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ABSTRACT

In a previous paper, a heuristic technique was introduced for re-
ducing initialization bias in Monte-Carlo simulation of stationary,
infinite-capacity, Markovian queueing systems. The technique differs
from many existing methods in that, rather than relying on a statis-
tical analysis of output from preliminary simulation runs, it is based
on characteristics of the underlying theoretical model. Experimental
tresults presented earlier provide convincing evidence that use of
the heuristic yields an unbiased estimate of the steady-state ex-
pected queue length in M/M/1 systems with virtually no cost added
to the simulation. We now present results of experiments designed
to validate the technique for estimating the steady-state expected
number of customers in M/Ekl1 queueing systems.

INTRODUCTION

Most initial transient problem heuristics suggested in the literature
are based on some type of statistical analysis of output from
preliminary simulation runs. In Roth and Rutan [1], we introduced a
heuristic derived through a markedly different approach: exploiting
characteristics of the underlying theoretical queueing model in an
attempt to locate a suitable truncation point without need for prelim-
inary replications. We have provided validation results for simulating
the equilibrium expected queue length of M/M/1 queueing systems.
We now apply this technique, the relaxation time heuristic, to a
different behavior measure and a more general class of queueing
models. Specifically, we examine the performance of the relaxation
time heuristic in simulation of the steady-state expected number of
customers in M/Ek/1 systems.

RELAXATION TIME HEURISTIC

The relaxation time heuristic is a straightforward application of ap-
proximations described in Odoni and Roth [2]. In that paper, numeri-
cal solutions to stationary, infinite-capacity, Markovian queueing
systems were examined to identify general characteristics of the
manner in which these systems approach equilibrium. In particu-
lar, the authors found that transients of aggregate measures such as
the expected queue length decay over time according to one of
four patterns, dependent on initial conditions. Practically speaking,
for systems which begin at rest, decay of transient effects is initially
faster than exponential. Then, for larger values of time, it is approx-
imated well by pure exponential decay. Thus, if this dominant
exponential function can be specified, it may be used to provide an
upper bound on the length of time until the system has effectively
reached steady state.
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Odoni and Roth [2] suggest an approximation for the exponential
time constant dominant when 99% of the initial transients have
dissipated. They provide a closed-form expression for this approxi-
mate time constant, 7, which depends only on the system arrival
rate A, service rate u, and coefficients of variation of the interarrival
and service times, Cp and Cg, respectively. For M/E, /1 queueing
systems, this expression reduces to:
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As decay is initially faster than exponential, the time required for
one of the aggregate behavior measures of interest to reach 99%
of its equilibrium value may be bounded from above by pure exponen-
tial decay with rate TR- This result implies that after four time constants
the observed response variable should be within exp(-4) = 002
of its equilibrium value.

Our initial transient problem heuristic is based on the assumption
that once the response variable is within 2% of its equilibrium value,
remaining transients may be ignored. Using the approximation (1),
we delete data representative of the first 47p units of model time.

Note the simplicity of implementing this rule. Its use requires only
values of four queueing system parameters; there are no.ambiguous

" rule parameters for the user to define. Since the heuristic is based

on characteristics of the theoretical queueing model, performance
should be unaffected by design parameters of the simulation experi-
ment. We must, however, validate that bias remaining after time 4R
is, in fact, insignificant, and that this deletion interval is not too
long to be excessively wasteful of data (resulting, perhaps, in overly
large confidence intervals).

COMPARISON RULES

As in the M/M/1 study, we compare the practicality and performance
of the relaxation time heuristic with those of four other rules: (i) the
Kelton-Law algorithm, (ii) a rule attributable to Gordon, (iii) a modifi-
cation of the Gordon rule based on the truncated sample mean,
and (iv) no truncation. These rules form ‘a representative sample
of the types of methods currently available to the practitioner (for
surveys, see Gafarian, Ancker, and Morisaku [3] and Wilson and
Pritsker [4]).

In the following, we describe briefly the manner in which each of
the comparison rules attempts to locate a suitable truncation point.
For greater detail, see Roth and Rutan [1].
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The Kelton-Law technique makes use of generalized least squares
regression to fit a line to output values averaged over several epochs
and over multiple replications. Kelton and Law [5] reason that if
these batch means are representative of steady-state behavior, they
should be fit well by a line with zero slope. By fitting successively
earlier epochs, the truncation point is reduced until a test for zero
slope fails. The smallest acceptable epoch is then used as a trunca-
tion point for the remaining replications in the experiment.

The Gordon heuristic (rule TR6 in Wilson and Pritsker [4}) selects
as a truncation point the smallest epoch number such that the
observed mean calculated from untruncated data achieves a pre-
specified level of stability. The truncated means rule also seeks
stability, deleting successively more data representative of early
epochs until the truncated sample mean satisfies a stability
requirement.

A serious failing of most existing truncation rules is the necessity
to define, frequently with little or no guidance, one or more critical
rule parameter(s). In addition to considerations such as the num-
ber and length of initial replication runs, the Kelion-Law method
requires specification of seven input parameters while the Gordon
and truncated means rules each require at least one. in contrast,
no truncation and the relaxation time heuristic require neither pre-
fiminary runs nor specification of input parameters apart from those
needed to define the underlying queueing model.

PERFORMANCE EVALUATION

The primary motivation for using a truncation algorithm is to reduce
bias caused by initial conditions. Thus, we first remove from con-
sideration any rule which does not yield data truncated in such a
way that it consistently passes a bias test. On the other hand, exces-
sive truncation may result in confidence intervals large enough that
interpretation of results is difficult. Therefore, in addition to bias,
we monitor estimator variance by calculating the mean squared error.

Other properties to assess when evaluating an initial transient

. problem heuristic are ease of use and computation cost. Excessive
truncation is, therefore, a negative attribute to watch for; depending
on whether the experimental design calls for single or muitiple
replications, generating sufficient data to compensate for a large
truncation point (which implies a large deletion interval) could add
significantly to the cost of simulation.

We have designed the experiments as multiple sets of independent
replications to enable us to exploit Central Limit Theorem proper-
ties. Specifically, each experiment comprises R sets of K replica-
tions each. We selected values of R and K, along with design
parameters such as run length, to provide unquestionable differ-
entiation between untruncated data and data truncated according
to one of the heuristics. The Kelton-Law, Gordon, and truncated
means rules use the first set of K replications to determine a trun-
cation paint which is then used for each remaining replication in
the experiment. The validation experiments were designed in this
manner in an attempt to duplicate, as closely as possible, conditions
under which the rules would be used in practice.

We compare performance under each of the five rules through
experiments with varying system parameters of Erlang order k,

traffic intensity g, and service rate p. Design parameter specifica-
tions such as replication length N (in epochs), sample frequency At,
number of replications per set K, and number of sets of replica-
tions R were based on resuits of preliminary experiments. Additional
details of the simulation programs are presented in Appendix I.

The system being tested is the stationary, single-queue, M/E N
queueing system which begins at rest. The behavior measure of
interest is the steady-state expected number of customers in the
system,

Performance Criteria

We quantify bias present in the estimate of the mean of the response
variable by comparing the simulation grand mean X t under rule t with
the theoretical steady-state mean X. (Throughout, we will use
uppercase letters to represent random variables and corresponding
lowercase letters for observed values; see Appendix Il for a sum-
mary of notation.) Therefore, if Bt is defined to be the absolute bias
of the estimate of the behavior measure X, observed bias may be
expressed as

R
bt= %

where i;‘, is the observed mean number in the system over the K
replications in set r truncated according to rule t.

Since each )'(}, is a sum of means from independent replications,
a Central Limit Theorem argument can be used to assert that
{ )Tt1 ,)'("2, .. ,)'E}q} is a random sample from an approximately normal
distribution with unknown mean +. Our initial check for the presence
of significant bias is the following hypothesis test:

— @)

with test statistic
Xt-X
A/ var (XY

If R is large (R > 30 shouid suffice), the t-statistic Ztis approxi-
mately normally distributed. Under these conditions, we reject Hy if
[zl] > 1.96 where

zt =

VVar (xY

with

R
varxhy = [ & (&t - xH2/R-1|/R.
r=1 .
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An alternative way to evaluate the presence of bias is to compute
the observed probability of coverage, Py, the likelihood that X
is contained in the confidence interval about the observed mean
generated during the simulation. To estimate Py, we examine
confidence interval coverage in each of the R sets of replications;
Poov is equal to the fraction of sets for which a 95% confidence
interval about the observed mean for the set, if, covers the true mean
X.

To be specific, we define an indicator random variable, Iy, as
1if|gl - X| < A,
0 otherwise

The confidence interval half-width, 4y, is given by

Ar = tx_1,0.975 VVar (X}

inwhich tye _, 0.975 is the critical value of the two-tailed t-statistic
with 95% confidence and K—1 degrees of freedom. The variance
for the mean number in the system derived from a set of K repli-
cations, Var(_X—tr), is estimated by

K
Var(xY) = [ ©
k=1

&t - ®H21 - K,

with ’_(E(r defined to be the observed mean of the data generated in
replication k of set r and truncated acearding to rule t.

Finally, the coverage probability may be expressed as

R

Pooy = T I/R.
r=1

We can also compute the half-width for a 95% confidence interval
for the true coverage, A, using

1
Bgoy = 1:96[Pgqy(1 = Pogy)/R] 2

(see Law and Kelton [6]).

By design, with unbiased data and R = oo the coverage probability
should equal 0.95. Given the finite nature of each experiment, the
observed values may be somewhat less than this design value.
Successful bias removal should, however, result in confidence
intervals for P, that consistently cover much of the region about
0.95.

As mentioned above, there are two primary statistical attributes of
concern: bias and variance. The two tests discussed previously
indicate presence of bias. To quantify the spread of the estimates,
we examine the mean squared error under each rule t, MSEt, using

R .
MSE' = ¥ (X! - X)2/R = [R - 1] Var (xY) + (b}h2.
r=1

Rules that do not reject the null hypothesis in (2) are compared by
means of the MSE! values; the closer the mean squared error is
to zero, the more precise the estimate.

Parameter Selection

Specifying input parameters for the Kelton-Law, Gordon, and trun-
cated means heuristics is not a simple task. Atter preliminary testing,
we chose the following values. For the Kelton-Law algorithm we
used all parameter values suggested in Kelton and Law [5]. The
deviation e required in application of the Gordon and truncated
means rules was defined to be proportional to the untruncated
sample mean. Specifically, we measured relative rather than abso-
lute error through use of

K N

e=a Yy, Y X1/ NK,
k=1 n=1

where X4 is the observed number of customers in the system
at epoch n in replication k of set 1.

Preliminary experiments revealed that the consistency of bias re-
moval using these latter two heuristics is extremely sensitive to the
€ value selected. Although we are unable to quantify the relation-
ship in any meaningful way, the variance of the truncation point
distribution seems to be highly correlated with . The multiplier
values of @ =10 and oo = 004 for the Gordon and truncated
means heuristics, respectively, were found to yield estimates which
pass the bias test in a reasonably consistent manner and, thus,
were selected as adequate for this work. It is important to note that
we make no claim to having selected rule parameters that are in
any sense “optimal”; rather, we selected values that performed
well in preliminary experiments.

Design Parameters. The number of replications in a set, K, and
the number of sets of replications in each experiment, R, must be
large enough that the Central Limit Theorem arguments used in
measuring bias are valid. We chose K = 40 and R = 400 for the
final experiments.

To ensure meaningful comparisons among rules, the replication
length, NAt, must be small enough that the transient period ac-
counts for a significant portion of each replication. If not, the
biased data representing transient behavior may be dominated by
unbiased data representative of the steady state. This can resuit
in negligible differences between estimates derived from truncated
and untruncated data. We found, through preliminary testing, that
NAt =77R Yields output which allows for clear differentiation.
Specifying the replication length to be proportional to the approxi-
mate relaxation time, 7R, has the added advantage of maintaining
consistency in the run length as system parameters vary.

System Parameters. We examine the performance of the trunca-
tion rules over a range of M/Ey/1 queueing systems. The traffic
intensity, g, is varied from 0.25 to 0.925 by holding the arrival rate
fixed and altering the service rate . The Erlang order, k, of the ser-
vice time distribution ranges from 1 (ie:, an M/M/1 system) to 20.
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Table 1: Ranking of Mean Squared Errors
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“2 indicates rule failed bias test. Entry numbers represent

relative MSE! values, i.e., “1” = smallest MSE!.

Table 2: Square Root Mean Squared Error

TRNC

Q k At REL K~L GOR MEAN
0.25 1 15 0.0670* 0.0534 0.0958 0.0863
5 0.0531 0.0499 0.0800 0.0658

10 0.0509 0.0450 0.0735 0.0618

15 0.0512 0.0460 0.0726 0.0620

20 0.0505 0.0446 0.0731 0.0609

0.50 1 100 0.1359 —_ 0.1860  0.1548
5 0.0972 —_ 0.1358 0.1039

10 0.0841 0.0785 0.1340 0.1018

15 0.0852 0.0631 0.1333 0.1071

20 0.0814 00672 0.1253 0.1030

0.75 1 600 0.3229 - 0.3636  0.3747
5 0.1993 - 0.2508 0.2456

10 0.1751  0.1412 —_ 0.2051

15 0.1759 0.1598 0.2013 0.2112

20- 0.1886 0.1419 0.2034 0.1847

0.85 1 2000 0.5653 — 0.6576  0.6706
5 0.3346 02743 0.4233 0.3537

10 0.3114 02586 0.4337 0.3906

15 0.3134 —_ 0.3740 0.3298

20 0.2751 —_ 0.2717  0.3011

0.90 1 5000 0.9141 0.8229 0.8017 1.0421
5 0.5072 0.4249 0.4319 0.6279

10 0.4888 ~ 0.4290 0.5952

15 0.4762 0.4061 0.3852 0.5035

20 0.4502 0.4095 0.4333 0.5539

0.925 1 10000 1.1739 — 0.9554  1.1200
5 0.7374 0.6339 0.6408 0.7822

10 0.6130 - — 0.5760

15 0.6382 0.5804 0.5233 0.7439

20 0.6055 0.5648 0.4822 0.5840

*

**—"" indicates rule failed bias test.
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Table 3: Truncation Point

TRNC

Q k At REL K-L GOR MEAN
0.25 1 15 1905* 1000  3004* 2701
5 1143 1000 1801 1574

10 1048 750% 1657 1465

15 1016 750*% 1616 1395

20 1000 750" 1582+ 1294

0.50 1 100 1665 ( 250) 2640F 2141
5 999 (2300 1582 1180

10 916 - 750  1457F 1183

15 888 230 1411t 1211

20 874 420  1381* 1196

0.75 1 500 2388 ( 420) 2953 3110
5 1433 (190) 1976 1933

10 1313 690  (1959) 1593

15 1273 1000* 1673 1774

20 1254 500 1534 1190

0.85 1 2000 1894 ( 210) 2517 2565
5 1196 460 1681 1346

10 1096 460 1635 1480
15 1063  ( 210) 1441 1192
20 1047 ( 250) 991 1294

0.90 1 5000 1953 1380 1225 2584
5 1172 680 821 1614

10 1074  ( 250) 667 1478
15 1042 690 523 1145
20 1025 750 919 1380

0925 1 10000 1808 ( 500) 1055 1644
5 1085 750t 775 1219

10 995 ( 250) ( 273) 835
15 984  750* 513 1314
20 949  750% 433 875

* Entry numbers represent number of epochs. Parentheses
indicate rule failed bias test.
“+4" indicates truncation point was increased to upper limit.

EXPERIMENTAL RESULTS

We look first at the consistency with which each rule yields esti-
mates that pass the bias test (2). With no truncation, the null hypoth-
esis was rejected in every case; therefore, we exclude this rule
from further consideration. In Table 1, results under each of the
remaining heuristics are illustrated. The relaxation time and trun-
cated means heuristics satisfy the bias criterion in each experiment.
The Kelton-Law and Gordon techniques cause rejection of the null
hypothesis for one or more sets of system parameters.

The confidence interval coverage probabilities are quite consistent
for each truncation rule. While the design value of 095 is not
always contained in the 85% confidence interval for Py, the
confidence interval does typically include much of the 0.90-0.95
range.

Also in Table 1, we rank the mean squared error values for each
case that satisfies the bias criterion (2). The Kelton-Law heuristic
appears to be particularly successful in keeping the MSE small. In
Table 2, actual MSE values are indicated. Here we note that dif-
ferences in magnitude across rules are not striking.

For those situations in which bias removal is adequate, the major
component of the MSE is the variance of the estimator. Given a
fixed replication length, this variance is affected directly by the size
of the truncation interval. Thus, we expect that for our experiments
application of the Kelton-Law heuristic yielded truncation points that
are smaller than those of the other rules. This hypothesis is supported
by the data in Table 3, the truncation points generated during the

266



A Relaxation Time Heuristic for Reducing Initialization Bias in Simulation of M/E /1 Queueing Systems

0.50
i 4TR (P
A KELTON-LAW : i
- )
0.40 © GORDON | i
| 1
5 + TRUNCATED MEANS I "
& o030l | I
> . [
[e] . |
e I |
o
w : ]
0.20 | l'
i I
5 |
! |
0.10 : |
0.00 £:58:96 &-D-H PP Z z
0 500 1000 1500 2000 2500 3000 3500 4000
NUMBER OF EPOCHS
Figure 1: Truncation Point Distribution (M/M/1, o = 0.75, At = 500, N = 4179)
0.50 )
. 47
Al A KELTON-LAW
) 040 = l O GORDON
:l 4 TRUNCATED MEANS
5 I
% 0.30 : ‘?'
=] | i09Q
(o) n
i | \
x | ]
w 0.20 |- : 1”1
[
[
|
0.10 |- ll
[
1
. |
0.00 A P R B P PP R P P )
200 2500 3000 3500 4000

NUMBER OF EPOCHS
Figure 2: Truncation Point Distribution (M/Epg/1, @ = 0.75, At = 500, N = 2194)

experiments. At this point, however, it is important to recall the
manner in which we applied the Kelton-Law, Gordon, and truncated
means algorithms. In essence, for each of these rules, an experi-
ment results in selecting a single point according to the (unknown)
truncation point distribution. If these distributions have large vari-
ances, the truncation point selected, nt, may vary greatly from an
average value.

In Figures 1 and 2 we show truncation point distributions for M/M/1
and M/Epgg/t systems, respectively, with o = 0.75, sample fre-
quency At = 500, and run length NAt = 77. To generate these
distributions we completed the following steps. First, we applied the
rules to 400 independent sets of 40 replications each yielding four
sets of 400 nf values. The 400 nt values for each rule were then
divided into cells of width 100 epochs. Finally, the cell counts were
normalized and plotted as frequency distributions.

We note that there is a distinguishable spike at the upper end of
each distribution, particularly with the Kelton-Law and Gordon tech-
niques. For these rules and the truncated means heuristic, a maximal
nt value was specified to insure that sufficient data remained for
the statistical analysis. We used upper bounds of roughly 0.5N,
0.9N, and 0.8N for the Kelton-Law, Gordon, and truncated means
heuristics, respectively. We may infer by the size of these spikes
that, due to the particular design parameters and random number
seeds, the Kelton-Law and Gordon rules defaulted to the maximal
truncation point values quite frequently. We decided not to extend
the run length (and, thus, the maximal truncation point values),
as even when n' equals the default value, bias removal is typically

acceptable.

Although the truncation point distributions are highly dependent
on the particular random number streams generated during the
experiments, Figures 1 and 2 are useful in illustrating the variability of
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"* the n' values yielged by thé Kelton-Law, Gordon, and truncaisa
means rules. A major difficulty in using such a technique, i.e., one
which relies on output from preliminary replications, is that when
testing we can, at best, evaluate only average performance. Even
with appropriate rule parameters, due to randomness in the prelim-
inary replications an atypical nt value may be generated. One
ramification is that, even if these rules satisfy the bias criteria most
of the time in testing, in practice the user will be uncertain as to
the suitability of a particular truncation point; there wiil be no way
of determining if the nt vatue is an anomaly.

CONCLUSIONS

The results presented in the previous section illustrate that the relax-
ation time heuristic is indeed an appropriate vehicle for removing
initialization bias in simulation of the steady-state expected number
of customers in M/E, /1 queueing systems. Regarding ease of
implementation, it has several attributes that make it clearly superior
to most existing techniques.

Perhaps the major advantage is that the rule requires specification of
model characteristics only; there are no input parameters left to
the user to define. This eliminates the need for preliminary repli-
cations and, as there is no randomness in the truncation point
selection, the user may have confidence that bias is removed in a
consistent manner. Implementation cost is negligible in terms of
both programmer time and programming cost; all that is required is
thé simple calculation of R [equation (1)].

An additional benefit of the relaxation time heuristic or, more
specifically, 7, is that it can be useful in determining a suitable
replication length. Defining time in terms of the approximate time
constant provides consistency across systems and, in conjunction
with the relaxation time heuristic, allows the user to specify, without
preliminary runs, the number of data points to be used in analysis
of the simulation output.

A major shortcoming of the relaxation time heuristic at this time is
that the algorithm has not yet been tested on many types of queue-
.ing systems. We are currently validating the heuristic for M/M/k and
Ex/M/1 queueing models. Of much greater interest to the prac-
titioner is a method applicable to networks of these systems. Due
to the difficulty of obtaining even approximate solutions with suffi-
cient accuracy, we have not yet been able to validate whether or
not the assumptions on which the heuristic is based are appro-
priate for networks of simple queues or single queues with truly
general interarrival and service time distributions. We will continue
working in this direction.
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APPENDIX I: COMPUTER PROGRAMS

The computer programs used in this study were written in GPSSH
with FORTRAN subroutines. We used the IMSL pseudo-random
numbér generators GGEXN for exponential deviates and GGAMR
for Erlang deviates. Each of these generators has a cycle length of
231_ 1, adequately long to prevent cycling in our experiments.
All experiments were run on an 1BM 3081 computer.

APPENDIX li: NOTATION

N = number of epochs in each replication.

nt = truncation point for rule t (all data up to and including epoch
nt are deleted).

At = time between epochs; sampling interval.
K = number of replications in each set.

B
it

number of-sets of replications in each experiment.

X = steady-state number of customers in the system (random
variable).

X = g+ (k+1)02/2k(1 - g) = E(X)

Xpkr = Observed number in the system at epoch n in replication
k of setr.

N
Xkr = L

xnk,.l(N—nt) = observed mean number in the

n=nt+1 system over truncated replica-
K tion k of set r for rule t.
iE = X i,gr/K = observed mean number in the system over
k=1 truncated replications in set r for rule t.”
A .
t= Y% x},/R = observed mean number in the system over
r=1 all truncated replications for rule t
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