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ABSTRACT

A model can be decomposed into components; then mapped
onto a network of simulators for execution. With
different levels of decompositions, we are interested
in finding the optimal model decomposition that can be
implemented on a particular structure of distributed
simulators. This is done by comparing performance
measures such as the minimum response time or the
maximum throughput per unit of hardware complexity.
We claim that the need for a model capable of
performance evaluation 1is an important concern in
designing distributed simulators. Thus a methodology
for performance evaluation and simulation modelling of
hierarchically specified distributed simulators is
required. From the empirical results, we found that
simulating a given distributed simulator model is

suitable to get optimal performances, that is, each
model has an optimal decomposition level in terms of
performance. The influential performance measures are
the average of simulation run times and the product of
the average run time and the hardware complexity of
the given simulator model.

INTRODUCT I ON

Distributed simulation increases the  speed
simulation by processing discrete event simulators
parallel. In the implementation
simulations, since a single
processing time, the number of processors can be
traded-off against the time required for the
distributed simulation [3]. Commonly, performance is
not seriously considered until the system is built and
many systems have unacceptable performance  when
completed. |f performance is to be considered in the
design of such distributed simulation  systems,
performance modelling must be employed to see that the
benefits of distributed processing are achieved [2].
Since the structure of distributed simulators is not
unique, we need tools to evaluate the performance of
such simulators. Although anaiytic and simulation
models have been recognized as useful tools, each tool
has its distinct costs and advantages. Dubois [7]
tried to combine such tools in complementary ways to

of
in
of discrete event
processor takes maximum

exploit the advantages of the techniques. Nicol and
Reynolds [11] built a network simulation model to
observe paralielism and communication dependency
within the components of distributed systems. The

observations lead to a partitioning of the model which
reduces the total cost of event-list maintenance and
to make sure that the simulation work is distributed.

In order to compare relative performance of
1 This research was supported by the NSF grant DCR
8407230, "Distributed Simulation of Hierarchical,

Multilevel Models".
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simulators, performance measures must be
developed. Several research works indicated that the
influential performance factors are workload balance
between the cooperating processors and frequency of
communications between processors [6]. Frankline [8]
proposed a performance measure derived from analyzing
the simulation cost that includes factors relating to
the simulation machine speed, machine cost, waiting-
time cost, and simulation quality. Recently Livny [9]
has studied the relationship between the inherent
paraltelism of a concurrent simulation and the number
of processors employed. He wused as a performance
measure the parallelism factor of the computation
which is the ratio between the total processing time
and its execution time. Nicol and Reynolds [10]
claimed that "...excessive communication can lead to
degraded performance, but minimizing communication
need not optimize performance...", To integrate these
various approaches and results a coherent methodology
for performance evaluation of distributed simulators
is needed.

tn this paper, we describe a framework for performance

modelling and simulation, and propose a performance
simulator architecture called the fierarchical
multiport simulator to evaluate performances of
distributed simulation systems. We also design a

simulation system based on the proposed methodology
and the architecture. Using the simulation system,
empirical resuits are collected and analyzed to find
the optimal decomposition levels of several
distributed simulator models. Finally, conclusions
concerning the application of the performance
evaluation methodology are given. A more detailed
discussion can be found in Baik [1].

FRAMEWORK FOR PERFORMANCE MODELLING AND SIMULATION

Modelling and simulation is a set of activities which
relates to constructing models of real worid systems
and simulating them on computer systems [14]. Based
on this definition, general system modelling and
simulation is concerned with three major entities -
real systems, models, and simulators and their
relationships modelling relation (between real
systems and models) and simulation relation (between
models and simulators). The peal system is a source
of input-output data which we obtain by input-output
observation. That is, we are concerned with input-
output relation of the real system. The model, a
representation of the real system, is also a source of
such data. The input-output relation of the model s
obtained by experimentation with the gsimulator.
Applying this entities-relationships to distributed
systems, we can build an entities-relationships for
distributed system modelling and simulation. Our
interest is on performance evaluation of distributed
simulator systems, we propose the entities-
relationships for distributed simulator performance
modeliing and simulation as depicted in Figure 1. The
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Figure 1. Entities-Relations of Modelling and Simulation

performance mode] is a representation of the
distributed simulator with consideration of
performance evaluation, The input-ocutput relation of
the performance model is obtained by experimentation
with the performance simulator, which is a simulation
processor capable of generating input-output data.
There are five steps and six corresponding objects in
the methodology for performance modelling and
simulation. The five steps are namely conversion,
transformation/mapping, impiementation, simulation,
and analysis, and the six objects are  namely
distributed simulator model (DSM), composition tree
representation (CTR), hierarchical multiport simulator
(HMS) , performance simulator {PS), performance
measures (PM), and performance results (PR). The
methodology proceeds as follows:

1) Converting a given DSM into a tree structural
representation called CTR.

2) Transforming the CTR to another CTR using
operations soon to be defined and then mapping the
transformed CTR onto a hierarchical performance
simulator called HMS.

3) Implementation based on the HMS - selecting input
parameters and jnitializing data structures such
as the routing set.

L) Simulation with the PS$S to get performance
measures.

5) Analysis of the PM with certain criteria such as
speed or complexity.

Using the methodology, we propose a system callied PMSS
for performance modeliing and simulation of
hierarchically distributed simulators, as shown in
Figure 2. It comprises two subsystems, the performance
modelliing subsystem (PMS) and the performance
simulation subsystem (PSS). PMS is elaborated in
Figure 3. It converts a given distributed system mode!
into a composition tree model which is a tree
structural representation of the model. PMS then maps
the (transformed) tree model onto a hierarchical
performance simulator which results from the modular
construction of component modules to several levels of
recursion.

User
Interface
r... ——— e e - e - = = - —— 1
I |
| Performance Performance |
| Modelling Simulation i
I Subsystem Subsystem [
!
S U I
PSS

Model Experimental Simalation

Base Pramebass Database

Pigure 2 . Performance Modellinz and 3imalation System (ZM3S)

DS
- -T - -—=-=-= -
{ |
] !
] CONVERSION |—LTR ;) TRATSPORM- :
!
i CTR ABIR |
| |
| MAPPING l
l |
| i
N BN |

HMS S

Pigure 3. Performance Modelling Subsystem (PMS)

PSS depicted in Figure & comprises three procedures -
implementation, simulation, and analysis. Based on the
given hierarchical multiport simulator model, PSS
implements a simulator by selecting parameters for
delays and completing data structures including a
coupling table and a routing set. And PSS simulates
the model with the simulatoer in order to produce
simulation outputs such as performance measures, and
then analyzes them.
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SIMULATION

Pigure 4. Performance Simulation Subsystem (PSS)

CONVERS | ON, TRANSFORMATION AND MAPPING PROCEDURES

The distributed simulator model (DSM) proposed in this
study is composed of the components representing those

of the real system, and the couplings representing
interactions among the  components [4]. The
composition tree representation (CTR) consists of

interior nodes representing the compositions and leaf
hodes representing the components of the distributed
models. The hierarchical multiport simulator (HMS)
contains simulator 'assumed to correctly simulate the
corresponding model components, and coordinators
responsible for synchronizing the component simulators
and mediating their intercommunication. Procedures

from a given DSM to a desired CTR empioys two steps.
The first step is the construction of a base CTR by
node assignments and representation ~ of the

hierarchically specified DSM. The second step is the
transformation of the base CTR to another structure of
CTR by any of the following operations:

1) AGGREGATION - a many-to-one composition mapping
from a base configuration satisfying the
sufficient conditions to a transformed

configuration constructed by block composition.
FLATTENING - a reconfigurable composition mapping,
in which an interior node is removed by connecting
directly its children nodes to its parent node.
DEEPENING - a reconfigurable composition mapping,
in which the number of branches of an interior
node is reduced by combining at jeast two
branches, but not all, and adding one new interior
node for the combined branches.

3)

Therefore, aggregation can take place to any deepened
or flattened composition in order to get more
transformed configurations. Mapping a CTR onto a HMS
is a one-to-one matching, that is, each of interior
nodes of the CTR will match to a coordinator
processor, and each of leaf nodes will match to a
simulator processor. The hierarchy provides a formal
way to manipulate models by using essential concepts
such as  association and morphisms [15]. These
concepts are required to transform system
specification from one form to another and to prove
the preservation of structural features.

HIERARCHICAL MULTIPORT SIMULATORS

The hierarchical multiport simulator contains
coordinators to synchronize the component simulators
and handle tasks, and simulators to simulate the

corresponding components. As shown in Figure 5, COOR
has three input ports and three output ports. An input
and output port pair such as (p1,p2) is for
communicating with either its parent or the outside
environment, and two pairs such as {(p3,pk) and (p5,p6)
are for communicating with SIMU] and SIMUz. An  input
(p7 p9) of SIMUi is connected to an output
port (pk or pé) of COOR, while an output port (p8 or
pl0) of a SIMUi is connected to an input port (p3 or

p5) of COOR.

port or

OUTSIDE ENVIRINMENT

(x,Dyt

(Yolat)l (x,D,t) (YvI,t)z

(4,1,
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(a) 1-level/2-fold HMS Architecture

SINMU. SIIU2

(b) CTR of 1-level/2-fold HMS

Figure 5. 1-level/2-fold Hierarchical Nultiport Simulator

There are two types of tasks
(x,D,t) and (%,t), and one for synchronization,
(d,tN). The task (y,l,t) contains the output event

from either a simulator or a coordinator which is sent
to the next level coordinator. Both coordinators and
simulators carry out a set of subtasks for a given
task such as (x,D,t), (*,t), (y,l,t), or (d,tN),

where X

E

for intercommunication,

is an external input event,
is an internal input event,

y is an output event,

d is a done notice,

! is a set of Influencees,

D is a set of destinations,

t is a current time,

tN is a time to the next event.
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We now show how the different tasks are sent and
received in a 2-level/2-fold hierarchical multiport
simulator as an example. The arrival of (x,D,t) at
COOR causes COOR to send
COOR] and COOR2 respectively, assuming that this task
all simulators. Then COOR, sends (x,D,t)3 and
1 and SIHUZ‘ This
. When a (%,t) arrives at COOR,

is for

(x,D,t)ll to its simulators, SIMU is
similarly done by COOR

a (%1t is sent to
minimum tN' Supposing that COOR2 and SIMU3
COOR2 sends

(%, t), SIMU3
sends a (y,|,t) to its respective coordinator, COOR,,

When the (y,I,t)
sent to the

2
the imminent child who has the
are the

(%,t) to

immediately

imminent  components, a

SIMU3. After receiving the

and starts computation.
COOR,, 2  (y,I,1)

coordinator, COOR, and it also sends a (x,D,t)7 to
SlMUh, that SIMUM is an influencee of the
influencer, SIMUB. This is then done by COOR the
same way. When all of (d,tNi) arrive at a coordinator,
NG ° The

coordinator then sends (d,tN) to either its parent or

arrives at

is next level

assuming

in

it determines the minimum, tN’ out of all t

the outside if it is the root.

It should be noted that parallelism is achieved in the
receipt of (x,D,t) and (%,t) tasks, because a (x,D,t)
task can achieve paralielism when there are more than
one destinations (j.e., |D| > 1), and a (%,t) task can
achieve parallelism through the size of influencees of
the influencer. A simulator aggregated with enclosed
processors is called a aggregated node simulator and
is assumed to be mapped on a sequential wuniprocessor.
The task execution of a (x,D,t) in the aggregated node

simulator 1is different from that in a comparable non-
aggregated node simulator, that is, when (x,D,t)
arrives at the aggregated node simutator, (x,D,t) is

sent to each enclosed simulator of the aggregated node
simulator one at a time in a sequential
mode. Therefore it is true that an aggregated node
simulator is measured no parallelism but less hardware
complexity against a comparable non-aggregated node
simulator.

DEFINITIONS AND ASSUMPTIONS

We assume that a performance simulation mode! contains

identical processors that communicate by message
passing. Furthermore, we assume that the delay for
communication, coordination, or computation is

constant. And let,
.complexity of a coordinator is 1,

.complexity of a non-aggregated node simulator is
1,

.complexity of an aggregated node simulator s
the number of enclosed processors,

.complexity of a given model is the summation of

complexities of
1inks among the
Thus, the hardware complexity of a particular
simulator model can be computed by these definitions.
For example, the complexity of the fully decomposed 2-
level/3-fold simulator is 25, and the complexity of

all processors plus the number of
processors.

the one level decomposed 2-level/3-fold simulator is
16. Here, the 2-level/3-fold simulator is a balanced
tree having the maximum level of 2 and the number of

branches of 3 to every interior node.

If the complexity measurement for
given,

hardware wunits is
we can compute throughput per hardware unit of

(x,D,t)1 and (x,D,t)2 to
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a particular simulator model.

simulation outputs for each
from a given distributed model,

decomposition level can be found.
optimal decomposition level in terms
such as the minimum average of run.times or the
max i mum throughput per unit of hardware
complexity. Here, the pup.iime is defined as the flow
time of a task between the time the task gets into a
simulator model and the time it gets out of the model.

Comparing performance
simulator model mapped
an optimal model
Each model has an

of performance

The throughput per unit of hardware complexity is
defined as one over the product of the average
run.time and the hardware complexity of the given

model. Thus, to find the maximum throughput is to find
the minimum product of the average run.time and the
hardware compliexity.

DESIGN OF PERFORMANCE SIMULATOR

Based on the methodology for performance modelling and
simulation of hierarchical simulators described in the

previous sections, we design a simulation system
called the performance simulator to determine the
performance of a given distributed simulator models,

so that a performance simulation program is written in
SIMSCRIPT 11.5 [1J. A coordinator in a simulation
modet needs time for coordination {called
COORDINATION.TIME) for table look-ups or to select a
minimum tN' A simulator on the other hand spends time

to compute its next (called
COMPUTATION.TIME). And messages which carry task
information between processors require time for
communication (called COMMUNICATJON.TIME) . To
evaijuate the performance of a given distributed
simulator model in terms of time delays, the
simulation model parameters: COORDINATION.TIHE,
COMPUTATION.TIME, and COMMUNICATION.TIME, and the
experimental frame parameters such as an
OBSERVATION. INTERVAL are given. A simulation system
carries out simulations with these parameters and then

event time

output results in statistical summaries such as
RUN.TIME.

The performance simulator is comprised of the
simulation model and the experimental frame as shown
in Figure 6. The simulation model contains a set of

coordinator-processes and a set of simulator-processes

coupled to each other, and two types of globally
accessable data structures. These tables are the
coupling table and the routing set, which are used by
all processors, coordinators and simulators, for

routing and searching purposes:

1) COUPLING.TABLE contains information on parent-
children couplings and influencer-influencee
couplings. This table is built from given input
data on the hierarchical simulator to be simulated
for evaluating its performance.

2) ROUTING.SET - contains routing information on the
routes from each simulator to the root. Whenever a
task comes into a coordinator, the ROUTING.SET is
searched to find a route for sending tasks down to
the next level. This table can be built from the
coupling table.

Employing the BEVS formalism, the structrual
representation of an experimental frame is defined as
a coupling of a generator, an acceptor and a
transducer. The experimental frame specifies three
sysiems connected to the model as shown in Figure
6. The generator is an input system of the {nput

segments SI. The transducer is an output system which
observes model input/output segment pairs and performs
the statistical processing specified by the summary
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Pigure 6. Performance Simulator

mappings SM. The acceptor is a run control system
which observes a run control variable segment and
indicates acceptance or rejection of an experiment
according to whether or not the segment belongs to the

admissable class SC' For performance evaluation, the

generator creates tasks such as input events to be
sent to the simulation model, the acceptor controls
the simulation run by checking current simulation time
against the given observation interval, and the
transducer performs statistical computation such as
average run-time per task.

Process interaction oriented simulation languages such
as SIMSCRIPT [13] can be used to implement the
performance simulator. Each component of a
distributed simulator model will be implemented by a
process and messages are exchange for synchronization
and communication.

EXPERIMENTS AND RESULTS

Once the performance simulator is established, we can
examine several configurations of distributed
simulator models with constraints such as the number
of processors or the number of 1links among the
processors. By using the performance simulator, we
can evaluate the performances of different
configurations for a given distributed simulator model
in order to find an optimal one. We therefore can
decide at what level to terminate the recursion in the
hierarchical model specification so that the coupling
of systems associated with that level satisfies the
constraints of the simulator model. To get empirical
results by using the performance simulator, we set up
the input parameters as follows:

COMPUTATION.TIME
COORDINATION.TIME
COMMUNICATION.TINE

.0 time units
.5 time units per branch
.5 time units

8
0
1

Figure 7 shows the performance simulation results of
2-level/k-fold (k=2,3,4,5) hierarchical multiport

_] simulator model. While the fully decomposed level of

a 2-level/k-fold simulator model is optimal in terms
of the minimum average run.time, the one level
decomposed simulator model is optimal in terms of the
maximum throughput per unit of hardware complexity.
As shown in Figure 8, while the two level decomposed
model of a 3-level/2-fold simulator is optimal in
terms of the minimum average run.time, the one level
decomposed model is optimal in terms of the maximum
throughput per unit of hardware complexity. However,
in the bk-level/2-fold simulator, the three level
decomposed model is optimal in both cases.

When the number of destinations, |D|, of the external
tasks, (x,D,t), and the number of influencees, |I|, of
the output tasks, (y,!1,t), are considered, the
following four combinations are chosen:

1) Tight-inner-coupling/Tight-outer-coupling (Tight/

Tight)

2) Tight-inner-coupling/Loose-outer-coupling (Tight/
Loose)

- 3) Loose-inner-coupling/Tight-outer-coupling (Loose/
Tight)

L) Loose~inner-coupling/Loose-outer-coupling (Loose/
Loose)

Here, the  inner-coupling means  the internal

influencer-influencee relationships of the model, and
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Figure 7 . Simulation Results of 2-1level/k-fold Simulators
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the guter—-coupling means the external relationships to
the environment. And the tight-outer means that the
number of destination, |D|, is relatively bigger than
that of the Jpose-outer. For instance, in our
expriments, the tight-outer 1is assumed that |D| is
greater than half of the number of simulator
processors, and the loose-outer is assumed that |D] is

not greater than half. However, determining whether
the simulator model is the tight-inner or the Jpose-
inner depends on the number of influencees, |I], of

each leaf node.

In the experiments shown in Figures 7 and 8, only the
first combination, the tight-inner-coupling and the
tight-outer-coupling, are given by default. Iin the 2-
level/3-fold simulator model, experimental results
show that two optimal performance levels are found,
one is the fully decomposed level in terms of the
minimum average run.time, and the other is the one
level decomposition in terms of the maximum throughput

per unit of hardware complexity. See Figure 9. Each
level is run  with the following coupling
relationships: :
1) Tight/Tight is the case where [I| 24 and |D} =2
4.5
2) Tight/Loose is the case where |1] 2 b4 and |D| <
4.5
3) Loose/Tight is the case where |I| <k and |[D| =2
4.5
L) Loose/Loose is the case where |I]| <k and |D| <
4.5
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with conslderailon of coupling

CONCLUSIONS

Several architectures were developed for
hierarchically specified distributed simulators based
on the DEVS formalism. This has been done by mapping

modular discrete event models onto
architectures [15]. Zeigler introduced a
abstract simulator which is an
intermediate logic form in realizing the distributed
model on a distributed simulator. Based on the
concepts of the extended DEVS formalism, Concepcion
[4] proposed an architecture for distributed
simulation, the Hierarchical Multi-bus Multiprocessor

Architecture, HM?A. This
processing elements to components
simulator. The Heterogeneous Element Processor,
offers an alternative impiementation for the
realijzation of such distributed simulators [i51.
Rozenblit [12] presented the abstract simulator of
distributed models with experimental frames by mapping
hierarchical specification of experimental frames onto
the abstract simulator. Since these architectures are,
however, fixed in how they do the simulation of the
distributed models, the model decomposition is
necessary to be chosen for evaluating performance of
such architectures.

hierarchical
distributed
concept called the

allocates
the abstract
HEP,

architecture
of

The analysis of performance for the

architectures with the constraints such as the
of processors or the number of links among
processors, are required to study the feasibility

proposed
number
the
of
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such hierarchical simulators. This can be done by
simulating such architectures to determine the
performance of different decomposition levels of
distributed simulators. Therefore the major concern,
in this study, is to find the optimal decomposition
levels in terms of performance criteria such as speed-
up or paralielism. This is a very important aspect of
using DEVS formalisms in a distributed simulation
environment.

'n this paper, we proposed (1) a methodology for
performance modelling and simulation of distributed
simulators, (2) a simulator architecture called the
“Hierarchical Multiport Simulator (HMS)", which is an
abstract simulator of distributed simulators, and (3)
a technique to design a simulation system to determine
the performance based on exper imental
aspects. Additionally, our experiments indicate that
simulation approaches are suited to find the optimal
decomposition levels of given distributed simulator
models. This is done by comparing performance measures

such as the AVG.RUN.TIME or the product of the
AVG.RUN.TIME and the COMPLEXITY.
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