Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G. Blais, S. Solomon (eds.)

COMPUTER PERFORMANCE EVALUATION WITH GIST: A TOOL FOR SPECIFYING
EXTENDED QUEUEING NETWORK MODELS

J.B., Sinclair
K.A. Doshi
S. Madala

Department of Electrical and Computer Engineering
Rice University
Houston, TX 77521-1892

ABSTRACT
GIST (Graphical Input Simulation Tool) is a
powerful and user—friendly performance evaluation
tool for the specification and simulation of

Extended Queuneing Network models of computer and
other systems., It includes a nuwmber of modeling

abstractions for active and passive resource
mana gement, job creation and destruction,
synchronization, routing, and statistics
collection. Two interfaces are provided: a

graphical interface (GUIDE) that allows the user to
describe much of the simulation model pictorially;
and a textual interface (TIDE) that has the same
modeling capabilities but uses a menu—driven,
window-oriented approach for use on non-graphics
teminals. Object and run—time parameters in both
interfaces are specified through menus that reduce
the probability of specification—time errors. A
number of extensions planned for GIST are also
described.

1. Introduction

Simulation Tool (GIST)
the last two years is a
that allows computer
modeled as extended
evaluated through

The Graphical Input
developed at Rice over
perfomance evaluation tool
(and other) systems to
queueing networks (EQNs)
discrete event simulation. The tool has several
unique features, both in its modeling capabilities
and in the wuser interfaces, that distinguish it
from other efforts with similar objectives. The
sof tware packa ge that comprises the tool is
continually evolving, and we discuss its present
status and future directioms.

be
and

In the process of evaluating a computer system via
simulation, the system analyst coanstructs an
abstract model of the system. This model is then
translated into an appropriate computer program for
execution, often by someone who is more familiar
with the mechanics of specifying the model but who
has little or no knowledge of the system being
modeled. The separation of tasks introduces delays
and potential errors. Ideally, the analyst should
be able to work with a "smart"” tool that is easy to
use, has powerful features to permit accurate
modeling of relevant system characteristics at
appropriate levels of abstraction, and can
automatically generate the executable simulation
code from the high—-level model specification.

In GIST, EON models are specified as a mnetwork of
objects drawn from a set of predefined object
types. The major parts of GIST are: (1) two wuser
interfaces a graphics—oriented interface and a
textual, dialogue-oriented interface — that accept

290

2.

specifications from the user, (2) a translator that
generates source code for a simulation compiler,
and (3) a library of object routines modeling the
various object types (Fig., 1). GIST is based on
CSIM, a package that provides runtime support
environment for discrete event simulation[1]. At
present, the graphics interface is implemented on
the Macintosh personal computer. The textual input
intexface allows model specification through an
interactive dialogue editor on non—-graphics
terminals.

GIST is an example of a transactions—oriented
modeling tool, in that the model is specified as a
collection of instances of predefined object types
whigh interact with one another through jobs which
are routed from one object instance to another.
Othér examples of transactions—oriented modeling
and analysis or simulation tools for computer
systems are RESQUE[2], GNA[3, 4], STEP-1[5],
QNAP2[6], OOPE{7], 3LI[8], SNAP[9], SuperNet[10],
PANACEA[11], PERFORMS[12], BEST/1[13], NUMAS[14],
the Performance Analyst’s Workbench System
(PAWS)[15], PLANS[16], and the Performance Analysis

Workstation[17]. Graphics interfaces for model
specification and/or result display have been
considered for or implemented in several systems,

including RESQUE[18], PAWS[19], NUMAS[14], and the
Perfomance Analysis Workstation[17]. A brief
survey of most of these tools can be fownd in [20].

User Intexfaces

Users can specify an EQN model for & computer
system through either a graphical interface or a

textual interface. Conceptually both interfaces
provide the same capabilities, i.e, the ability to
specify the topology of a model and to define and
edit parameters associated with each object.

The Graphical User Interface and Dialogue Editor
(GUIDE) allows nusers to assemble EQN models
graphically from elements of a set of icons
repre senting the various object types,
interconnected by routing paths. Users can define
or edit object-specific parameters through the use
of "dialogue’ windows.

GUIDE runs on a 512K Macintosh computer. It
resembles a typical application program on the

Macintosh in its use of the window enviromment,
mouse input, and pull-down menus. GUIDE runs
standalone; no host computer is needed during the
specification process. This reduces the load on

the mainframe that executes the simulation. GUIDE
produces a file containing the EQN model
specifications, which is transferred to the host

for processing by the translator.

Computer Performance Evaluation with GIST: A Tool for Specifying Extended Queueing Network Models

The Textual Interface and Dialogue Editor (TIDE) is
provided as an alternative when a Macintosh is

unavailable. It runs on a Unix-based system and is
intended to be wused with a VI100 or equivalent
terminal. TIDE uses the CURSES windowing 1library

routines[21] for efficient screen management.

The wuser is guided through a series of
hierarchically structured menus. A unique feature
of this interface is that, unlike the dialogue

interfaces for some performance evaluation tools,
interaction is menu-driven and conducted via
overlapping ‘'windows’ on the screen. This gives
the user an improved sense of perspective about the
current context of the specification process. The
output of TXDE is also a specifications file to be

processed by the translator.

3. GIST Objects

A GIST model is constructed of a number of objects,
each object of a predefined object type. Jobs are
modeled by ""job—processes' in CSIM. A visit by a

job to an object is modeled by the coxresponding
job-process invoking the CSIM 1library object
routine associated with that object. Each job
belongs to a jobeclass, and activity at the various
object types is often jobclass—dependent. A list
of GIST object types, organized based on the
modeling capabilities that the object types

provide, is presented below.

3.1. Management of active resources

Queueing network models are typically wused to
evaluate performance of systems with a limited
number of service facilities, A service facility
is, in abstract, a resource foxr which jobs may
contend —— a resource that is actively engaged in
providing a service, and is termed an active
resource. A job can be assigned only one active
resource at a time. Active resources are modeled
by SERVER or QSERVER objects.

Contention between jobs for entry to SERVER objects
is modeled by QUBUE objects. GIST differs from
other simulation packages in that it allows the
separation of the two activities of waiting for and
receiving service with the two object types QUEUE
and SERVER. With certain restrictions, it pemmits
interconnections of a number of QUEUEs with a
number of SERVERs to allow straightforward and
intuitive specification of complex systems. When
this flexibility is not needed, active resource
contention can be modeled with QSERVER objects.

QUEUE, SERVER

SERVER objects rxepresent service facilities
(CPUs, I/0 channels, controllers, etc.) in a
system. QUEUE objects model contention for
these sexvice facilities. Jobs join a QUEUE
object, and wait there until assigned a SERVER
object. Jobs at a QUEUE object conform to
that object’'s queueing discipline, a policy
which determines the order in which jobs
become eligible to leave the object.

User—specified selection =rules control the
routing of jobs between QUEUE and SERVER
objects. The selection rules specify (a) how

a QUEUE object selects one of a number of
SERVER objects to which it can xoute a job,

291

and (b) how a SERVER object selects one of a
number of QUEUE objects that can route a job

to the SERVER object. Selection rules are
probability~based or priority-based. If
priority-based selection =rules are specified

for both a QUEUE and any of its associated
SERVERs, preference conflicts axe possible.
GIST uses a stable—pair resolution scheme

assign SERVERS to QUEUES when this occurs.

GIST presently supports four queueing
disciplines: First Come First Served (FCFS),
Last Come First Served (LCFS), Last Come First
Sexrved with Preemptive Resume (LCFSPR), and
Proce ssor—Sharing (PS). Within FCFS, LCFS,
and LCFSPR, it is possible to define a
jobclass-based priority scheme. GIST also
allows priority-based preemption, but at the
expense of considerable computational
overhead.

Queue length and waiting time statistics are
available at QUEUE objects; SERVER objects can
collect utilization statisties.

QSERVER

A QSERVER object in GIST is equivalent to a
queue in a traditional queueing network model.
It is an object where both the queueing and
service functions are performed. QSERVERS are
computationally more economical than separate
QUEUE and SERVER objects. In the current
implementation, a QSERVER object has an FCFS
queuveing discipline. Other common disciplines
will be added in the future. The wuser
specifies omne of several service time
distribution functions. A QSERVER object can
collect statistics on queue length, waiting
time, and utilization.

3.2. Management of passive resources

In modeling computer systems, we frequently need to
describe the ability of a job (a task or process)

to acquire some types of resources and continue to
hold them even when mew resources are acquired. An
example is the need for a process to acquire a

partition of primary memory before it can receive
service by a CPU. These kinds of resources, called
passive resomrces, cannot be described by SERVER or

QSERVER objects. Acquisition and release of
passive resources takes place at ALLOCATE and
DEALLOCATE objects, respectively. CREATE and
DESTROY objects can be used to vary the total

quantity of a nom—conservative resource.
ALLOCATE

An ALLOCATE object assigns units of a specific
passive resource. Jobs request resources in
integer amounts according to jobclass—
dependent distributions. When a request from
a job cannot be satisfied immediately due to
an insufficient amomnt of the resource, the
job is delayed until the request is serviced.
An ALLOCATE object is characterized by an
allocation policy and a resource reque st
distribution for each jobelass. The
allocation policy may ©be First Come First
Served (FCFS), First Fit, or FCFS with a
jobclass-based priority. Statistics on the
number of waiting jobs and waiting time for
each jobclass and the gquantity of resource

J.B. Sinclair, K.A. Doshi, S. Madala

allocated are available at an ALLOCATE object.

DEALLOCATE

All uwnits of a specific
visiting jobs are
the pool of available resources.

resource held by
reclaimed and returned to
A DEALLOCATE

object can collect statistics on the gquantity
of resource released.

CREATE
When jobs visit a CREATE object, an integer
amount of a particular passive resource is
produced. The amount of resource created is
in accordance with a user—defined
distribution., A CREATE object can collect
statistics on the quantity of resource
created.

DESTROY

All the units of a specific resource held by
visiting jobs are deallocated, but they are

not returned to the pool of available
IeSOUrces. A DESTROY object can collect
statistics on the quantity of re source
destroyed.

3.3. Arrivals and departures in open networks
Another essential feature for a computer system
evaluation tool is the ability to model the arrival
and departure of jobs. EQN models incorporating
this feature are called open networks. Jobs are
spontaneously generated ("arrive” from an external
source), and may subsequently be destroyed
(*depart”). Mechanisms necessary for simulation of
an open network model are available through SOURCE
and SINK objects.

SOURCE

A SOURCE object creates jobs of a specific
jobclass. The creation of jobs can depend on
a user—defined condition, or jobs can be
created at intervals determined by an inter-—
generation time distribution specified by the
user. A SOURCE object can collect statistics
on the number of jobs created and the inter—
generation time.

A job reaching a SINK object is removed from
the network. A SINK object does not reclaim
any passive resources that may have been
committed to a job in the course of
simulation. A job is expected to explicitly
deallocate or destroy any passive resource it
holds, before entering a SINK,

3.4. Concurrency and Synchronization

Two object types, FORK and JOIN, can be used to

model concurrent job activities, with or without
synchronization. When a job visits a FORK object,
a new job is created. If the created job is

specified to be a child of the creator job, then a
JOIN object can be used to mexge the two jobs at a
later time, resulting in the termination of the

child job. This feature permits representation of
nested synchronization. It is also possible to
model parallelism without synchronization by

292

creating peer jobs at FORK objects.
FORE

A FORK object creates a new job when a job of
a specific jobclass visits it. The new job is
defined to be either a child or a peer job inmn
relation to the visiting {creator) job. The
created job can have a jobclass different from
that of the creator job.

A peer job is completely independent, with no
relation between it and the creator job. A
child job may eventually meet its creator or
parent job at a JOIN object and terminate. It
is possible, furthermore, for the new job to

visit a FORK object and create a child or a
peer job. When child jobs create their own
child jobs, a hierarchy of jobs results. By
employing a corresponding hierarchy of JOIN
objects, a user can model nested
synchronization. A FORK object makes
available statistics on the number of jobs
created.

JOIN

When a job with child jobs reaches a JOIN
object, it waits there until its most recent

non—-terminated child job arrives at the same
JOIN. If it has a parent, it waits for the
parent to arrive and then terminates. When

the child job is terminated, the parent job is
released to continue through the network.
Jobs that have no child or parent jobs are
unaffected by visits to JOIN objects and are
not delayed. Statistics on waiting time can
be collected at a JOIN object.

3.5. Routing specification

As jobs are routed through a computer system,
decisions must be made as to the order in which
they visit the various parts of the system. One
approach to incorporating routing policies into an
BQN model is to make the routing policy a part of
the specification for each object. GIST uses an
alternative approach, which is to allow most object
types to have at most one output. Route selections
are performed by SWITCH objects.

SWITCH

GIST allows specification of ome mext—object
(the object to which jobs can be routed from
the current object) for every object type
except QUEUE, SWIFCH, and SINK., The next-
object can be a SWITGI, where a routing
decision is made. The routing decision made
at a SWITOH object can be based on a condition
evaluation, a random selection, or a static,
jobclass—based routing specification.

In a condition-based
choice of next-object has an associated
boolean expression, which, if evaluates to
TRUE, will cause that choice to be taken. The
expressions are evaluated in a specified
order. Also, jobs are routed to a "default”
next—object if mnone of the expressions
evaluate to TRUE. For random selections, each
choice of next—object has an associated
probability. In the jobclass—based policy,
for each jobclass, there is exactly ome mnext-
object to which jobs can be routed. It is

routing policy, each

Computer Performance Evaluation with GIST: A Tool for Specifying Extended Queueing Network Models

possible to perform complex job routing by
cascading SWITCH objects. A SWIICH object

does mnot delay the jobs that visit it.
Statistics on the number of jobs routed to
each next—object can be collected at a SWITCH
object.
3.6. Network—-wide statistics collection
Statistics may relate to actions at a specific
object or to global behavior. Mechanisms for

collecting object—specific statistics are available

for most object types. ¥When the statistics of
interest are not local to a single object, the
object type PROBE can be used to collect data on
specific jobs or jobclasses.
PROBE
A PROBE object collects user—specified
statistics from visiting jobs. Jobs are
unaffected by visits to PROBE objects. The

statistics that «can be collected at a PROBE,
on a jobeclass basis, are inter—arrival times,
nmmber of arrivals, transit time between an
object and the PROBE object, and number of
visits by a job to a specific object between
visits to the PROBE object.

4. GUIDE

GUIDE is written in the C language, wusing the
Stanford University Mac C (swmacc) development
software[22]. It is tailored to the Macintosh and
presently is not portable to other

computers/graphics terminals. Users familiar with
typical Macintosh application programs can learn to
use GUIDE in a few minutes.

The software for GUIDE
paxts, the graphical

can be divided into two
input package and a set of
specification routines. The input package allows
the wuser to create a graphical representation of
the network topology, i.e., the objects and their
interconnections. It also handles all generic
system functions such as saving partial or complete
specification files, and opening existing files.
The specification routines allow the object—
specific data for individual objects to be entered
through windows tailored to each object type.

GUIDE presents the user with a set of menus,
working window and an options window (Fig. 2), The
working window is the <region of the screen
displaying the part of the larger work area in
which the user is currently creating the model.
The work area cam be scrolled horizontally and
vertically in the working window to help in
specifying large models. The options window
contains graphical representations (icons) for each
object type available in GIST, as well as an
interconnect option.

a

There are seven pull-down menus.
found

The apple menun is
in other most Macintosh applications and is

not directly relevant to the interface, but has
been provided to maintain consistency. The file
menu lets a user open a new file, open an existing
file, close the current file, save the current
specifications in a file, save the current
specifications in a different file, revert back to

the last saved version of the specifications, check
for partial correctmess of the specifications, and

293

quit the program.

The edit menu allows a user to
interconnections.

delete objects or
It also permits items to be cut,
copied, or pasted, although these features
presently work only with concurrent mini-
applications ("desk accessories”) that are invoked
via the apple menu.

The help menu (currently unimplemented) is used to
invoke on-line help. The specify menu lets users
specify initial jobs, run—time parameters, and
initial quantities of passive resources. In
addition, it lets the user viey information about
job classes and objects. The transfer menu permits
the user to quit GUIDE and start another
application program relatively quickly. The debug
menu is used only for debugging the interface
software. It contains items for displaying error
messages and internal data structures.

S.

An Example of Model Specification Using GUIDE

Consider a2 computer system where jobs arrive from
the external world, receive service from the CPU,
and depart. This system can be modeled wusing the
GIST objects SOURCE, QSERVER and SINK. The SOURCE
object models the arrival of new jobs and the
QSERVER models the CPU. The SINK object models the
departure of jobs from the system by removing them
from the mnetwork. A PROBE object is used between
the QSERVER and the SINK to collect statistics.

GUIDE allows an object type to be selected by
positioning the curser over the appropriate icon in
the options window and clicking (a single
push/release of the mouse button). The user
creates a mnew instance of an object type by
dragging the selected object icon to the desired
position within the working window.

Interconnecting two objects in the working window
is naccomplished wusing the interconnect option in
the options window. The user clicks first on the
source dicon amnd then on the destination iconm.
During this process an "elastic” line anchored at
the source object tracks the motiom of the cursor.
Interconnections with more than one line segment
can also be specified by clicking in succession on

the source icon, intermediate points that define
the 1line segments, and the destination icon. The
completed EQN model diagram for this example
appears in Fig. 3.

The specifications for each object are entered
through a dialogue window. Double clicking an
object icon causes the dialogue window to appear.
For example, double clicking on the SOURCE icon

brings up the SOURCE specification dialogue window
in Fig. 4, This window contains text boxes for
specifying the name of the object and the class of
jobs that are created by this SOURCE, and,
optionally, boxes for distribution parameters.
Other items in the dialogue window include "check"”
items to specify the statistics that can be
collected at this SOURCE, and OK and CANCEL
buttons. Clicking on the OK button confirms the
specifications given for the object and causes the
dialogue window to disappear. The effect of
clicking the CANCEL button is to undo all changes
made to the object’s specification and retura to
the working window. The QSERVER and PROBE objects
can be similarly specified. No dialogne window is
necessary for the SINK object.

J.B. Sinclair, K.A. Doshi, S. Madala

The user enters run—time parameters such as the
length of the simulation (in simulated time)
through another dialogue window which is invoked by
selecting the "Run Parameters” item in the specify

menu, We can also specify at this point that the
simulation is to produce a trace of events, by
clicking on the Event trace check box in that

dialogue window. The model specification is now
complete and can be saved in a file to be later
transmitted to the host camputer for processing by
the translator. .

6. TIDE

TIDE accepts model specifications on character—
oriented terminals[23]. It offers to the user a
consistent set of mechanisms that are collectively
easy and intuitive to use. The user can add new
objects or delete previously defined objects and
can view or edit the specification of attributes of
any object in the model. Attribute specification
can be donme in any desired order, and partial
specifications from an editing session can be
saved. The available altermatives at any point in
an editing session appear as a menu. Specification
of a list of properties is frequently perfomed in
a sequence of overlapped windows on the screen.
Each of these overlapped windows appears as a part
of the window within which specification of the
object attributes begins. The textual interface is
written using a screen updating and cursor movement
optimization package, available as the CURSES
library on Unix, making the TIDE implementation
terminal independent.

Fig. 5 presents a sample view of the terminal
screen during an editing process. An ALLOCATE
object is being specified, and at the instant
shown, a menu for "ALLOCATION POLICY” allows the

user to select ome of two policies, FCFS and FIRST
FIT. The user can discontinie the specification of
an object by scrolling the curser, up or down,
until it is past the first or the last lines in the
1ist of attributes. A new object can be added, or
the specifications for a previonsly defined object
can be edited, by selecting the appropriate option
from the menu which appears at that point.

7. Examples of GIST Models

¥e present two examples of the application of GIST
to performance evaluation of computer systems. The
first example illustrates the capabilities to model
(a) condition-based process creation, (b) routing
based on different policies, and (c) contention for
passive resources. The second example demonstrates

the utility of separation of QUEUE and SERVER
objects.

7.1, 1, Nemory management

Consider a computer system in which processes
dynamically acquire memory. Specifically, each
process goes through the following cycle. (1)

After activation, the process acquires a certain
amount of memory. (2) It is then placed on a 1list
of ready-to-run processes, and awaits execution at
the CPU. (3) After receiving service at the CPU,
the process may either temminate, or it may request

more memory from the system before execution can
continue. Ve assume that a process, upon
termination, does not explicitly relinquish the

294

memory it has acquired from the system. (4) The
system activates a garbage collection process
whenever the available amount of memory falls below
a certain critical value. The garbage collector is

assigned a high executiom priority over other
processes at the CPU. Some of the perforxmance
measures of interest may be the amount of time a

process spends in the system, or the frequency with
which the garbage collector is invoked.

The EQN model for this system is shown in Fig. 6.
The details of the various objects are as follows.

(1) 31 and S2 are SOURCE objects.
jobs that model wuser or system processes.
Generation of jobs at S1 is govermed by an
intergeneration—time distribution function.
S2 generates the garbage collection processes,
and is condition-based. S2 also collects the
statistics on intergeneration time, from which
the frequency of garbage collection process
can be determined. The GIST state variables
used in formulating the condition under which
a garbage collection process is created at 82
are the statistics collected at the PROBE and
CREATE objects in the model, as explained
below.

S% creates the

(2) Al and A2 are ALLOCATE
of memory by
allocation of a

objects.

Acqui sition
modeled by
at these

objects.
processes is
passive resource

(3) D is a DESTROY object. Since a process does
not explicitly relinquish the memory it holds
when it terminates, the system ''loses’ this
memory. This 1loss is modeled by the DESTROY
object, While it is true that the total
amount of memory in the system does not vary,
and hence that it is a conservative resource,
we find it convenient to model the temporary
unavailability of unused memory by removing it
from the system. Analogously, reclamation of
the resource can be modeled by a CREATE
object, C, that the garbage collector visits
aftexr leaving S2.

(4 CPUQ is & QUEUE object,
classes. Jobs from 82 join the
priority class at CPUQ. CPU is a
object. SW1 and SW2 are SWITCH objects.
performs a jobclass-based routing to send
garbage collector jobs to the PROBE P4, SW2
performs a probability-based routing, so that
some of the jobs may return to CPUQ for
furthexr execution.

with two priority
higher
SERVER
s

the

(5) »1, P2, P3, and P4 are PROBE
counts the number of jobs 1leaving Al. P2
counts the number of jobs routed back to the
CPU queue, CPOQ. The ALLOCATE objects collect
statistics on the resource allocation to the

visiting jobs. P3 counts the number of jobs

objects. P1

leaving the system along the path through the
DESTROY object D. P3 also measures the
lifetimes of the visiting jobs. D collects
statistics on the amount of resource
destroyed. P4, likewise, monitors the garbage
collector jobs that are routed to it at the
SWITCH SW1., The statistic on the amount of
resource created at € is collected at C
itself.

Computer Performance Evaluation with GIST: A Too! for Specifying Extended Queueing Network Models

It is thus clearly possible to compute the
total amount of resource allocated, created,
and destroyed in the system, and hence the
amount of resource available in the system.
This can then be used to specify the condition
for the activation of S2.

71.2. 2. Processor availability

In this example, we consider the performance of =a
shared resource multiprocessor system with
attention to rel iabil ity concerns. The
multiprocessor system consists of a number of
heterogeneous processors, each with limited,
private resources (snch as memory), and sharing

some global resources (shared memory and disks).
The computation tasks that arrive for execution are
organized into one or more groups, with possibly
different processor assignment policies followed
for each group of tasks. The decision to assign a
certain computational task to a particular
processor may be based on such considerations as
the capabilities of the particular processor, or on

the communication overhead of assigning tasks to
it. Ve assume that these factors cam be
stochastically modeled for each job group by
assigning probabilities to the event that a

particular processor is selected for the execution

of a particular job. Furthermore, the processors
are associated with certain reliability
characteristics. We can characterize the

multiprocessor system with an overall failure rate,
and each processor with an individual failure rate.

Fig. 7 shows an EQN model
system, The QUEUE

representation of this
objects JOBGL and JYOBQ2
repre sent groups of jobs. SERVER objects SERV1,
SERV2, SEBRV3 represent the processors. Jobs of a
special type model failures, and these jobs join a
third QUEUE object, FAILQ. Jobs in the FAILQ
object select each of the SERVER objects with
certain probabilities. The SERVER objects select
input QUEUE objects in a priority-based manner,
with the FAILQ selected with a higher priority than

the other two. JOB1Q and JOB2Q have the same
priority at all the SERVER objects, and are
selected equiprobably. The jobs from all the

SERVER objects are routed via a SWITCH to a PROBE
object that measures the throughputs over all the
jobs, except for those from the FAILQ QUEUE object.

Since the jobs from FAILQ have the highest priority
in server assignment, they make the servers
unavailable to the other jobs in the system. They
in effect model the unavailability of a failed
processor., It is possible to vary the
probabilities wused in selection of SERVER objects
by jobs from the two QUEUE objects JOB1Q and JOB2Q,
and to then study the resulting effect on the
overall throughput of the multiprocessox.

8. Future Directions
GIST is continually
enhance its
limitations,
of GIST has

evolving in an effort to
capabilities and to remove some of its
Experience with the present version
shown the need for additional modeling
capabilities. Planned GIST extensions include the
addition of several new object types, modification
of existing object types, and provision of job
variables and global variables.

accessible

From a user’s point of view the only

295

information that a job carries with it is its class
and its relationship, if any, to other jobs. Job
variables allow jobs to carry additional numerical
infomation that can be used in modeling systems
where 8 job maintains a state that is a function of
its history. Objects can perform actions based on
the values of job variables. A new object type
ASSIGN will allow the values of job variables to be
changed.

Explicit state informationm could be maintained for
the entire model in the form of global variables.
As in the case of job variables, permitting actions
at objects to be based on global variables which
can be modified by ASSIGNs would result in greater
modeling flexibility.

New object types being considered are ASSIGN, WAIT,
WAIT-SEMAPHORE, SIGNAL-SEMAPHORE, and DELAY. The
ASSIGN object is discussed above. The WAIT object
makes jobs wait on the values of conditions. The
WAIT-SEMAPHORE and SIGNAL-SEMAPHORE objects
directly implement the semantics of P and V
operations on a binary semaphore. A DELAY object
delays a job for an amount of time drawn from a
probability distribution, independently of any
other jobs that might be delayed at the same
object.

Modifications to existing object types being
considered include: additional queumeing disciplines
at a QSERVER; jobclass-based statistics collection
at QUEUE and SERVER; jobclass—based sexvice time
distributions at a SERVER; generalized priority
queues and additional allocation policies at an
AlLOC; variable amounts of resource to be
deallocated or destroyed at a DEALLOC or DESTROY;
creation of multiple peer or child jobs by a single
job at a FORK; and job variable~based routing at a
SWITCH.

The three most significant extensions planned for

GIST are (1) a SUBMODEL object type; (2) a USER
object type; and (3) statistics analysis. The
SUBMODEL object type is a means of encapsulating
other object types into a single object to allow
the user to coastruct hierarchical models. This
allows details to be hidden when they are not
necessary, making it easier to create and

understand large, complex models. For imstance, a
submodel composed of QUEUEs and SERVERs to model a
uniprocessor could be used in building the model of
a multiprocessor system. The SUBMODEL object will
also permit users to have libraries of previously
defined submodels that can be included in new model
specifications.

The USER object is an escape mechanism for
describing system features that cannot be
adequately modeled with the predefined object

types. A USER object semantics will be determined
by a user—supplied C procedure that is invoked by a
job~process when the job visits the object. This
runs counter to the GIST philosophy of wusing high
level abstract object types since it requires that
the user know many implementation details of how
processes invoke procedures and how the CSIM data
structures are used by the procedures.

At present, no provision exists in GIST for the
analysis and validation of simulation results.
Also, simulations are terminated either on the
basis of simulation time or a wuser—defined
condition, and not on the basis of statistics—based
stopping rules. We intend to include facilities

for confidence interval estimation

J.B. Sinclair, K.A. Doshi, S.

and sequential

stopping rules based on these estimates.

[1]

[2]

[3]

[41

5]

[61

[7]

[81

[9]

[10]

[11]

[12]

[13]

REFERENCES

R.G. Covington, *"CSIM: An Efficient
Implementation of a Discrete Event Simulator,”
M.S. Thesis, Department of Electrical and
Computer Engineering, Rice University,
Houston, TX 77251-1892 (April 1985).

C.H, Sauer, E.A, MacNair, and J.F. Kurose,
"The Research Queueing Package Version 2:
Introduction and Examples,” RA 138, IBM T.J.
Watson Research Center, Yorktown Heights, NY
(April 1982).

W. Whitt, "The
BSTT €2(9, Part 1),
1983).

¥W. Whitt, "Perfomance of the Quemeing Network
Analyzer,” BSTY 62(9, Part 1), pp.2817-2843
(November 1983).

A.K. Agrawala, S.K, Tripathi, M. Abrams, K.K.
Ramakrishnan, M. Singhal, and S.H. Son,
"STEP-1: A User Friendly Performance Analysis
Tool,” Proc. International Conference on
Modelling Techniques and Yools for Performance
Analysis, Paris (May 1984).

M. Veran and D. Potier, "GNAP2: A Portable
Environment for Queueing Systems Modelling,”
Proc. International Conference on Modelling
Techniques and Tools for Performance Analysis,
Paris (May 1984).

H. Beilner and J. Maeter,
Presence and Future,” Proc. International
Conference on Modelling Techniques and Tools
for Performance Analysis, Paris (May 1984).

A. Brandwajn, "Issues in Mainframe System
Modelling - Lessons from Model Development at
Amdahl,” Proc. International Conference on
Modelling Techniques and Tools for Performance
Analysis, Paris (May 1984).

M. Booyens, P.S. Kritzinger, A. Krzesinski, P.
Teunissen, and S. van Wyk, "SNAP: An Analytic
Multiclass Queueing Network Analyser,’” Proc.
International Conference on Modelling
Techniques and Tools for Performance Analysis,
Paris (May 1984).

S.C. Bruell, G. Balbo,

Queueing Network Analyzer,”
pp.2779-2815 (November

*QOPE: Past,

S. Ghanta, and P.V.

Afshari, *“A Mean Value Analysis Based Package
for the Solution of Product—-Form Queueing
Ne twork Models,"” Proc. International

Conference on Modelling Technigues and Tools
for Performance Analysis, Paris (May 1984).

K.G. Ramakrishnan and D, Mitra, "An Overview
of PANACEA, a Software Package for Analyzing
Markovian Queueing Networks, ” BSTJ €1(10, Part
1), pp.2849-2872 (December 1982).

I. Kino and S. Morita, "PERFORMS - A Support
System for Computer System Perfommance
Evaluation,” Proc. International Conference on
Modelling Techniques and Tools for Performance
Analysis, Paris (May 1984).

J. Buzen, "BEST/1 ~ Design of a Tool for
Computer System Capacity Plamming,” Proc. 1978
AFIPS National Computer Conference 47,
pp.447-455 (1978).

296

[14]

[15]

[16]

[171

[18]

[19]

[201

[21]

[221]

[231

Madala

B. Mueller, ""NUMAS: A Tool for the Numerical
Modelling of Computer Systems,” Proc.
International Conference on Modelling

Techniques and Tools for Performance Analysis,
Paris (May 1984).

PA¥S — Performance Analyst’s Workbench System:
INTRODUCT ION AND TE CHNICAL SUMMARY,
Information Research Associates, Austin, TX
(July 1983).

T. Nishida, M. Murata, H. Miyahara, and K.
Takashima, “PLANS: Modelling and Simulation
System for LAN,” Proc. International
Conference on Modelling Techniques and Tools
for Performance Analysis, Paris (May 1984),

B. Melamed and R.J.T. Morris, "Visual
Simulation: The Performance Analysis
Workstation,” Computer, (to appear) (1985).

A. Blum, E.A. MacNair, and C.H. Sauver, "The
Research Queueing Package: Graphics
Developments,” RC 9513, IBM T.J. VWatson

Research Center, Yorktown Heights, NY (August

1982).

J.C. Browne, D. Neuse, J. Dutton, and K.-C.
Yu, "Graphical Programming for Simulation of
Computer Systems,’ Proc. 18th Annual
Simulation Symposium, pp.109-126 (March 1985).

J.B, Sinclair, K.A. Doshi, and 8. Madala,
"GIST: The Graphical Input Simulation Tool,"
TR 8511, Depax tme nt of Electrical and
Computer Engineering, Rice University,
Houston, TX 77251-1892 (May 1985).

K.C. Arnold,

"Screen Updating and Cursor
Movement Optimization: A Library Package,"”
Computer Science Division, De partme nt of
Electrical Engineering and Computer Science,
University of California, Berkeley.

S. Madala, "Design of a Graphical Input
Simulation Tool for Extended Queueing Network
Models,” M.S. Thesis, Department of
Electrical and Computer Engineering, Rice
University, Houston, TX 77251-1892 (April
1985).

K.A. Doshi,
Modeling,"”
Electrical
University,
1985) .

"Extended Queueing Network
M. S. Thesis, De par tment of
and Computer Engineering, Rice

Houston, TX 77251-1892 (April

Computer Performance Evaluation with GIST: A Tool for Specifying Extended Queueing Network Models

Dialog/Menu
driven Interface

Graphical
Interface

Translator

e 8 €SIM library

Executable
Simulation
Model

Report
Generator

Figure 1. Organization and Components of GiST

Pull-down menus

‘% Fite Edit

Help Speclfy Transfer ﬂebug‘

I EIEDICIE] -
ZIREIRI Y

El

4

Options window

Working window

Figure 2, GUIDE windows and menus,

Templates for
Object procedures

297

" & flle Edit Help JTTIXTR Yranster Debug

Run patameters
Passive rasource:

object
Job classes

O
@
5
- O—II0—0—®
>
@
SH

Eigure 3. ftodel diagram,

€ File Edit Help Specify Transfer Oebug

D» Source Object

O] [name [estch souree]
O +@ Job class :hutch class l
i i Generation @ Parametric QO Conditional
NPT
»Q: 'f>' Bistribution @ Exuponential O Uniform
[|| rorometers [T
WSk

Statistics inter generstion time
—_—

O Number of jobs

J.B. Sinclair, K.A. Doshi, 5. Madala

' Y
GIST |
L
" ALLOCATE | 1.FCFS
"3 NAME OF aLLocATE| 2 FIRSTFIT
g NEXT OBJECT NAME
o ~ ALLOCATION POLICY| - 2
d RESOURCE NAME
d WAIT TIME STAT :NO
RESOURCE STAT : NO
SPECIFICATIONS -
Enter option number
\ J

Figure S. TIDE: Menu-guided specification

P2 A2

(O aS
St Al P1 CPUQ CPU SWI SW2 XD P3 SINK
52 C P4 SINK
Cr—aN—

Figure 6 GIST model for example 1.

JoBQat SERV

SOURCE FAILQ ERY
C il @,

JOBO2 SERV3 PROBE

Figyre 7. GIST medel for exomple 2,

298

Computer Performance Evaluation with GIST: A Tool for Specifying Extended Queueing Network Models

299

James B. Sinclairx

J. B, Sinclair is an associate professor in the
Department of Electrical and Computer Engineering
at Rice University. He received his Ph.D. in 1978
from Rice. His research interests are computer
architecture, computer networks, distributed sys-
tems, and perfomance evaluation. He is a member
of the the AQM, IEEE, and the IEEE Computer
Society.

Department of Electrical and Computer Engineering
Rice University Houston, TX 77521-1892

Kshitij A. Doshi

K. Doshi is a graduate student in the department of
Electrical and Computer Engineering at Rice Univer—
sity. He received his M.S degree in 1985 from Rice
and his B.Tech degree in 1982 from the Indian
Institute of Technology, Bombay, India. His
research interests are in parallel processing,
architecture, and performance evaluation. He is a
member of the IEEE,

Department of Electrical and Computer Engineering
Rice University Houston, TX 77521-1892

Sridhar Madala

S. Madala is a graduate student in the department
of Electrical and Computer Engineering at Rice
University. He received his M.S in 1985 from Rice
and his B.Tech in Electrical Engineering in 1982
from the Indian Institute of Technology, Madras,
India. His research interests are in distributed
systems and simulation.

Department of Electrical and Computer Engineering
Rice University Houston, TX 77521-1892

