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ABSTRACT

Statistical considerations in simulating complex sys-
tems on a hierarchical network of low-cost microcom-
puers are discussed. Network configurations, alloca-
tion of computer tasks to nodes of the network, and
assignment of simulation trials are examined. The
binary tree and its X-tree variant are found to be
especially attractive network configurations in simu-
lation applications with simulation tasks assigned to
nodes according to a model-frame/experiment-frame/
output-frame trichotomy. Procedures for performing
designed simulation experiments, including factor
screening experiments, and for conducting variance
reduction through manipulation of random number
streams are presented.

INTRODUCTION

Computer simulations sometimes require exceedingly
Tong computer time and very large addressable memory
to execute realistic models of complex systems. Com-
pounding this difficulty is the need to perform sta-
tistical and optimization studies of the model, which
means that the model must be run repeatedly at vary-
ing conditions to evaluate the effects of selected
input variabies on the perfermance of the system.
Much research has been devoted to designed experi-
ments, factor screening experiments, principles of
seeding, and other important issues in simulation
experimentation. The impact of all this work on ex-
perimentation with complex computer simulation models
is that such a project could require prohibitive
amounts of computer time and demand a considerable
share of available computer resources, and yet only
provide meaningful results at the very end of an
arduous experimental process.

The availability of low-cost microcomputers, and the
capability to network them, gives us a much more
powerful and efficient approach to this type of pro-
blem. What is needed is a systematic means of assign-
ing computer experiments to a network of microcompu-
ters in such a way that the statistical and optimiza-
tion studies are vested with selected microcomputers
while others are performing various assigned simula-
tion tasks. There are many ways this system of work
can be carried out, but this paper presents one way
which takes advantage of a natural trichotomy preva-
lent in simulation modeling, that of establishing
separate model, experimental and output subsystems
within the simulation framework.

CONFIGURATIONS -OF NETWORKS

There are several natural structures in which Tow-
cost microcomputers can be arranged. For one, we can
distinguish between logical structures and physical
structures. Logical structures arrange similar pro-
cessors into configurations which allow certain kinds
of functions to be managed most efficiently. Physi-
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cal structures are those in which the components of a
processor are arranged for the most efficient opera-
tion of that processor itself. Thus, physical struc-
tures can be embedded within Togical structures.

Harrison [7] describes three principal logical struc-
tures, as illustrated in Figure 1:

e Master-Slave

One computer is given the responsibility of over-
seeing and directing the activities of all other
computers (slaves) in the network. The master com-
puter assigns the tasks, provides load-sharing, and
coordinates control of the subordinate computers.

¢ Hierarchical

A multi-Tevel master-slave structure becomes a

hierarchical configuration. In this arrangement,
processors in each Tevel have varying degrees of
responsibility, with the degree of responsibility
increasing at each higher level in the hierarchy.

e Peer-Connected

When no computer possesses power or precedence over
another computer, they are said to be peer connec-
ted. In this case, the operating system must pro-
vide some type of scheduling algorithm by which
work is distributed among the various processors.

Another method of classifying computer networks is the
physical or communications structure of the network.
Depain and Patterson [4] distinguish among five differ-
ent types of physical structures in multi-processor
organization:

e Multi-processor bus with shared memory

e Crossbar switch

¢ n-Dimensional cube

o Nearest neighbor connected arrays

o Cluster-bus
Figure 2 gives a schematic diagram of each of these
organizations. Deitel [3] gives a detailed comparison
of the features, advantages and disadvantages of these
physical configurations.
One of the most appealing structures from the stand-
point of computer simulation is the hierarchical con-

figuration, especially the binary tree configuration
illustrated in Figure 3. The advantage of this struc-

<ture for computer simulation is that it allows the

upper levels in the tree to be assigned the statisti-
cal, optimization, and executive functions associated
with simulation, while allowing the more hichly popu-
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lated Tower levels to actually perform simulation tri-
als under varying input conditions. For this struc-
ture to function optimally, it would be useful to have
a systematic mechanism for assigning models or sub-
models, or specific sets of experiments, to given
levels of nodes in the tree. Rozenblit [12] describes
a top-down decomposition of the experimental frames in
simulation that has elements that will be exploited
here.

ASSIGNING COMPUTER SIMULATION TASKS

Various schemes have been put forth for assigning com-
puter tasks to the nodes in a hierarchical network.
Comfort and Miller [2] proposed task-dependent parti-
tioning, in which functions are identified that are
common to most computer simulations and these functions
are assigned to specific processors in the network. The
authors divided simulation tasks into five main cate-
gories:

e Event set processing

e Random number generation

¢ General simulation executive overhead

o Task dependent computations

e Input/Output processing

Comfort and Miller [2] found by analyzing a number of
large simulation runs that event-set processing was
performed 35 percent of the time, random number genera-
tion 3 percent, general simulation overhead 42 percent,
and task-dependent computations 20 percent (I/0 was
ignored). The authors singled out event-set partition-
ing to be performed independently, setting up Motorola
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M68000 processors to host specific sets of events.
They were able to reduce waiting time in queue for
events to be processed to only 8 percent of the single-
processor mode of operation. Thus, multi-processor
configurations based on event-set partitioning offer
one, highly efficient means of gaining time savings in
complex simulations.

Yet another concept for partitioning simulation rests
oh the system concepts of Oren and Ziegler [10]. These
authors decompose simulation into six primary elements:

o Model structure

o Model outputs

Input scheduling
Initialization of the simulation

& Termination of the simulation

o Collection of simulated data

Oren and Ziegler go on to formalize a trichotomous
approach to simulation modeling which consists of es-
tablishing three distinct "frames" - a model frame, an
experimental frame, and an output frame.

Pegden went further, in developing the SIMAN simula-
tion language [11], by formally incorporating the model
frame/experimental-frame/output-frame trichotomy into
the SIMAN program structure. Figure 4 shows the rela-
tionship of these three frames in the execution of a
SIMAN model of a system. The essential aspect of sim-
ulation experimentation following a SIMAN-Tike model-
ing approach is that real-world systems possessing
different physical configurations, or systems possess-
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FIGURE 3. BINARY TREE NETWORK OF MICROCOMPUTERS

ing different physical functions, must be "remodeled"
by altering the model frame. However, when the model-
er desires only to evaluate the behaviour of a system
under different operating conditions, this can be
managed by simply providing different data sets in the
experimental frame and leaving the model frame unal-
tered. The output frame, generated by a simulation
trial at a particular combination of model and experi-
ment frames, can be coupled with selected statistical
and optimization software modules to analyze the out-
put generated by several simulation trials. This
feature of SIMAN will be invoked in proposing a sys-
tematic approach to assigning simulation tasks to a
binary tree or X-tree network of low-cost microcompu-
ters.

A NETWORK SIMULATION CONCEPT

The simulation approach proposed here is founded on
the following features:

e Binary Tree or X-Tree Networks

¢ Model-Frame/Experiment-Frame/Output-Frame
Simulation Structure

The binary tree network configuration was described
earlier and is depicted in Figure 3. The X-tree is

a minor logical variant of the binary tree in which
there also exists peer communication with the sibling
nodes to the Teft and right of a given node. Thus, a
node beneath the topmost or "principal” node in an
X-tree possesses the capability to communicate with
the five following nodes:

e Parent node - immediately above in the network

o Children nodes - the two nodes immediately
beneath

¢ Sibling nodes - the two nodes immediately left
and right.

The X-tree is illustrated in Figure 5.
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The second feature upon which the proposed concept
rests is that of the model-frame/experimental-frame/
output-frame trichotomy. In general, the several
distinct model frames and their associated experimen-
tal frames will occupy the Tower levels of the tree,
with statistical and optimization functions accomplish-
ed at the upper levels. Executive control, including
automatic assignment of particular combinations of
model and experiment frames to nodes in the tree,
selection of specific seeding rules for variance reduc-
tion, and the application of rules for the routing of
files and data from one node in the network to another,
is performed by the principal node which is situated
at the apex of the tree.

For example, consider the case of a SIMAN simulation
model of automobile manufacturing. Fernandes [6] de-
sired to evaluate two different configurations of a
Japanese automobile manufacturing system, and the two
corresponding variations of a U.S. automobile manu-
facturing system. Because the U.S. and Japanese sys-
tems were substantially different, a total of four
model frames were required to achieve the desired
comparison. Moreover, suppose that three sets of ex-
perimental conditions were to be evaluated for each
different model frame. One way to organize these
simulation tasks within a binary tree network is shown
in Figure 6. The tree requires fouy Tevels, totaling
15 separate nodes or microcomputers. Because each of
the different experimental frames requires an entire
SIMAN model, each of the four nodes on level 3 and the
eight nodes on Tevel 4 would need a 16-bit micropro-
cessor with at least 256K of addressable memory to
accommodate a SIMAN model frame with its associated
experimental frame. Thus, the function of the two
nodes on level 2 is to execute the statistical analy-
sis of the output frames generated by themodel/experi-
ment frames simulated on the nodes beneath. Node 1
(Tevel 1) is used for the overall optimization of the
system, as well as any executive functions needed for
the simulation study. The following section describes
how simulation trials can be assigned to the nodes
(microcomputers in a binary tree or X-tree.
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EXPERIMENTATION ON A BINARY TREE Table 1
. Microcomputer Node Availability
Consider the binary tree shown in Figure 3. The pri- in a Binary Tree

mary node is denoted as node 1, and is located on
level 1. Lower levels are numbered from 2 to m, and

nodes are numbered from 1 to M, where o L L L L L L L L L e e e e L L D df e e
_om Level, k No. of Nodes on Total Nodes,
MoE -t W T on_Level k, 201 2k-1
For example, the number of nodes in a binary tree
having levels 1, 2 and 3 would be 7. 1 1 1
2 2 3
The number of different sets of experimental condi- 3 4 7
tions that can be evaluated simultanecusly in a binary 4 8 15
tree having m levels is M in equation (1) above. 5 16 31
Therefore, our task is to define a binary subtree 6 32 63
within the binary tree which possesses the requisite - - - - & - o 0 0 0 o o L L 0 L L L Lol Dao oo
number of nodes on which to place the needed simula- Note: the typical configuration of each processor node
tion trials. in such a network would be a 16-bit CPU, 256K of
addressable memory, and a separate processor to route
Table 1 below gives a summary of the number of levels communications to other nodes and peripherals.
and nodes available in binary trees or subtrees. It
remains to allocate the needed experimental trials to
the appropriate subtree and perform the simulation VARIANCE REDUCTION
trials there. It should be noted that each node in
the subtree will execute the same model frame, but One of the important statistical issues in simulation
with a unique experimental frame. For instance, is that of variance reduction. This is achieved
suppose we have three input variables x., i=1,...,3 through appropriate selection of the random number
for which we must progose a designed exﬁeriment. If stream associated with the simulation. The simulation
we wish to employ a 23 factorial design, we need & model will contain a suitable random number generator
nodes. As seen in Table 1, we must use Tevels 1 which will be common to all experimental frames as well.
through 4 for a total of 15 nodes, with the uppermost Unique random number streams can be obtained through
nodes serving as statistical and optimization func- the choice of the initial random number seed. There
tions. If, however, we are willing to eliminate one are three approaches to variance reduction through
of the 8 design points, we can easily fit the 7 remain- random number stream control:
ing simulation trials on a subtree possessing exactly
7 nodes. If we choose to delete the design point o Randomly selected random number streams at each ex-
which gives the three-factor interaction effect (which perimental point, with the only stipulation that a
we would very Tikely have difficulty explaining in any given stream is not repeated at any other experi-
case) we would be able to gain the requisite informa- mental point.
tion about the system being modeled with a minimum
number of simulation trials, and hence employ the e Common random number streams, so that each experi-
minimum number of microcomputers. mental point sees precisely the same series of ran-

dom numbers.
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e Antithetic streams, in which one experimental point
sees the stream R = (rq,r5,e..,) wh11e another ex-
perimental point sees thé stream R = (1- =Ty 1- -y,

..). Since R is uniformly distributed in the
interval 0<r<1, R is Tikewise uniformly distributed
in the same interva].

These three alternative seeding schemes have been ob-
served to have differing effects on the correlations
between responses. When two sets of random number
streams are generated using different randomly selec-
ted vectors of seeds, the resulting time series, and
hence their means, are standardly assumed to be un-
correlated. The induction of positive correlation,
and hence an increase in variance, has been substan-
tiated by both analytical and empirical investigations
(see Kleijnen [8]). The use of antithetic variates
generates negatively correlated time.series, and hence
achieves the desired variance reduction.

Although this paper does not propose a specific choice
of seeding mechanism, we do point out that Schruben
and Margolin [13] have shown that antithetic variates
are especially useful when conducting a designed ex~
periment with a simulation model. These authors
suggest that a designed experiment be broken into two
blocks, with block 1 using the set of streams Ry

.+.sR, ., where there are k experimental points in eagh
b]ock Block 2 would then ut111ze the corresponding
antithetic streams'R R Kleijnen [9] dis-
cusses the format1on of g1ocks &n simulation experi-
ments. Wilson [16] also discusses the relationship
of antithetic variates to multivariable simulation
inputs.

Perhaps the best way to utilize variance reduction via
antithetic variates when simulating on a hierarchical
network of microcomputers is to conduct successive
runs on the same processor with the antithetic random
number streams, since both the model frame and the
experimental frame are exactly the same from the first
run to the second. Only the random number streams

(R and 1-R) will be different.

OPTIMIZATION EXPERIMENTS

The optimization of a simulated system is approached
by employing response surface designs in the same
manner described by Biles and Swain [1]. The requi-
site number of experimental points, each with its
selected random number stream, are assigned to a sub-
tree of the network. A higher-Tevel node is employed
to perform the mathematical analysis associated with
the optimization. Biles and Swain describe several
optimization approaches which can be taken in a com-
plex simulation experiment. Any of these approaches
can be adapted to the binary tree network of micro-
computers. The concepts of Fedorov [5] are applica-
ble to se1ect1ng values of the input variables

X (x » i=l,...,0) so that simulation experiments can
be dep1oyed opt1ma11y

FACTOR SCREENING EXPERIMENTS

A precursor to optimization studies in simulation is
that of factor-screening studies. Given a set of n
input variables which are hypothesized to exert an
influence on the simulation output, we seek to isolate
the k most important factors. Smith and Mauro [14]
describe several types of experimental designs which
can be used in carrying out factor screening experi-
ments. These experiments can be assigned to the Tower-
level nodes in a binary tree or X-tree configuration
of microcomputers, with upper-level nodes used to per-
form the requisite statistical tests used to select
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the most influential input variables. Then a second
phase of experiments can be conducted to carry out the
optimization studies.

SUMMARY AND CONCLUSIONS

Distributed simulation is a rapidly evolving area of
computer technology. With hierarchical networks of
Tow-cost microcomputers a modern reality, strategies
for conducting complex simulations on such networks
are essential for continued development in this field.
This paper has described a technique that utilizes
commercially available, Tow-cost microcomputer hard-
ware and software arranged in binary trees. Other
structures are feasible and, for some simulations,
preferred. For instance, in astro- or plasma physics
simulations a 4x4x4 cubic grid of 64 processors can
be employed, with each processor assigned a specific
grid point and passing results to each other processor
in the cube.

The present discussion assumes that each node in a
binary tree possesses an entire model frame. It would
also be feasible to partition a complex model into
subsets, with data communicated between nodes as
necessary during progress of the simulation. The
automobile manufacturing models by Fernandes [6] ex~
ploited this capability.
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