Proceedings of the 1985 Winter Simulation Conference
D. Gantz, G. Blais, S. Solomon (eds.)

TOWARDS A KNOWLEDGE-BASED
NETWORK SIMULATION ENVIRONMENT

Sergio Ruiz-Mier, Joseph Talavage, and David Ben-Arieh

School of Industrial Engineering
Purdue University
West Lafayette, Indiana 47907

ABSTRACT

Slnce thelr Introductlon, network simulation languages have provlded modeling
concepts which are both powerful and easy to use. Yet current Implementations
of these languages are llmlted In that they do not provide expllcit concepts for
representing complex behavior such as declslon-making encountered in many
real-world systems. This lack of flexlbillty comes from the poor programmling
environments into which network slmulatlon languages are embedded rather than
belng a limitation of the network approach.

Thls paper descrlbes an experimental slmulation system which lets network
slmulation concepts flourlsh in 2 rich, Al-based programmling environment.

INTRODUCTION

The network approach to systems modellng has as an
underlylng phllosophy to provide the modeler with slmple
yet powerful concepts which can then be used to capture the
significant aspects of the system to be modeled. Current
simulation languages such as SLAM II [1}, Siman [2] and INS
{3] are bullt around thls ldea and provide a set of concepts
(eg. Arrival, Activity, Waltlng, Routing, Departure, etc. as
described In [4]) for model bulldlng. Yet current
implementations of these languages are limited In that they
do not provide expliclt concepts for representlng complex
behavior such as decislon- making encountered Iln many
real-world situations. When complex systems need to be
modeled, the user must revert to a lower level language llke
FORTRAN. This lack of flex1billty comes from the fact that
today’s network languages are embedded In poor
programming environments rather than thls belng an
inherent limitation of the network approach.

Thils paper describes some key ideas behlnd SIMYON, an
experimental network slmulation language Implemented as a
subset of CAYENE, a hybrld AT programming system [5].

A SUITABLE PROGRAMMING ENVIRONMENT

Artiflelal intelllgence languages, because of thelr knowledge-
representation orientation, provide an excellent basls for
simulatlon languages. At Purdue, the use of LISP as a
language for teaching the implementation of a network
simulatlon language had a quite unexpected and beneficlal
result. Because lmplementation of simulation is so closely
related to list processing, It appears (In hindsight) that a list
processing language should provide a very convenlent vehlcle
for Implementation. Thls was borne out In our recent
graduate course where several grad students had the project
of deslgning 2a mnetwork simulatlon language. After
presentation of the baslc concepts of files, filing mechanlsms,
event flle, control mechanlsm, and activity, the students
were to lmplement a baslc network slmulation language In
LISP. Viewing the results of thelr effort, 1t 1s clear that they
were much more able to keep thelr sights on the “forest”
rather than on the “trees” In their way to the objective.
Comparison to a simllar course which consldered the same
project to be Implemented in FORTRAN shows clearly that
both the Instructor presentation and the student effort could
be carrled out at a more abstract level with LISP as the

232

vehlcle., For example, one of the students lmplemented a
network simulation language In LISP which Incorporated in
SEVEN (!) pages of code the following nodes and concepts:

arrlval, queue, actlvity, prob branch, cond branch, resource,

resource-walt, resource-free, resource-alter, depart, stat
collect.
In addition, the slmulation procedure operates In an

INTERACTIVE fashlon.

‘While LISP is an excellent language for development of a
basic simulation capablllty, 1t is not necessarlly appropriate
for incorporating extensive capabliltles including
representatlion of complex decision making. In searching for
a rich programming environment In which to base a
comprehenslve network simulation language, It 1s helpful to
look at different approaches to simulation that have shown
some flexiblllty and discern which attrlbutes are deslrable.
‘We look at previous implementations of frame-oriented,
object- orlented and rule-oriented approaches to simulation.

FRAME-ORIENTED APPROACH TO SIMULATION

Since thelr introductlon, [8] frames have been widely used to
represent knowledge about objects and events. KBS ([7] was
the first Implementation of a simulatlon system based on
frames.

One of the key features of KBS was the usé of hlerarchical
classes In which subclasses Inherit properties from thelr
superclasses. This method of knowledge organlzation permlts
the representation of modeling knowledge In a way which
minimizes redundancy and eases data speclfication.

Another key feature of frame representation method Is
access-oriented programmling by which a procedure (called a
demon) Is triggered as a slde effect of trylng to retrieve some
data.

Both of these concepts filnd a place In network simulation
languages.

OBJECT-ORIENTED APPROACH TO SIMULATION
Object-orlented, message-passing systems have been

extensively used for slmulatlon. Starting with SIMULA and
later DEMOS [8] and Smalltalk [9].

Towards A Knowledge-Based Network Simulation Environment

In an obJect-oriented system, an object Is deflned as g
symbol associated with a unlque database of properties and
operations which represent the object. ObJects communlicate
with each other by sendlng messages. The flow of these
messages 1s what determines the flow of control of the
program.

A message Is a request for an object to carry out one of Its
operatlons. Messages speclfy only which operation should be
performed, but not how the operation should be performed.
Thils Insures program modularity.

The set of messages to which an object can respond (its
protocol) has to be deflned and stored In the objects
database along with other propertles of the oblect. Objects
themselves are organlzed into hlerarchles which allow for
multiple inheritance.

In many ways, obJect-orlented systems can be regarded as a
generallzatlon of network simulation languages In which
network nodes behave as objects sending messages (l.e.
transactions, resources) to other objects (other nodes) and
procedures are embedded In the nodes.

The ideas behind object-orlented programming proves to be
useful when the need arlses to define speclal purpose nodes.

RULE-ORIENTED APPROACH TO SIMULATION

In [10] the author descrlbes a methodology by which
slmulation models should be constructed by means of a
condltlon speclfication language (CS). Thls language is based
on the ldea of representing behavlor as a set of condition-
actlon palrs (CAP's) which are analogous to the production
rules or if-then statements of knowledge based productlon
systems. The fact that discrete event slmulation models ean
be completely described by means of CAP's or production
rules Is very lmportant. It means among other things that
slmulation models and Intelligent systems can be deserlbed
within the same framework. This unifylng concept provides
the basls for intelllgent modeling systems.

TS-PROLOG [11] was developed as a logle-theoretlc basls for
rule-orlented simulatlon. In a TS-PROLOG simulation
model, everythlng 1s descrlbed in terms of rules and
assertlon, which are contalned In a database, and control Is
by means of a resolution theorem prover.

The power of this representation schema becomes apparent
when complex systems have to be descrlbed. (eg, systems
that need Involved Inference or deductlve procedures). It
should be noted here, however, that the description of a
model using a conditlon speclficatlon language Is a general
statment that does not prescribe what control mechanlsm
should be used. A CAP only states that IFF condltlons
C1,C2,....,Cn are true THEN actions Al,A2,....,Am should be
performed On the other hand, productlon system
architecture Imposes a control mechanlsm which in most
cases restricts what can be deflned as a conditlon or as an
actlon These Inference englnes are useful for certaln problems
but are cumbersome for slmple processlng and should be
used only for appropriate problems.

Unlficatlon of some of these programming paradigms as
applled to slmulatlon has been attempted before. An early
effort to Implement knowledge based object- orlented
simulations was the Rule Orlented Slmulation System
(ROSS). ROSS's rules were of the form

(TF <conditlons> THEN <actlons> ELSE <actlons>)

yet this type of rule Is actlvated only If an expllclt request to
do so Is made by sendlng a message to the object.
Furthermore, the triggering of such a rule had but one of
two outcomes; elther the actlons In the THEN part of the
rule or the ones In the ELSE part were performed.

233

Even If the I™-THEN-ELSE rules of ROSS did help to
lmplement some degree of expertise Into the system, they are
no different than the IF-THEN-ELSE statments found In
FORTRAN or PASCAL and therefore cannot be used to do
sophlsticated top-down or bottom-up Inference.

CAYENE

SIMYON has been Implemented as a top-level of CAYENE.
CAYENE 1s a member of the class of programming
languages known as hybrid Al systems and 1t Is based on the
ldea of uslng oblect-orlented programmling as a unifylng
principle for procedure-orlented (es, LISP) , access-orlented
(eg, demons and attached procedures) and rule based
programming.

As In Smalltalk, each object (class or Instance) In CAYENE
Is assoclated with a unlque database contalning its
properties and knowledge about the oblect’s behavior (1ts
protocol). CAYENE's databases are different In that they are
a generallzation of relational databases and are regarded
as logic programming environments in which propertles are
expressed as assertlons, protocols are coded as productlon
rules and control Is through four unifled programming
paradigms;

— Goal directed Inference based
on a powerful pattern matcher.
— ObJect-orlented, message-passing.
— Access-oriented procedures.
— Procedure-oriented programming
(LISP expressions).

At the top level CAYENE Is structured as a hlerarchy of
objects and control Is strictly by message-passing using the
function

(ask <object> < message>)

where < message> Is a goal to be satisfled usilng a
backward-chalning Inference procedure and the knowledge
base assoclated with <object>.

One of the most common procedures used Is the ‘ask’
procedure whlch prompts the user for the object’s property
value. Support for access-oriented programming Is malnly
through the

(if_needed < procedure>)

demon which lles dormant untll there s an attempt to
retrleve an object’s property value.

Hierarchles are constructed using the Inherltance functions

(1s_a <superclass>)
(2_kind_of <superclass>)

and the relation functlon
(needs <<objJectl> <oblect2> <objectN>)

The difference between I1s_a and a_kind_of Inherltance Is
subtle but lmportant. Objects uslng 1s_a wlill inherit all the
properties and the protocol of < superclass> with thelr
corresponding values. If a_kind_of is used, values wlll not be
Inherited and lInstead the demon (If_needed ask) will be
instantlated as the value of any property.

Flnally, procedures can be constructed at the objlect level by
uslng LISP expresslons.

Sergio Ruiz-Mier, Joseph Talavage, and David Ben-Arieh

SIMYON

As we noted before, SIMYON 1is an experimental AI based
network slmulation language embedded in CAYENE.

The first step In constructing SIMYON was to generallze the
- message passlng routine whlch then becomes

(ask <at_time> <object>> << message>)

where <Cat_tlme> 1s an expresston which evaluates to a
number. Messages are then stored In an event flle and sent
when <at_time> matches the global varlable TNOW. Thls
generallzatlon provides a conslistent timlng mechanlsm to
drive the slmulations.

The second step Is to defilne the SIMYON system classes
which are the buildlng blocks for model construction. These
building blocks are deflned as oblects with characteristic
propertles and behaviors and are arranged in a hierarchy.

For example SIMYON class oblect CREATE s partlally
deflned as follows.

(object CREATE
(a_kind_of NODE)

(tlme_between_creatlons (If_needed ask))
(tlme_to_start (default 0))

(tlme_to_end nil)

(transactlon_name (default TRANS))

(local _vars ?Bet ?Next ?Trans ?Tstart)

H
; other propertles

[(start) <- (tlme_to_start ?Tstart)
(ask ?Tstart
MYSELF

(next_arrlval) |

<-(next_node ?Next)
(transactlon ?Trans)
(ask TNOW ?Next ?Trans)
(time_between_creations ?Bet)
(ask (plus TNOW ?Bet)
MYSELF
(next_arrlval))

[(next_arrival)

]

; other rules

and the SIMYON class oblect WAIT is deflned as;

(object WAIT
(a_kind_of NODE)

(resource (1f_needed ask))
(queue (If_needed ask))
(unlts (default 0))

H
; other propertles

[(transaction ?Trans) <- (next_node ?Next)
(queue ?Queue)
(resource ?Res)
(unlts ?Unlts)

(cond ((> ?Res 0)
(ask TNOW
?Next
(transaction ?Trans))
(ask TNOW

234

?Res
(acquire ?Unlts)))

t
(ask TNOW
?

?Queue
(enqueue ?Trans)))) |

other rules

)

To deflne a model using SIMYON, the user merely descrlbes
the network by Inltiallzing SIMYON system objects such as
actlvitles, branches, etc. An example of the classic teller
problem follows.

(model TELLER
(Arrival CREATE)
(Walt_for_service WAIT)
(Service ACTIVITY)
(Departure TERMINATE))

‘When SIMYON evaluates this expression, it creates Instances
of the objects CREATE, WAIT, ACTIVITY and
TERMINATE. Although It 1s true that the Instances have no
values In thelr propertles (except the ones with default) they
do have If_needed demons so It Is possible to complete the
model by telling SIMYON

(simulate TELLER)

which will prompt SIMYON to start the slmulation and as
soon the value of a message

‘What Is the value of property
<prop> for oblect <<obj> ?

In thls way If_needed demons help model bulldlng and
conipleteness checking.

COMPLEX ROUTING IN A MANUFACTURING CELL

Up to now we have seen how SIMYON behaves at the top
level as a network slmulation language with the added
flexibllity of If_needed demons which stmplify model bullding
and conslisteney checking. Yet the real power of SIMYON
lles on its abllity to represent complex behavior such as
declsion-making. Lets conslder a case of complex routing In
a manufacturlng environment.

In this example parts arrive to a manufacturing cell and are
scheduled by a human operator which relles on general
knowledge about the system. -This knowledge Is most easily
represented as a set of rules that the scheduler applles as
needed.

At the highest level of abstractlon the scheduler knows that

iy (a machine M 1s found)
(machlne M is avallable)
(machine M can process part P)
(M’s queue is not full),

THEN (send part P to machlne M)

Yet the operator does not explicitly know If these condlitions
are true. Condltlons such as (machlne M s avallable)
usually depend on other conditlons which themselves milght
depend on other condltlons.

At a lower level the scheduler might also know that for all
machlines In the shop

Towards A Knowledge-Based Network Simulation Environment

IF (machine M Is not overloaded)
(machine M Is not down)

THEN (machlne M Is avallable)

and that

IF (malntenance for M is from T1 to T2)
(T1 < TNOW < T2)

THEN (machlne M Is down)

or

iy (machine M needs repalrs)

THEN (machine M Is down)

Therefore, In trylng to satisfy the goal (send part P to
machine M) subgoals such as (machine M Is avallable) and
(machine Is not down) have to be satlsfled first.

This rule representation of the operators knowledge Is
Impliclily structured as an AND/OR tree with the root of
the tree belng the top-most goal (send part P to machine M)
and the leaves of the tree belng the known facts about the
system.

It should be noted at thls polnt that from the schedulers
perspectlve 1t Is not really Important to know why a machlne
needs repalrs. What Is important to him Is that If that Is the
case he can INFER that the machine is down. The reason
why a machlne needs a repalr Is not relevant (In this context)
to the scheduling problem.

It 1s qulte possible that In trylng to find out If a certaln
machine needs a repalr, control may access that machine’s
database and use other rules of thumb to do so. For example
the operator at machlne M1l might know that for that
speclfic machline

I (the output rate Is less than 13 parts per hour)
(the nolse level Is greater than 30dB)

THEN (the machlne needs repalrs)

Since thls knowledge pertalns to machine M1 it should be
part of that machlne’s database.

Representatlon of this knowledge In SIMYON is
stralghtforward. We deflne the obJect SCHEDULE as
follows.

(object SCHEDULE
(needs M1 M2 M3 Mn)

’
; other propertles

[(send ?Part *Mach) <-(find *Mach)
(avallable ?Mach)
(can_process ?Mach ?Part)
(queue 7Queue)
(not (full ?Queue))
(ask TNOW ?Mach tPart)]

<-(not (overloaded ?Mach))
(not (down ?Mach)) |

<-(malntenance ?Mach ?T1 ?7T2)
(lessp 2T1 TNOW ?T2)]

<~ (needs_repalr ?Mach) |

[(avallable ?Mach)
{(down ?Mach)
[(down ?Mach)

; other rules

,

235

and the objJect M1 as

(object M1

(a_kind_of MACHINE)
(needs Q1 Operatorl)

; other propertles

[(needs_repalr M1) <- (output_rate ?Rate)
(lessp ?Rate 13)
(nolse_level ?Nolse)

(lessp 30 ?Nolse)]

H
; other rules
H

)

It Is easy to lmaglne how this ldea can be expanded to
encompass a very large knowledge base with support
knowledge malntalned at the machine level, resource level,
transactlon level, etc. Rules of thumb pertalning to all
machines could be located In a generic object class ealled
MACHINE, rules related to all resources In the class
RESOURCE, and so forth. Access to all the knowledge could
then be supported by deflnlng (needs < Object1>.....) in the
approprlate objects.

One of the advantages of this representation schema Is that
changes to the knowledge base such as additlon or deletion
of rules and assertlons which might affect model behavior are
simple to perform. For example If Operatorl convinces the
plant manager that he needs to take a 5 min coffee break at
10:00 every day thls could be just added to the model by
simply inserting the rule

[((busy Operator1) <- (lessp 120 TNOW 125) |

(assuming the day beglns at 8:00 and the time unlt is one
minute).

A change of this type would require significant changes to
the model If 1t would have been represented using current
network simulation languages.

CONCLUSION

A critical need of current network simulation languages 1s
the capabllity to represent complex declslons In an efficlent
and effectlve way. Slmulatlon languages such as the
SIMYON language discussed here can provide the ease of use
characterlstic of network languages, and at the same time
Incorporate user-speclfled declslon processes In a complex and
flexlble format. For example, the declslons of a human
expert could be represented by a rule-based expert system
which would be completely compatible with the remalning
network representation of the model.

The flexibllity of SIMYON extends beyond Its representation
abilitles. Simulatlon Itself 1s a framework In which to
perform experlmentation. Yet the use of simulatlon In an
experimentation environment calls for conslderable jJudgment
with regard to critical analysls of slmulatlon output. Agaln,
an expert system to control the experimentatlon aspects of
slmulatlon could be incorporated into the SIMYON language.
Simllar remarks could be made about employment of expert
systems to facllitate modellng. Thus a language framework
like SIMYON becomes more than Just a simulation language.
It really becomes a problem-solving language for a fairly
broad domaln of problems.

Sergio Ruiz-Mier, Joseph Talavage, and David Ben-Arieh

REFERENCES

(1

[2]

(3]

f4]

fs]

(6]

7]

(8]

[10]

f11]

Pritsker, A., Introduction to Simulation and SLAM,
Halsted Press, 1984.

Pegden, C., Introduction to SIMAN, Systems Modeling
Corp., 1982.

Roberts, S., Simulation Modeling and Analysis with
INSIGHT, Regenstrief Institute, Indlanapolls, 1983.

CAYENE
Purdue

Talavage, J. and Rulz-Mier, S. “The
Manual.” Internal research memorandum,
Untverslty, 1985.

Talavage, J. “The PC Slmulatlon Workstatlon.”
Submitted to Computers in Industrial Engineering.

Minsky, M. “A Framework for Representing
Knowledge.” In P. Winston (Bd.), The Psychology of
Computer Vision, McGraw-Hlll, New York, 1975, pp.
211-277.

Reddy, Y. and Fox, M. “KBS: An Arltificial Intelllgence
Approach to Flexible Simulation. TR CMU-RI-TR-82-1,
Robotles Institute, Carnegle-Mellon Unlversity.

Birtwistle, G., “The DEMOS Dilscrete Event Package.”
Proc. of the Summer Comp. Sim. Conf., 1980, pp. 179-
183.

Goldberg, A. and Robson, D. “SMALLTALX-80: The
Language and Its Implementation.”

Overstreet,M., "Model Specificatlon and Analysls for
Discrete Event Slmulation”, Ph.D. dissertatlon, VIr.
Poly. Inst., 1982.

Futo, I. and Szeredl, J. “System Simulatlon and
Cooperative Problem Solving on a PROLOG Basls.” In
J. Campbell (Bd.), Implementation of PROLOG. Ellis
Harwood, 1984.

s

236

SERGIO RUIZ-MIER is a graduate student in the
School of Industrial Engineering at Purdue.
Hig current research interest is to develop
the CAYENE language for use as a development
framework for decision support in intelligent
manufacturing systems.

School of Industrial Engineering
Purdue University

West Lafayette, Indiana
(317) 494-5412

47907

JOSEPH J. TALAVAGE is a Professor of Industrial
Engineering at Purdue University. In addition
to teaching graduate courses in simulation as
well as in artificial intelligence, he is en-
gaged in research on simulation methodology,
including the development of an intelligent
manufacturing decision support system. He

has been a consultant to numerous companies

and government agencies, and was the prime
developer of the MicroNET simulation language.

School of Industrial Engineering
Purdue University

West Lafayette, Indiana
(317) 494-5412

47907

