executing a
subroutine that was CREATEd.

MAIN
CREATE A A
CREATE B B
CREATE C c
RETURN
RETURN
END

Figure 4: Process Initiation and Termination

Shown below is an example of parallel program in
DENELCOR’s FORTRAN 77 which creates four paral-
lerocesses and performs all four executions of the subroutine
S concurrently.
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C MAIN PROGRAM
COMMON $NP
PURGE $NP
$NP =4
CREATE PS(1
CREATE PS(2
CREATE PS(3
CALL PS(4

20 IF (VALUE($NP).NE.0) GOTO 20
END

SUBROUTINE PS(N)
COMMON $NP
CALL S%N)
$NP NP - 1
RETURN

END

The subroutine S is reentrant and the $NP is an asynchro-
nous variable which is used to record the number of
processes still executing. When S is finished, $NP is decre-
mented. The MAIN PROGRAM waits until the value of
$NP is zero. This means that all processes have finished exe-
cuting S.

The implementation of the hierarchical abstract simulator on
the HEP computer consists of translating the algorithms for
a coordinator and for a simulator (see Figures 1 and 2) into
the DENELCOR'’s FORTRAN 77, As seen from these algo-
rithms, there are five types of messages, excluding 0,7) mes-
sage, being transmitted: (x,7), (*,7), (y,7), t,, and done mes-
sages. The implementation is currently restricted to a binary
structure with a maximum of 3 levels. The implementation
can be easily expanded to more than 3 levels and applicable
to general tree structure. At 3 levels, the hierarchical
abstract simulator consists of three coordinators, see Figure
5:

. Co’ C1 and 02

and four simulators:
e S .S ,S andS
2.1 2.2

11 T2’ Yo

Also there is a process called GEN which generates the mes-
sages (x,7) and (*,7).

GEN

c ~Tevel 1

(:1 c ~level 2

1.1 $1.2 5.1 $2.2 ~level 3

Figure 5: The Hierarchical Abstract Simulator
Implemented on the HEP Computer

The main program does the following functions:

1. Obtain from the user the desired assignment of proces-
sors and other initialization inputs.

2. CREATE or CALL the processes for the appropriate
coordinators and simulators.

3. Initialize the state and control variables of each process
CREATEQ or CALLed.

4. Perform the function of GEN and test for the termina-
tion of the execution.

The following are the inputs to the hierarchical abstract
simulator at initialization:

e  Specify whether the trace for debugging will be turned
off or on.

e  Specify the assignment of processors to the 3 leveled
hierarchical abstract simulator. This is done by an input
string of 7 bits. A 1 in this string means a processor is
assigned, 2 0 means no processor is assigned. The posi-
tions of the bit string corresponds to the list
COC CS S8 S S .

172711712721 2.2
e Enter the desired percentage of (*,7) messages of the

total messages generated by GEN, e.g., entering a 40
means that an average of 40% of the generated mes-
sages will be of (*,7) type.

e  Dnter the total number of messages to be generated by
GEN. The execution terminates when there are no more
messages to be processed.

All the CREATEd processes at initialization are passive
except the process assigned to GEN. When GEN produces
the first message, the execution of the distributed simulation
begins.

The following are the variables used for message passing and
synchronization:

1. $MESS(process id), this is an array of asynchronous
variables indexed by the process id. Each element in
this array contains either an (x,7) or (*,7) message. The
receipt of this message signals the process (either coordi-
nator or simulator) to begin executing the appropriate
subrotine. For each process, the following statement

MYMESS = $MESS(process id)

will force the process to wait if the right hand side is
}zmpty or to continue executing if the right hand side is
ull,

2. $DONE(process id), this is an array of asynchronous
variables indexed by the process id. An element in this
array contains the signal to a coordinator that a subor-
dinate with the index process id has completed its exe-
cution. If process « is busy computing then $DONE(«)
is full, otherwise it is empty.

3. TL(process id), this is an array that contains each pro-
cess’ time of last event, t. .

4. TN(process td), this is an array that contains each pro-
cess' time to the next event, t’N'

For a coordinator, the statement
MYMESS = $MESS(process id)

is used to determine whether a message was sent either by
another coordinator or a subordinate.

The statement
$MESS(process id) = MYMESS

is used to send a message to a process (a coordinator or a
simulator).
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The statement
$DONE(subordinate process id) = 1

is used to flag the subordinate process to be in busy state.
This means that the subordinate is busy computing by set-
ting the asynchronous variable $DONE full.

Then the statement
20 I(EMPTY($DONE(subordinate process id)) EQ.FALSE)GOTO 20

causes the coordinator to wait until the subordinate process
is finished computing.

For a simulator, the statements

MYMESS = $MESS(process id)
$MESS(coordinator process id) = MYMESS

are used to receive and send messages respectively.
The statement

FINISH = $DONE(process 1d)

sets the asynchronous variable empty, thus signaling the
appropriate coordinator that a subordinate has finished com-
puting.

The computations of the following functions are simulated
by holding the process for a randomly selected duration of
time:

. 5int’ internal transition function.
. 6ext’ external transition function.
¢ ta, time advance function.

¢ ), output function.

Thus we have a system of concurrent processes where there
is no assumption made on the order of processes finshing
their computations of state variables.

4. Experimental Runs and Results

As mentioned in section 3, the implementation of the
hierarchical abstract simulator consists of 3 levels with 3
coordinators and 4 simulators. The advantage offered by the
hierarchical abstract simulator is the exploitation of the
parallelism inherent in the model, i.e., the external events
sent by a model component to its influencees can all be pro-
cessed concurrently. The parallelism is facilibated by the
hierarchical model decomposition and such parallelism may
thus grow exponentially with the number of levels of a
hierarchical DEVS model.

Unfortunately, such gains from parallelism cannot be fully
realized. Experimental runs were made and three factors
were found to affect the execution time of the implementa-
tion on the HEP computer:

{(2) Constraints of the hardware architecture (number of
processors).

(b) Frequency of synchronization and intercommunication.

(¢) Workload (number of messages to be processed).

This section presents the effects of the above factors on the
execution time of the implemented hierarchical abstract
simulator. With regards to the constraints of the hardware
(number of processors), we run the following assignments of
Processors:

® 3 processors, with each coordinator being assigned a
processor and no simulators being assigned a processor.
e 4 processors, each coordinator is assigned a processor

and one of the simulators is assigned to a processor.
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5 processors, each coordinator is assigned a processor
and two of the simulators are assigned each with a pro-
Cessor.

6 processors, each coordinator is assigned a processor
and three of the simulators are assigned each with a
Processor.

e 7 processors, the full assignment.

When there are not enough processors assigned, the processes
share processors which forces them to execute in a sequential
manner. Only the last configuration has a one-to-one assign-
ment.

The frequency of synchronization and intercommunication is
simulated by varying the percentage of (*,7) to (x,7) messages
that is generated by GEN. Also runs were made for process-
ing 500 messages compared to 1000 messages.

Several runs were made of the hierarchical abstract simulator
implementation and the results are summarized in Figures 6
and 7. Shown in Figure 6 is the effect on execution time by
varying the percentage of (*,r) messages. The more (#,r) mes-
sages in the system, the more intercommunication occurs.
This is due to the generation of (y,7) messages by the simula-
tor when it receives a (*,r) message, see Figure 1(b). The
(y,7) message is routed to its destination by the coordinator
either within or outside of its enclosure, see Figure 2(&)) An
increase in the number of (*,7) message processed by the
hierarchical abstract simulator, the longer is the execution
time. A decrease in execution time is noted when there are

time

processors
3 A 5 6 7
Figure 6: Runs Made for Changing Percent
of (*,¥)
time
1000
—messages
500
messages
5 ' 60 80 100 ..
2 40 % (%)

Figure 7: Runs Made for Changing the Number of
Messages (using 7 processors)
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more processors assigned to the hierarchical abstract simula-
tor bub this decrease is not so significant from 6 to 7 proces-
sors. Because of the under utilization of some of the proces-
sors, the gain by using one more processor (from 6 to 7) is
not fully realized.

To get some insight on the effect of increasing the number of
messages to be processed, runs were made and the results are
shown in Figure 7. This result was obtained by using the
full assignment of processors, which is 7. As expected, there
is an increase of execution time when the hierarchical
abstract simulator is processing more messages. But it was
also observed that at 500 messages, the execution time did
not increase beyond 80% (*,t) and at 1000 messages, the
peak is reached at around 70% (*,t). This shows a satura-
tion point where the increase of overhead due to intercom-
munication did not affect the execution time. This is due to
the parallelism inherent in the hierarchical abstract simula-
tor, the increase of intercommunication is absorbed by the
concurrent execution of the processors.

Runs were also made to determine the effect of the following
routing characteristics of messages:

o  Having more (x,7) messages routed to both subordinates
of a coordinator.

e  Having more (y,7) messages routed to a subordinate and
to the next higher level coordinator.

The first characteristic simulates the occurrence of having
more simulators affected by an external message, (x,7). This
results in more concurrency in the execution of simulation.
The second characteristic simulates the sending of output
messages to the most remote simulator. This occurs when the
(v,7) message has to be sent by a coordinator to the next
higher level coordinator. The results did not show any
significant difference of execution times for both characteris-
tics. This is due to the fact that the coordinator has no
delays in doing the following activities:

e table look-up, to determine the destination of the mes-
sage via the interface tables.

e determining the minimum the function MINTN was

bags
performed in O processing tinke.

But significant difference in execution times were observed
when using different assignments of processors. The full
assignment sometimes shows half the execution time com-
pared to the execution time for 3 processors.

5. Conclusion

This paper has shown an alternative implementation of the
mapping of the hierarchical abstract simulator to a
hardware/software architecture. The HEP computer with its
MIMD architecture and the support of a high level parallel
language, DENELCOR’s FORTRAN 77, the combination
produces a very viable implementation for distributed simu-
lation. Although there is a great need for more disgnostics
and debugging tools to trace and debug parallel programs.

Performance in terms of execution times were measured on
different runs of the implementation. It was observed that
the number of processors, frequency of synchronization and
intercommunication, and number of messages affect the exe-
cution time.

The following gives a summary of the results obtained:

e that an assignment of processors close to the full assign-
ment gives almost the same execution time as a full
assignment.

433

e  that the execution time increases when there are more
(*,7) messages than (x,7) messages to be processed.

e that for an assignment of processors, there is a satura-
tion point where increasing the (*,7) messages did not
increase the execution time.

e that the execution time increases when there are more
messages, (*,7) and (x,7), to be processed.

Some research have been done on performance of distributed
simulation. Livny [8], discusses a measurement called the

- Optimal Execution Time which gives a relationship between

the inherent parallelism and the number of concurrent simu-
lators. Davidson and Reynolds [4] found out in their experi-
ments of using 3 microcomputers for distributed simulation
that the degree of communication degrades the performance
of the simulators. The processes communicate with each
other at the end of a certain time interval. If this time inter-
val is less than 10 units of time, then degradation of perfor-
mance was observed. In Baik and Zeigler [1], a methodology
is presented for the performance evaluation of hierarchical
distributed simulators. Their methodology measures the
minimum average run time per task and the maximum
throughput per unit of hardware complexity.

The difference of the above research from this work is that,
an implementation of the distributed simulator is done on an
actual multiprocessor architecture and that actwal CPU
real-time are measured. The results of this work also shows a
saturation point for the hierarchical abstract simulator and
that the full assignment of processors does not always pro-
duce the optimal performance.

Future work on the hierarchical abstract simulator imple-
mentation on the HEP computer will consists of the follow-
ing:

(a) Inclusion of the (o,7) message type and introducing

delays in each coordinator for table look-up and MINTN
activities.

(b) Expanding the current implementation to a general tree
structure.

(¢) Running a real-time simulation of a distributed com-
puter system.

Acknowledgement

The author would like to thank Ann Hayes, Computing
Research and Application Group, Los Alamos National
Laboratory, for allowing us computing access to the HEP
computer on site of the Los Alamos National Laboratory.
The work would not have been possible also without the sup-
port of DENELCOR'’s consultants on site, Olaf Lubeck and
Dale Carstensen. They have been very patient in answering
our questions.



Arturo I. Concepcion

References

[1] Baik, D-K and Zeigler, B.P., "Performance Evaluation of
Hierarchical Simulators”, In Proc. of 1985 Winter Simu-
lation Conference, San Francisco, CA, Dec 1985.

[2] Concepcion, A.L, *Distributed Simulation on Multiproces-
sors: Specification, Design and Architecture”, Ph. D.
Dissertation, Tech. Rep. CSC85-001, Dept. of Computer
Science, Wayne State University, Jan 1985.

[3] Concepeion, A.L, "Mapping Distributed Simulators Onto
the Hierarchical Multi-Bus Multiprocessor Architecture”,
In Proc. of the 1985 MultiConference: Distributed Simu-
lation, San Diego, CA, Jan 1985, pp. 8-13.

[4] Davidson, D.L. and Reynolds, P.F., ”Performance
Analysis of a Distributed Simulation Algorithm Based
on Active Logical Processes”, In Proc. of 1983 Winter
Simulation Conference, Arlington, VA, Dec 1983, pp.
266-268.

[s] DENELCOR, "FORTRAN 77 Reference Manual, Release
1.0”, Publication No. 9008020-000, DENELCOR INC,,

17000 E. Ohio Place, Aurora, Colorado, Jun 1984.
[6] Gajski, D.D. and Peir, J-K, "Essential Issues in Multipro-

cessor Systems”, Computer, Vol. 18, No. 6, Jun 1985,
pp. 9-27.

[7] Hwang, K. and Briggs, F.A., ”Computer Architecture and
Parallel Processing”, McGraw Hill Book Company, New
York, 1984.

[8] Livay, M., ”A Study of Parallelism in Distributed Simula-
tion”, In Proc. of 1985 MultiConference: Distributed
Simulation, San Diego, CA, Jan 1985, pp. 94-98.

[9] Zeigler, B.P., *Multifacetted Modelling and Diserete
Event Simulation”, Academic Press, London, 1984.

Zeigler, B.P., ”"Discrete Event Formalism for
Specification of Hierarchical Models”, In Proc. of the
1985 MultiConference: Distributed Simulation, San
Diego, CA, Jan 1985, pp. 3-7.

[10]

434

ARTURO I CONCEPCION received the B.S. degree in
Mechanical Engineering from the University of Santo
Tomas, Manila, Philippines, in 1969, the M.S. degree in
Computer Science from Washington State University, in
Pullman, in 1981, and the Ph. D. degree in Computer
Science from Wayne State University, Detroit, Michi-
gan, in 1984. Since 1982, he has been involved with
research, funded by the National Science Foundation,
on the theory, design and implementation of distributed
simulation. He is currently an Assistant Professor in the
Department of Computer Sciemce, Michigan State
University. He is now involved in 2 research group
which studies the distributed control, efficiency and reli-
ability of distributed computer systems. His principal
interests are in distributed operating systems, networks,
distributed databases, and modelling and simulation. He
is a member of the ACM, IEEE-Computer Society and
Sigma Xi.

Department of Computer Science
Michigan State University

E. Lansing, MI 48824

(517) 355-2359



Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G, Blais, S. Solomon (eds.)

TWO APPROACHES TO THE IMPLEMENTATION OF A DISTRIBUTED SIMULATION SYSTEM

Murali Krishnamurthi
Industrial Automation Laboratory
Dept. of Industrial Engineering

Usha Chandrasekaran
Laboratory for Software Research
Dept. of Computer Science

Sallie Sheppard
Laboratory for Software Research
Dept. of Computer Science

Texas A & M University
College Station, TX 77843

ABSTRACT

This paper describes two approaches to the implementation of distributed simulation currently being pprsued_ at
Texas A&M University. The first approach describes the design and the implementation of a distributed simulation
system onto a Motorola 68000 based architecture. This approach involves transparently distributing the Ia.r.lguage sup-
port functions of an existing simulation language (GASP) onto multiple processors. The second approach discusses the
implementation of simulation support software in a high level distributed processing language. T'hls approach involves
the distribution of protions of the simulation model which can be executed in parallel onto multxplg processors by the
model builder. The paper discusses the details of both the approaches and the current status of their implementation.

1.0 INTRODUCTION

Since 1983 Texas A&M University has been involved in
a project to design and implement a distributed simulation
system. Funded in part by the National Science Foundation
[31], the first phase of the project which ended in May 1985
concentrated on exploring software implementation strategies
for distributed simulation [15,16,33,34]. Three strategies for
the distribution of the software onto multiple processors were
defined and emulated via multitasking on single processor
systems. As a result of this work two of the strategies were
selected for further study in the implementation phase of
the project currently in progress. The first strategy involves
taking an existing simulation language, GASP IV, and
transparently distributing the support subroutines onto the
available processors. All user-written model code is executed
on a single processor thus avoiding problems in deadlock
detection and avoidance. Various support functions such as
random variate generation, statistics processing and filing
are distributed onto the different processors. The second
approach implements simulation support software in a high
level distributed processing language. Here the distribution
is not transparent to the model builder who must designate
which portions of the model can be executed in parallel.
This further means that the implementation must include
provision for automatic deadlock detection and prevention
but offers more potential speed-up from the distribution than

the first approach.

The goal of current phase of the distributed simulation
project is to construct hardware/software systems utilizing
multiple processors to support simulation for both of these
strategies. The two different designs being pursued dictate
two different approaches in the implementation. The first
design is being implemented on a distributed architecture of
Motorola 68000 processors while the second design is being
implemented in the Ada* programming language and will

* Ada is a trademark of the U.S. Department of Defense.

be portable to any distributed architecture supporting Ada.
This paper describes these approaches along with the relative
merits of each.

2.0 THE DESIGN AND IMPLEMENTATION OF A
LANGUAGE SUPPORTED DISTRIBUTED
SIMULATION SYSTEM

One approach to distributed simulation implementation
is through the distribution of simulation language functions
onto individual processors [5,6,38,36,37]. The basic differ-
ence between the distributed simulation via model function
approach (2,4,26,30) and this approach is that the model
function approach distributes simulation model functions
onto separate processors whereas this approach distributes
language support functions onto individual processors, thus
exploiting the inherent parallelism in the language functions.
This approach has the advantage of avoiding deadlock
problems but the disadvantage of not exploiting any of the
parallelism in the system being simulated.

One of the distributed simulation systems currently
being built and implemented at Texas A&M University is
based on the distributed simulation via language functions
approach. The objectives of this system are (1) to implement
a distributed simulation system using off-the-shelf hardware
components, (2) to use an existing simulation language in the
system, (3) to maintain the existing language and execution
structures of the language, (4) to maintain the distributed
implementation transparent to the user, and (5) to speed up
the simulation at a low cost. The following sections describe
the design, architecture and the implementation status of this
system.

2.1 System Design
Designing a dedicated system to support distributed sim-

ulation necessitates a clear definition of the requirements. For
example, requirements such as the type of architecture, the

« This material is based upon work supported in part by the Wational Science Foundation under Grant No. ECS-£215550
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type of interprocessor communication, the type of operating
system configuration and the language to be used have to be
defined. Generally, the multiprocessor architectures are clas-
sified by the interconnection structure between the processors
and the memories. The three most common interconnections
are (1) time shared or common bus, (2} cross bar switch
network, and (3) multiport memories [10]. Among the three,
the common bus interconnection scheme is the least expensive
and the least complex scheme, but it is also the least efficient
scheme. The common bus interconnection scheme is ideal
for building dedicated, exploratory multiprocessor systems
using off-the-shelf hardware components since the hardware
complexity is minimal in this scheme. Several distributed
simulation systems have been designed based on the common
bus architecture or on the enhancements of the same [25,27].
The common bus architecture has been chosen for this system
since it is the simplest of the interconnection schemes and
also because off-the-shelf hardware is available for this type
of interconnection scheme.

Since one of the objectives of the distributed simulation
system is to use an existing simulation language, the GASPIV
Simulation Language [28] has been chosen for implementation
(see [38] for the reasons for selecting GASPIV). The selection
of GASPIV required the analysis of the language to identify
major functional subprogram groups which could be shown
to demonstrate relative independence during execution. A
complete analysis of GASPIV showed that the subprograms
could be grouped into eight tasks which are mutually
exclusive for most of the simulation run except during
program initialization and termination. Since these tasks are
mutually exclusivethey have independent instruction streams
and have been partitioried into eight separate tasks with each
partition executed on a separate processor. Figure 1 shows
the eight partitions and the subprograms grouped within each
partition.

SUPERVISOR
GASP
i 1 | | 1 |

Main {1 DATIN | [ sovRy §| Fieem ) coceT H orano || aTeee
INTLC DFAUT MONTR § | RMOVE TIMST GOLAY
SCOND IPACK PRNTS CoPY TIMSA NEIND
otruT | | 1Map PRNTQ | | suMQ KROSS
UMONT BUILD CLEAR NPRED
UERR ERRIN ERROR PRODQ
STATE SET GPLOT NSUCR
EVNTS HISTO CANCL
Random
Deviates

Figure 1. GASPIV Subprogram Paritition Groups

Even though the eight tasks are mutually exclusive in
terms of processing activity, discrete simulation requires the
tasks to communicate with one another to exchange the nec-
essary results. This requires designing a mechanism to allow
the tasks executing on separate processors to communicate
with one another. There are several mechanisms available
for interprocessor communication in multiprocessor systems
{18]. In the case of the common bus architecture it is possible
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to design a tightly coupled system with the processors
communicating through shared memory or a loosely coupled
system with the processors communicating directly through .
the bus. It is also possible to design a system with a single bus
or with multiple buses [7] based on the system requirements
and the availability of off-the-shelf hardware to meet those
requirements. A single common bus architecture with shared
memory type communication or a common bus architecture
with interrupt driven communication mechanism are the most
commonly used architectures for distributed simulation {27].

Since the simplest mechanism for FORTRAN tasks to
communicate with one another is through a global com-
mon data area (BLOCK DATA), the shared memory type
communication (with the global common area located in
the shared memory) has been designed for this distributed
simulation system. The tightly coupled architecture of the
system with one supervisory task and seven slave tasks
distributed on eight processors required a compatible oper-
ating system configuration. The commonly used operating
system configurations in multiprocessing systems are the
master-slave, floating supervisor, and separate supervisor
type configurations. The master-slave type configuration
has been chosen for this distributed simulation system since
it is compatible with the hierarchical design of the system
and also because it is the simplest of the operating system
configurations available for multiprocessors built from off-the-
shelf hardware components.

After the design of the distributed simulation system was
completed its feasibility was verified by emulating the system
on a Texas Instruments 990/12 minicomputer. The emulation
provided satisfactory results on the feasibility of the designed

system (see [15,16] for details on the emulation of the system).
2.2 Hardware Architecture

The design of the distributed simulation system neces-
sitated that the processors should be capable of executing
tasks of size at least 64K and allow the creation of sizable
user programs. The architecture required that the processors
should be capable of communicating through the common bus
and the shared memory. The system design also required that
the selected processors should have additional features such as
an I/0 bus to facilitate user interaction and communication
with peripheral and storage devices, a suitable operating
system and adequate software support.

The selection of the hardware depended on the availabil-
ity of the hardware that satisfied the system requirements.
Motorola’s 16-bit microprocessors have been selected for the
the distributed simulation system since they met the system
requirements and were also relatively inexpensive compared
to mini or mainframe computers. The hardware consists of
a VME/10 microcomputer and seven VMEL10 monoboard
microcomputers interconnected via a common bus called the
VMEbus and associated hardware components such as serial
ports, card cage and power supply. Figure 2 shows the
configuration of the hardware as designed in this project. The
following subsections describe the operation of the hardware
and its configuration.
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VIME/1D Microcomputer

Figure 2.Hardware Setup of the Language Supporte&
Distributed Simulation System

2.2.1 Hardware Description

The VME/10 is a development system consisting of a
M#68010 processor and the VERSAdos operating system. The
VME/10 has a 15megabyte hard disk, a 5%” floppy disk
drive, 384K of RAM expandable to 1152K and a 16 megabyte
addressing range. The VME/10 has three bus facilities:
a local on-board bus, an I/O channel {or an I/O bus)
and the VMEbus. The local bus provides communication
between the microprocessor unit, memory management unit,
keyboard, RAM, ROM, CRT and the I/O channel. The
I/O channel consists of 64 signal lines and interfaces the
local bus to hard disk and communicates with off-board
devices such as serial ports, parallel ports, terminals and
printers. The VMEbus is an industry standard bus with 96
signal lines which allows the VME/10 to access additional
Inemory, processors, or controllers. The VME/10 requires the
configuring of its memory map, I/O ports, and the tailoring
of its operating system at system generation to suit the
customized hardware configuration of the system. The VER-
SAdos operating system is a multitasking, multiprogramming
operating system which supports high level languages such
as FORTRAN, Pascal and other software utilities (see [24]
for more information on the VME/10 and the VERSAdos
operating system).

The VME110 is a single board microcomputer that can
function as a stand-alone microcomputer or as one of several
CPU elements in a multi-processor VMEbus configuration
[22]. The VME110 is a 16-bit microprocessor with an
MC68000 processor, 64K on-board RAM/ROM/EPROM and
a 16 megabyte addressing range. The VMEL10 has similar
bus features as the VME/10 and it can also access off-board
resources on the VMEbus.

The VMEbus interface on the VME/10 and the VME110
provides data and address path from the on-board MPU via
the local bus to the VMEbus. The VMEbus interface system
is comprised of four groups of signal lines called buses and a
collection of functional modules which can be configured as
required to interface devices to buses. The four buses are, (1)
Data Transfer bus, (2) Data Arbitration bus, (3) Interrupt
bus, and (4) Utility bus. The Data Transfer Bus (DTB) is
used by the devices to transfer data and the DTB contains the
data and address pathways and the associated control signals.
Functional modules (a collection of electronic components
with a single functional purpose) called DTB Masters and
DTB Slaves use the DTB to transfer data between each other.
The Data Arbitration Bus is used to guarantee that only
one DTB Master is in control of the bus at any time since
it is possible to configure the VMEbus with several DTB
Masters. The Data Arbitration Bus is used to transfer control
of the bus between DTB Masters and this is performed by the
modules DTB Requester and the DTB Arbiter. The Interrupt
Bus facilitates the interruption of the normal bus activity by
devices so that the interrupt requests can be serviced. The
interrupt requests can be prioritized to a maximum of seven
levels. The functional modules associated with the interrupt
bus are the Interrupters and the Interrupt Handlers which
use the signal lines of the interrupt bus, The Utility bus
includes a collection of utilities for failure detection, system
clock, initialization and system reset (see [11,12,35] for more
information on the VMEbus and its specifications).

2.2.2 Hardware Configuration

The use of off-the-shelf hardware in the distributed sim-
ulation system requires configuring the hardware, integrating
all the hardware components and customizing the operating
system to suit the desired system design. The VME110
processor, when supplied contains only the processor, bus
interfaces and the basic hardware components. The memory
devices, the address map decoder and the operating system
are not provided with the processors since they have to be
selected and configured as required by the application system.
The memory map of the VMEL10 has to be configured to
allow the accessing of on-board RAM/ROM/EPROM, off-
board RAM (shared dual-ported memory accessible through
the VMEbus) and the on-board boot-strap software. The
configuring of the dual-ported memory accessible through
the VMEbus as off-board memory for both the VME/10 and
the VME110s enables the processors to share the memory
for communication purposes. After the memory map had
been appropriately configured, the address map for the
memory access was designed and programmed into an address
map decoder PROM and installed on the VME110. The
operating system for the VME110 was generated from the
VERSAdos utilities and the necessary device drivers available
on the VME/10. The customized operating system was then
programmed into EPROMs and installed on the VME110 (see
{17] for more information on the hardware configuration of the
distributed simulation system).

The integration of the system involved the interconnec-
tion of the various hardware components, the establishment
of hierarchical control levels in the system, the establishment
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of user interface and the implementation of the software. The
'VME110 processors were interconnected with one another by
housing them in a card cage with the VMEbus backplane

[23] and the I/O channel. The integration of the VME/10
and the VME110 processors required the interconnection of
the VMEDbus and the I/O channel between the VME/10 and
the VME110s card cage. The establishment of hierarchical
control levels in the system required configuring one of the
processors as the System Controller. The system controller
provides system management and control functions to the
distributed simulation system. The software architecture
and its implementation are described in Section 2.3. User
interface is necessary only to the VME/10 since the user
program creation and simulation initiation and termination
take place on the VME/10. The user is not required to
interact with the VMEL10 processors since the execution
of the language tasks on the slave processors is maintained
transparent to the user.

2.3 Software Architecture

Since the system objectives included maintaining the
existing language structure of GASPIV and its user interface,
a unique design of the software architecture was required. A
software kernel was built around the GASPIV language tasks
to allow the subprogram groups to execute independently
and communicate with each other. In addition a software
layering approach was developed to maintain the existing
functional flow of GASPIV and its user interface. This
software architecture is described in the following subsections.

2.3.1 Software Design

In GASPIV, the user writes the program, event rou-
tines, system initialization routines and any other necessary
routines. When the user’s main program is executed, it
calls the subroutine GASP which establishes the simulation
environment. From then on, subroutine GASP takes over
until the specified completion time of simulation. After the
completion of the simulation, subroutine GASP returns to the
user’s main program where the simulation may be terminated
by the user’s main program. The distributed simulation envi-
ronment is required to maintain this conventional execution
structure of GASPIV.

The implementation of the eight partitioned GASPIV
language tasks in the distributed simulation system requires
the consideration of these needs: (1) the partitioned language
tasks containing subprograms written in FORTRAN need a
MAIN program or a driver for each task (except the USER
task which will be driven by the user’s main program) to exe-
cute independently, (2) the subprograms need a mechanism to
call subprograms residing in other tasks executing on separate
processors, and (3) the need to interface user’s programs
with the other tasks. To satisfy these system needs a
software layering approach has been developed. The software
architecture of the distributed simulation system consists of
three layers namely, (1)the GASPIV subprogram group, (2)
the task interface layer which interfaces a subprogram group
with other subprogram groups and the user programs, and
(8) the operating system which allows the programs to access
the common bus, shared memory and other system resources
in the distributed simulation environment.

The inner layer contains the GASPIV subprograms in
their original form. These subprograms residing on different
tasks are interfaced with one another through the task drivers
and the task tnterface library. The task driver is the main
program of a task group which can execute the subprograms
residing in its task at the request of a subprogram residing
in another task and can suspend or terminate itself. The
task interface library consists of pseudo subprograms of all
the subprograms needed by more than one task. When a
subprogram residing in a task calls another subprogram which
is not residing in the same task, the pseudo subprogram of the
called subprogram in the task interface library is referenced.
The pseudo subprogram serves as a communication vehicle
between the calling subprogram and the called subprogram.
The pseudo subprogram places the subprogram parameters
in the shared memory and sets the semaphore of the actual
subprogram to be executed. The task containing the called
subprogram detects this change in status of this semaphore
in the shared memory and reads the subprogram parameters
from the shared memory and executes the requested actual
subprogram residing in it. A pseudo subprogram GASP has
been designed for inclusion in the-USER task and this pseudo
GABP will serve as the task driver for USER task (see {15,16]
for more information on the software design).

2.3.2 Software Execution Structure

Once the tasks have been installed on the appropriate

processors and the necessary input files for the simulation
have been created, the simulation can be started by executing
the user program. When the user program is executed,
the user’s main program will call subroutine GASP. The
subroutine GASP in the USER task is actually the pseudo
GASP which will first execute an assembler program to
allocate the shared memory to the task. Then all the
shared variables and the semaphores will be initialized in the
shared memory and the language tasks residing on individual
processors will be activated separately. The pseudo GASP
will then set the semaphore of the SUPERVISOR task to
execute the actual subprogram GASP residing in it. The
SUPERVISOR task will check its semaphore, detect the
request for executing GASP and will execute subprogram
GASP. The subprogram GASP will take over from here as
in the conventional GASPIV execution. The interactions
between the subprograms, task driver and the task interface
library are shown in Figure 3. After the completion of the
simulation, the SUPERVISOR task will send a message to all
tasks-except the USER task to terminate themselves and then
terminate itself. The USER task will find that all the tasks
have terminated from the change in their semaphore status
and will return to the user’s main program and will complete
normally.

2.4 Current Status

The software development and the design verification
phases of the language supported distributed simulation
system have been completed. The processors and the
other necessary hardware have been acquired and configured.
The remaining tasks involve the completion of the software
implementation and the testing of the system. The final phase
of this project will involve the performance evaluation and the
bench-marking of the developed system.
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Figure 3. Interaction between Task Driver, Task
Interface Library and the GASPIV Subprograms

3.0 IMPLEMENATION OF A MODEL BASED

DISTRIBUTED SIMULATION

The principle behind distributed simulation is to in-
troduce concurrency into the implementation so that the
functionally independent units of the simulation model
and the support functions can execute in parallel. The
performance of such a system can be enhanced over that
possible in the strategy described in section 2 by introduc-
ing concurrency into the components of simulation models
themselves. This second approach is being researched at
Texas A&M University. This effort explores the language
requirements for distributed simulation of concurrent models.
The objective of this research is to build the minimal
simulation primitives suitable for distributed simulation on
microprocessor architectures. Essentially the design includes
an asynchronous simulation strategy, concurrent simulation
primitives, deadlock prevention or recovery algorithms and
a support environment. An overview of this approach is
presented in this section.

3.1 Simulation Modeling Technique Suitable for Distributed
Simulation

The simulation strategy determines the modeling method-
ology and the fundamental nature and world view of the
system. Kiviat [14] identified three major modeling strategies
in discrete simulation: (i) event scheduling, (ii) activity
scanning, and (iii) process interaction. The event oriented
methodology represents an instantaneous occurrence as an
event and carries out the simulation by scheduling these
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events. The activity scanning approach carries out an
action if the corresponding state changes and time scheduling
conditions are met. The process interaction methodology
models the system as a set of coexisting or cooperating
processes each communicating through messages. FEach
process unit is controlled independently and the simulation is

carried out by activity scanning or event scheduling,

From an analysis of the existing simulation strategies, the
process interaction strategy was selected for the distributed
simulation implementation since it maintains the inherent
concurrency in the system being modeled to a greater extent
than any other approach. The basic unit of computation is
a process that sends and receives entities as messages: the
entity flow between the processes characterizes the simulation
progress. Thus the system to be simulated is modeled as
a set of coexisting or cooperating processes. All processes
execute concurrently and communicate through message
passing interfaces. All messages or entities are time encoded
and queued in transit. The message order is preserved
between the processes and the time stamps of the messages
are maintained in monotonically increasing order to insure
proper and correct simulation.

3.2 Language Requirements for Distributed Simulation

The language requirements for distributed simulation
can be broadly classified into three categories: power to
express concurrent activities at source level, a distributed
control mechanism to carry out simulation and a minimal
set of modeling tools. These are described in the subsections
below.

3.2.1 Distributed Simulation Control Mechanism

The system to be modeled is represented as parallel
processes which operate on entities and send them to other
processes through a message passing mechanism. Thus each
process removes entities from its input message queue till
it is empty or till the simulation termination conditions
are satisfled, performs the necessary operations, updates its
status and sends the entity or message to the next process
in line. Figure 4 represents such a system with processes
shown as nodes and message paths as arcs. Each node has a
message buffer such as the one shown for P; which contains
the time-ordered input messages for that node. A process
with multiple input edges and messages on only a subset of’
them, like P4 in.Figure 4, has to wait until it has at least
one message on all of them to simulate correctly. Such a
process enters a blocked state. But this is overly restrictive
since a blocked process with partial message input can still
simulate forward without causing any incorrectness under
certain conditions. The validity of the above statement is
a direct consequence of the assumption that the messages
have increasing time stamps along any virtual channel: in
other words, a process can never send a message in its past.
Thus P; cannot send a message with time stamp less than 110
units. Hence a receiving process can never receive a message
with time stamp less than the minimum clock time of its
predecessors and it can simulate or process the messages with

time stamps less than or equal to the smallest local clock time

of its predecessors. In Figure 4, all input edges of P4 except
the one between P; and P, have messages. The forward
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simulation time of P, is the minumum of the clock values
of Py, Py, P; and P, and is 90. Thus Py can still process all
the messages with time stamp less than or equal to 90 though
it does not have a message from P;.

Message buffer of Py
[38] 89 [ 90 | 62 [108]110]120]

Figure 4. Blocking Situation

The basic principle behind the asynchronous execution
of the simulation program without causing any incorrectness
is to compute the safe forward simulation time (FST) for
each process as the minimum of the local clock time of the
predecessor processes and allow each process to operate on
the messages with time stamp less than the safe forward
simulation time. This algprithm is similar to the demand
driven null messages method proposed by Chandy and Misra
[4] except that the edges between processes do not have a
clock associated with them. Rather, a successor process
maintains and updates the clock value of its predecessors
while processing the messages. Thus the update of the
forward simulation time for a process is based on the clock
value of its predecessors unlike the clock value of the edges as
in the model proposed by Chandy and Misra. The advantage
of this approach is that it avoids deadlock that arises due to
total absence of messages along any edge. This situation is
illustrated in Figure 5 in which P5 keeps sending the messages
to Ps only. P4 can not progress since its FST equals the local
clock time of P,. Hence P4 would send an awakening signal to
P, requesting P, to update its clock. This awakening signal
is propagated to the predecessor Py of P, until the clock of Py
exceeds 90 units. If no such Py, exists the signal is transmitted
back to P4 which detects the deadlock situation and avoids by
not considering the clock value of P, in computing its forward
simulation time. However, in the current situation, the clock
value of Ps namely 111 units will be sent to P, as reaction
to the awakening signal which then can process all messages
with time stamp less than or equal to 111 units. The reader
is referred to [3] for further details.

Since the clock values are not maintained for the edges all
the similar messages from various predecessors are enqueued
in a single buffer. This approach also makes the handling
of a multiple entity simulation system much easier. The
same simulation strategy and the queueing algorithms can

Message buffer of Py
[S2[208]TH0[135]120]

Figure 5. Deadlock Situation

be easily extended to sirnulate a multiple entity system in
which processes send or receive more than one type of entity.
Thus the number of buffers for a process is dictated by the
different types of entities received by it and not by the number
of edges between its predecessors and itself.

This strategy forms the crux of the run-time control
environment and could be implemented as one single control
module to govern the activities of all the user defined
processes or as a set of concurrent control processes for each
individual user defined processes. The second approach is a
better alternative since the control module of each process
conserves the locality and both the user defined process and
its control module can be loaded onto the same processor in a
multiprocessing environment. This approach is in accordance
with the primary goal of developing a truly distributed
simulation system.

3.2.2 Minimal Set of Modeling Tools

The modeler views a system to be simulated as a set of
interacting processes that operate on the locally queued-in
entities until the simulation termination conditions are met.
Thus the modeling tools should have the following basic
capabilities to build a simulation model: facility to represent
and define the coexisting processes and entities of the real
system, facility to create and remove an entity from the
system, synchronized message communication mechanisms
to simulate the flow of entities, access capabilities to the
random number generators and statistics collection routines,
and statements to begin and end simulation. This system
is being built as an extension of a host language to allow
rapid prototyping. The desired language features and the
suitability of the chosen host language are discussed in the
following section.

3.3 Language Features Essential for Distributed Simulation

The analysis of the languages suited for distributed
simulation reveals that it should be able to handle the
dynamic entity creation and queue handling. The number
of entities prevalent in a system and the queue size of the
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processes are dynamic during simulation. While languages
like Ada [19] and Pascal provide access and pointer types
to handle such dynamic situations, FORTRAN has to utilize
static single dimensional arrays with predefined size. The
shortcoming of using static arrays is that neither the model
builder nor the system designer can estimate this parameter
precisely due to the stochastic nature of the simulation prob-
lems. TFurthermore this parameter will vary from problem
to problem. While oversized arrays waste the memory space
considerably, undersized arrays will jeopardize the simulation
system performance.

The handling of entity flow has an impact on the simu-
lation control environment. The entity flow can be handled
by synchronized message communication, that is to transfer
the entities with their attributes through the processes in
the system or by storing the entities in a common global
store and simulate the entity flow by sending a time encoded
message. The first approach is ideal for a truly distributed
architecture while the second approach needs a distributed
architecture with a common global store, in a multiprocessing
environment. However, the second method violates one of the
operating characteristics of distributed systems namely not to
have global variables and to use message passing protocols
for all transfers, both in interprocess and interprocessor
communications. Thus a communication mechanism like
the rendezvous in the Ada programming language is ideal
and necessary to represent the entity flow in a simulation
system. The run-time system of the simulation language
should also be capable of assigning the concurrent program
units to different processors failing which the modeler should
be provided with a facility to assign the concurrent program
units to different processors. The entity definition along with
its attributes, the operations to be performed on an entity like
creation and destruction, queue handling mechanisms and the
simulation termination conditions should be known at each
individual processing unit to support distributed simulation.
The simulation language also has to provide random number
generators and statistics collectiop routines as concurrent
units that emit a random number and accept an input data

value respectively on a call from other program units.

Current research at Texas A&M University involves the
rapid prototyping of the above mentioned concurrent simula-
tion system. This implementation will provide the concurrent
simulation primitives as extensions to a host language. The
appropriate choice for the host language is a language with
concurrent features at source level since it provides a natural
base for the simulation implementation that has to support
logically concurrent activities and synchronization protocols.
Further a program developed on a single processor can be run
unaltered on any number of processors since the allocation
of tasks to processors is built in the run-time system of
the host concurrent language. Ada and Occam [20,21,29] of
INMOS were considered for the host language since both have
message passing as their communication mechanism between
concurrent program units and generic facilities for creating
processes. However, Occam provides excellent concurrent
primitives at the cost of good data structures and its primitive
nature discourages the integrated system development at a
higher level. Further Occam does not provide data types to
handle dynamic situations while Ada’s access types come in
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handy. Extensions to Ada are provided to facilitate a user
in building a simulation model. The syntax of the extensions
that provide the basic simulation primitives is given in Table

1.
Primitive Syntaz of the extension
Representation of an ENTITY entity-name
entity = list of attributes;
Representation of a PROCESS process-name;
process unit Begin

end process-name;

Creation of an entity

CREATE entity-variable;

Flow of an entity

SEND entity-variable TO process-name;

RECEIVE entity-variable;
Enqueing and dequeing ENQUEUE entity-variable;
an entity DEQUEUE entity-variable;
Removal of an entity REMOVE entity-variable;

form the system

Advance the clock of
a process

HOLD time-unit;

Simulation termination
condition

STOP SIMULATION WHEN TIME
= time-unit;

Random varaite
generators

UNIFORM|(stream,parameters)
EXPONENTIAL(stream,parameters)

POISSON(stream,parameters)

NORMAL(stream,parameters)

RANDOM(stream)

Aut ic data collection on

processes and queues in the simulation

system & the following statements:
TALLY real-variable;
ACCUMULATE real-variable;

Table 1. Syntax.of the Extensions that provide
Simulation Primitives

Ctaticty, Tocts, e

The user model is processed by a preprocessor to replace
the extensions by Ada statements and to create a simulation
environment by instantiating a control module for each user
defined process.

3.4 Three Different Ada Environments for Implementation

The primary aim of using Ada to build simulation
environments has been to exploit and to study the utility
of the package and generic concepts in generalizing the
simulation tools and the tasking facilities in distributing the
simulation by improving the concurrency [1,33]. The initial
Ada implemenations at Texas A&M University involved the
development of two systems that support process and event
oriented simulation [13,32]. These two software systems were
implemented and executed on a VAX 11/782 using the NYU
Ada/Ed Translator/Interpreter version 1.1.4. The event
oriented version was later modified to support distributed
simulation by executing the support functions concurrently,
on a VAX 11/750 [33,34]. Though the NYU Ada/Ed Transla-
tor is not a production compiler, the ease of generalizing the
simulation concepts through the packages and generic units
of Ada and the portability of Ada through various compilers
encouraged us to test Ada in developing an integrated and
concurrent simulation environment.

Recently Texas A&M University has acquired three more
Ada compilers which overcome the very low productivity
associated with the NYU Ada/Ed Translator significantly.
The three compilers are Telesoft Ada and Digital Electronics
Corporation Ada for the VAX 11/750 [9] and the ROLM Ada
compiler {8] for the Data General MV/10000. With very
few modifications the Ada programs written for one system
have been easily run on the other systems. The strength of
Ada thus lies in its portability and maintainability among
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the different compilers and machines. Among the three
systems Telesoft Ada has not been considered for distributed
simulation application, since our current version does not
support tasking.

3.5 Current Status

The protype of the above system is being implemented
using the DEC Ada compiler running on VAX/VMS Version
4.1. The operation of the prototype will be analyzed by
simulating the benchmark applications. Thus the outcome
of this research will be a functional prototype of a discrete
concurrent simulation system in which the-hierarchical ar-
chitecture is retained for the simulation support functions as
parallel processes while user written portions of the model are
simulated by the coexisting processes with message passing
interfaces. Another advantage of utilizing a concurrent
language as the host language is that the run-time system
of the concurrent language will take care of assigning the
concurrent units to the processors available. It will also
provide a framework to analyze the sensitivity of the system
to parameters like deadlock occurrences, processor utilization
and total turnaround time.

4.0 SUMMARY

The language supported distributed simulation system
is nearing its completion. The experience and insight gained
from the design and the development of this system offers
promise for exploiting the parallelism in the simulation
language functions as a means for improving the performance
of the system. This implementation approach also proves to
be advantageous since it avoids the deadlock and synchroniza-
tion problems and maintains the distributed implementation
transparent to the user.

The second implemenation approach will retain the
hierarchical distribution of simulation functions as in the
first approach and will also provide concurrency features in
its modeling of its user-written routines. Even though the
second implementation approach has to deal with deadlock
and synchronization problems and has to involve the user
in the distribution of simulation model, it promises a better
speed up from the distribution than the first approach. The
future research at Texas A&M University will involve the
complete implementation of the second approach and the
performance evaluation of the distributed simulation systems
implemented by both approaches.
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