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ABSTRACT

In the slmulation of a stochastic actlvity network (SAN),
the usual objectlve Is to obtaln polnt and confldence-lnterval
estimators of the mean completion time for the network.
Thils paper presents a new procedure for using path control
variates to lmprove the efficlency of such estimators.
Because each path control 1s the duration of an assoclated
path In the network, the vector of selected path controls has
both a known mean and 2 known covarlance matrix. All of
this Information Is Incorporated into polnt- and interval-
estimatlon procedures for both normal and nonnormal
responses. To evaluate the performance of these procedures
experimentally, we compare actual versus predicted reduc-
tlons In polnt-estimator varlance and confildence-lnterval
half-length for a set of SANs in which the following charac-
teristics are systematlcally varled: (a) the slze of the mnet-
work (number of nodes and activisties); (b) the topology of
the network; (c¢) the relatlve dominance (critlcallty index) of
the critlcal path; and (d) the percentage of actlvities with
exponentlally distributed duratlons. The experimental
results Indlcate that large varlance reductlons can be
achleved with these estimation procedures In a wide varlety
of networks.

1. INTRODUCTION

Stochastic actlvity networks are an Important class of simu-
latlon models, widely used by corporate management in the
schedullng of large prolects. Although several approaches for
analyzing such networks have been proposed, Monte Carlo
slmulation frequently Is the only feaslble analysls technlque.
Two major reasons for thls are: (a) few simplifying assump-
tlons have to be made; and (b) slmulation Is usually
stralghtforward and, hence, appeallng to the practitioner.

Discrete~-event slmulatlon of a2 SAN requlres the completion
of exactly s events, where s Is the number of activities in the
SAN. In thls context, Monte Carlo slmulation of SANs ls
relatively lnexpenslve as compared to, for example, the
simulatlon of queuelng networks which are notorlous for
thelr tremendous computing costs [1]. However, to achleve
acceptable precision ln estimators based on dlrect simula-
tion, we typleally require a large number of replications of
the model. Computing costs can then become prohlbitlve.

Several varlance reduction technlques (VRTs) have been
proposed for lmproving the efflclency of actlvity network
simulations ([2],{3]). Recent work has focused on the control
variate technigque because of its demonstrated potentlal for

effective use In a wlde varlety of dlscrete-event slmulation
models. See [1] and [4] for recent developments concerning
this method. The control variate technlque Is one of the few
VRTs that does not require any modification of the struc-
ture or operation of the slmulatlon model. Instead 1t derlves
its efficiency galns from anclllary Information provided by
concomlitant system variables observed during the course of
the slmulatlon. It then employs well-developed regression
methods to dellver alternative estlmators of system parame-
ters. Consequently 1t 1s easler to understand and Implement
effectively.

2. STATISTICAL FRAMEWORK

Let Y be the random varlable representing the project com-
pletion time In a SAN. We seek an unblased estimator for
the target parameter § = E(Y). Direct simulation simply
computes the sample mean response W-fn from n independent
repllcatlons of the network to yleld an unblased estimator of
0 with Var(Y,) = n7! Var(Y). Our objective Is to derive an
alternative estimator 9, with E(d,) = ¢ and Var(d,) <
Var(\?n).

To construct a controlled estimasor for 4, we must 1dentify a
(@XX1) vector of control variables C, having both a known
mean pe and a strong llnear assoclatlon with Y. In essence
we try to predict and counteract the unknown devlation
Y-6 by subtractlng from Y an approprlate llnear transfor-
matlon of the known deviations C—ue:

Y(b) =Y - b(C - p¢).

The controlled response Y(b) Is unblased for any fxed
(aXX1) vector of control coefficlents. Let

Var(Y) = o = E[(Y-§)],
Var(C) = L¢ = E{(C - uc)C - uc)l
and
Cov(Y, C) = Oyc = E[(Y-0XC - u)l.
The varlance of the controlled response
Var{Y(b)] = o¢ - 2b/0yc + b/ Zch
Is minlmlized by the vector of control coefficients

B =Zx¢ oy 1)
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ylelding the minlmum varlance

Var[Y(f)] = of (1 ~ Rc), @)
where Ry Is the multiple correlatlon coefiicient between Y
and C.

In practice § must be estimated because generally both Ec
and O'yg will be unknown. Let {(Y}, C;): 1 < J < n} denote
the results observed on n Independent replicatlons of the
simulation. In terms of the statistlcs

— n i n
%, =13y, G, =150, ®
j=1 =1
2 1 o
Sy = (o-1)" 3 (Y-Y,)% 4)
j=1
n —— pa—
Sc = (@13} (C;-C)XC, - Ty, (5)
1=1
and
n — —
Syc = (@1 3 (Y; -~ Y,X(C; - Cyp), (8)
j=1
the sample analog of (1) Is
B =8 Syc. ]
Thus a polnt estimator of 6 1s
Y(B) = Yo - B'(Cy - po)- (8)

2.1 Analysis Techniques for Normal Outputs

To construct confidence Intervais for § we now conslder two
sltuatlons. First we assume that Y and C have the Jolnt
multivarlate normal distribution

6

8]~ [ 2] 22 5

An exact 100(1-a)% confidence Interval for § is then glven
by

.

Y(P) + t(1-a/2; n-q-1) &y A, ®)

where
ov.c = (0-a-1)"" (n-1) (S¢ -~ S4cS5'Syc) (10)
A% =qpt 4 (n-1)t (an - /‘C)’Sél(an - Beh (11)

and t(1-a/2; n-q-1) 1s the 100(1-c/2) percentlle of the t-
distribution with (n—q—1) degrees of freedom.

Now the use of B rather than § means that the minlmum
varlance (2) Is not achleved. To measure the efficlency loss
due to estimatlon of the control coefflclents, Lavenberg,
Moeller and Welch (3] derlved the loss factor

218

Varl¥(B)) / Varl¥(B)] = @-2)/(n-a-2).  (12)
Combining (2) and (12) we have,

n-2
n-q-2

]] a3)

Varl¥(B)} = Var(¥y) [(1—%) [

2.2 Analysis Techniques for Nonnormal Outputs

If Y and C are not Jolntly multlvarlate normal, then the
point estimator Y(B) Is generally blased because B and En
are not independent. To reduce the blas of ﬁ_{(ﬁ) and to con-
struct an asymplotically valld confidence Interval for 6, we.
use the Jackknlfe statistle (Bratley, Fox and Schrage [5],
Sectlon 2.7). Let Y((f) denote the estlmator computed
from (3) through (8) when the k'th dbservation (Yj, Cy) has
been deleted from the orlginal data set
{(Y;, Cp): 1 <1 £ n}. Uslng the pseudovalues

B =0 Y@ - (0-1) Ypo(B, 1 <k <n,

‘we calculate the Jackknife statistic
— 1 n
J(B) = 7' 33 1 (B)
k=1
and the assoclated sample varlance

SFB) = (-1 32 [(5() - TR
1

k=

‘When the jolnt distrlbution of Y and C satisfles certain
mild regularity conditions, the Jackknlfed polnt estlmator of
f has reduced blas: E{J(B)] = § + O(m™2) (see [6]); and an
asymptotlcally valid 100(1-c)% confidence Interval for § is
given by

J(B) £ t(1-0/2; n-1) (W2 S4(B)).

3. ESTIMATION WITH PATH CONTROLS

A SAN Is completely descrlbed by the palr (N, A), where N
Is the set of all nodes and A Is the set of all ares. Let s =
#(A), the number of ares In the network. For each
23 €A, 1 =1,..,s, let A; be the (nonnegative) random varl-
able representing the corresponding activity duratlon. We
assume that the random varlables {A;} are mutually
independent. Let p; = E(A;), and ai2 = Var(A,). Define Djs
1 =1,.., m, as the J'th complete path from the source node
to the sink node, and let P; be the duratlon of the
corresponding path p;. Then

EFE) = ¥ E@4) (14)
3 €D
Var(P) = 37 Var(A)), (15)

21 €y

and
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COV(Pj 'PK) = 2 Va,l‘(Ai). (16)

a € pj () Px

The expected project completlon time E(Y) Is given by E[
max { Py, ..., Py }.

Ranking the m complete paths In descending order of
expected duration, we choose the flrst q paths in the list as
control paths. This (g X 1) vector of path controls has both
a known mean i and a known dispersion matrix T with
elements computed as shown above. Clearly these path con-
trols are strongly correlated with Y.

Flgure 1.

Conslder for example the network shown in Figure 1. Sup-
pose p, == (1,5), p, = (1,3,4) and pz == (2,4). Then E(P,)
= py + Hg BP,) = iy + g + 1y and B(Pg) = py + g
Choosling these three paths as control varlates, we obtaln
the dlisperslon matrix

2

d2+od o )
= 2 2
Yo = o oltof+ol of |.
2 2. 52
0 o4 Oy 40,

In the case of a SAN, we can therefore use the known g
matrix to compute, analogous to (8), the (qX1) vector of
control coefficlents

7= 3¢’ Sya
which ylelds, analogous to (7), an unblased polnt estimator
of 8

Y(3) = Yy - 7 '(Cytic)-
Substitutlng £5' for S3* In (10) and (11), we derlve 2
confidence interval for # analogous to (9) for the case of nor-
mal slmulation responses.

To develop the corresponding polnt and lnterva:l estimators
for the nonnormal case, we use -y In place of £ In Section
2.2, and thus compute the pseudovalues
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33 =0 Y() - (0-1) Yyo(A)» 1 < k < n.

The Jackknifed polnt estlmator of # Is then

@) = 17 3 53,
k=1

with assoclated sample variance

$7() = (0-1)" 33 (I(3) - TR
k=1

An asymptotlcally valld 100(1-)% confidence lnterval for
E{Y] is glven by

JA) + t(1-a/2; n-1) (@2 54(7)).

4. EXPERIMENTAL EVALUATION

‘We conducted an extenslve experlmental study In order to
evaluate the performance of the estimators Y(,B) (estimator
1), J(B) (estimator 2), Y(J) (estimator 3), and J(9) (estimator
4). All eficlency galns reported are relative to the dlrect
slmulatlon estimator Y (estlmator 0). This study Involved
the slmulation of a set of five SANs In which the following
characteristics are systematically varled: (a) the size of the
network {the number of nodes and activities); (b) the topol-
ogy of the network; (c¢) the relative dominance (critlcality
Index) of the critical path; and (d) the percentage of activi-
tles with exponentlally distributed durations.

‘We chose the exponentlal distrlbution because 1t has a
higher coefficlent of varlation (equal to 1) than the distribu-
tlons commonly used ln the slmulatlon of SANSs, thereby
creating the least favorable sltuation for the control varlate
estimators. For each of the five networks we varled the per-
centage of exponentlally distributed actlvity durations over
five levels (0%, 25%, 50%, 75%, 100%).

‘We deflne relatlve dominance of a path to be the probabillty
that the path Is critical on each realizatlon of the network.
For each network and for each level of percentage of
exponentlally distributed actlvitles, we manipulated the
duration of actlvitles on the path with longest expected
duration to achleve five levels of relatlve domlnance (50-
60%, 60-70%, 70-80%, 80-90%, 90-100%%).

The objectives of this experlmental Investigation were:

1. To track the performance of the control varlate technique
In ylelding slgnificant varlance reductlons under widely
varying condltlons;

2. To investlgate the effect of utllizlng the known dispersion
matrlx X¢ In estlmating the contrel coefiiclents — In eflect,
the classle questlon of expected Information versus observed
Informatlon;

3. To analyze the performance of the control varlate tech-
nique with jackknlfed estimators;

4. To study all of the above as a functlon of relative doml
nance of the critlcal path.

Table 1 shows the range in the number of nodes and
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actlvities In the flve chosen networks. Figure 2 displays the
fourth network. All models were simulated using the slmula-
tlon language SLAM II 7], and In all cases a discrete-event
orlentatlon was employed. A random number generator was
used to decide whether or not an actlvity would have an
exponentlal distribution. The normal distribution with stan-
dard devlation equal to 25 percent of the mean was used to
model all activitles that were not exponentlally distributed.
The computer programs had a bullt-ln correction to make
the sampled duratlons equal to zero If a negative value was
reallzed, but this was never applled.

Table 1 -- Network Characteristics
Network | Nodes | Actlvitles Reference
1 10 14 [8, p.275)
2 23 42 {9, p.190]
3 30 49 (8, p.318]
4 41 56 (8, p.218]
5 51 65 [10, p.324]

For a glven configuration of a network (l.e. level of relative
dominance and percentage of exponentially distributed
actlvitles), we conducted & "meta-experiment” composed of
32 Independent simulation experlments. Each experiment
Involved n = 32 repllcatlons with q = 3 controls; thus the
loss factor (n—2)/(n—q~2) was llmited to 1.11.

Figure 2. Network number 4.

To provide a falr assessment of the efiiclency galns achleved,
we calculated three performance measures for each of the
four controlied estimators: (a) the percentage reduction In
varlance; (b) the percentage reduction In the half-length of a
nominal 90 percent confldence interval; and (c) the actual
coverage probabllity of a nominal 90 percent confldence
Interval. For estimator Kk, experlment J, let

Vj(k) = correspondlng sample varlance estimator,

IzI,(k) = computed confldence Interval half-length

’ij(k) =
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1 If the computed confidence Interval
contalns the estlmand 6,
0 otherwise,

fork=0,1, .. 4,2and } =1, ..., 32. In terms of the aver-
ages

VK) = (1/32) S29,(K),

=1

BI(k) = (1/32) S3E,),
j=1

. 3z,
I(k) == (1/32) SI(k),
=1

computed across the entire meta-experlment, we obtalned
the following performance measures for the k'th estimator
(k = 1,2,3,4):

Varlance reductlon(%) = 100[V(0)-¥ (k)] / V(0),
Half-length reductlon(%) == 100{H(0)-H(k)] / F(0),

Coverage(%) = 100 I(x).

Coverage probabllitles were computed for estimator (0) also.
In computing coverages, we used the sample mean of the
response across the 1024 repllcatlons as the true value of 4.

5. EXPERIMENTAL RESULTS

First we observed that the percentage of exponentially dls-
tributed actlvitles Is not a signlficant factor. Tables 2, 3 and
4 show percentage varlance reduction, percentage half-
length reduction, and coverage percentage, respectively, as a
functlon of the percentage of exponentially distributed
actlvitles for one of the flve networks (network number 5).
Other networks produced slmllar results. We did not explore
the performance of the controlled estimators as a functlon of
thls factor any further.

Table 2 — Percentage Reduction In Varlance
% Exponentlal | == -~ - =~ -
Acuvities | YN | ¥B) | T | TB)
0% 74.7 | 90.8 | 65.4 | 87.7
25% 63.4 | 78.8 | 53.8 | 75.4
50% 70.4 | 84.8 | 58.0 | 75.7
75% 68.7 | 81.9 | 81.0 | 84.2
100% 72.6 | 96.7 | 57.8 | 95.6

Level of dominance 70 - 80%

Table 3 -- Percentage Reduction In Half-Length
% Bxponential | gy | %@y | 7 | @)
0% 49.5 | 89.2 | 41.1 | 84.9

25% 39.3 | 53.8 | 32.0 | 50.4

50% 45.4 | 60.8 | 35.2 | s0.7
75% 43.9 57.3 37.5 | 80.2

' 100% 475 | 81.8 | 350 | 79.0

Level of dominance 70 - 80%
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Table 4 - Coverage Percentages Table 8 -- Percentage Reduction In Half-Length
(Nominal Coverage 90%) Relatlve Dominance
% Exponentlal = =~ = - - - Model | Estlmator
1 2 3 4 5
A ctivities Y | Y | YB | F | IB) — -2
0% 90.8 | 90.8 | 81.2 96.9 | 93.7 ) 57.9 | 05.0 | 67.0 | 68.4 ’
25% 00.6 | 98.0 | 84.4 | 1000 | 93.7 L Y(B) | 742 | 795 | 85.1 | 87.3 | 89.0
50% 93.7 93.7 84.4 100.0 87.5 J() 44.5 49.1 53.3 57.5 58.9
75% 96.9 | 93.7 | 781 | 100.0 | 81.2 Fit:) 80.1 | 66.1 | 70.3 | 73.7 | 74.5
100% 96.9 | 93.7 | 71.9% | 100.0 | 71.9% .
5. .8 53.0 55.4 58.7
Level of domlnance 70 - 80% }_r(q) 48.5 | 49
* -- slgnlficantly below nomlnal coverage 2 X(?) 85.8 | 71.1 | 75.2 | 78.4 | 82.6
J(7) 38.3 43.7 50.5 55.7 57.7
(B . . . 2.7 | 65.8
Relatlve domlnance turned out to be quite a slgnificant fac- i(ﬂ ) 402 | 54.9 | 803 | 6
tor for all three performance measures (Tables 5, 8 and 7). YY) 20.9 | 33.8 | 38.5 | 43.9 | 46.5
Percentage varlance reductlon and percentage half-length ?(B) 41.4 | 43.3 | 48.3 | 57.7 | 75.8
reductlon generally Increased with Increasing levels of domi- 3 -f(':l) 201 | 24.2 | 28.3 | 32.4 | 36.1
nance. Coverage tended to worsen with Increasing dom!- -
nance for all estimators; the estimator Y(5) especlally failed (B) 282 | 340 | 383 | 448 | 554
to achleve nominal coverage In several cases. Y@ 22.4 | 30.4 | 35.4 | 41.3 | 46.3
. YA 35.2 | 48.2 | 52.4 | 64.5 | 73.8
The two estimators Y(7) and J(7), obtalned by Incorporating J(y) 13.3 | 23.5 | 31.9 | 39.8 | 44.4
the known dlsperslon matrix, ylelded less variance reduction (B 22.8 | 28.8 | 35.3 | 41.3 | 45.8
and half-length reductlon. These estimators also generated = -
Yy 35.3 | 42.2 | 45.4 | 48.1 | 50.8
s 2q0)) 40.2 | 55.3 | 60.8 | 65.4 | 70.4
k() 25.8 | 32.0 | 35.2 | 37.9 | 41.2
J(B 38.2 | 45.3 | 507 | 55.8 | 62.0
Table 5 -- Percentage Varlance Reduction (8) 5
Model | Estimator Relative Domlnance Percentage of Exponentlal Activities Fixed at 50%
stim
oae 1 2 3 4 5
YA) 82.4 | 87.8 | 89.2 | 90.1 | 91.0 Table 7 -- Coverage Percentages
1 Y3 93.4 | 95.8 | 97.8 | 98.4 | 98.8 (Nominal Coverage 90%3)
-.f(:y) 69.2 | 74.1 | 78.2 | 81.9 | 83.1 Relatlve Dominance
- Model | Estimator
J(B) 84.1 | 88,5 | 91.2 | 93.1 | 93.5 1 2 3 4 5
Y3 705 | 74.9 | 781 | 80.2 | 81.4 R4 96.9 | 937 | 937 | 937 | 875
) T®) 88.4 | 91.7 | 93.1 | 05.4 | 87.0 ) %Eg; 31'2 '7’*13-; 78'(1) Zi‘-; 75.0%
-—a D% D% T1.9% RIES 068.7%
61.9 68.3 75.5 80.4 82.1 -~
I I 937 | 937 | 906 | 906 | 87.5
J(B) 74.2 | 79.7 | 84.3 | 86.1 | 88.3 ) 87.5 844 812 ste | 781
Y() 51.1 | 56.5 | 62.4 | 68.7 | 71L.5 ¥ 87.5 87.5 90.8 90.6 90.6
3 Y(B) 65.9 | 88.1 | 71.3 | 82.2 | 94.2 () 78.1 78.1 78.1 75.0% | 71.9%
3(77) 30.4 | 42.5 | 45.7 | 54.3 | 59.2 2 X(Z?) 78.1 75.0% 71.9% 71.9% | 71.9
B 48.4 | 568.5 | 81.0 | 69.5 | s0.1 I 87.5 | 87.5 | 844 | 844 | 844
— (B 84.4 84.4 84.4 81.2 | 812
Y0 40.1 | 51.9 ) 58.5 | €5.8 | 71.3 Y 90.6 93.7 90.6 87.5 | 00.6
4 Y(3) 58.2 | 67.9 | 77.5 | 87.5 | 03.2 S 87.5 a7.5 844 71 | 781
J() 24.9 | 41.5 | 53.8 | 63.5 | 69.1 3 Y(B) 84.4 81.2 78.1 75.0% | 75.0%
J(B) 40.4 49.3 58.1 65.6 70.6 _.I('y) 90.6 90.6 87.5 87.5 1 87.5
Y 58.4 | 86.8 | 70.4 | 73.2 | 75.7 J(_m 87.5 90.6 875 844 | 844
80)) 74.3 | 80.1 | 84.8 | 88.1 | 91.3 X 93.7 | 937 | 037 | 937 | 93.7
5 3 - 53.7 6 Y () 93.7 93.7 87.5 87.5 87.5
3 44.9 -7 | 580 | 614 | 65.4 4 Y(B) 037 | 906 | 906 | 875 | 844
1(8) 61.8 | 70.1 | 75.7 | 80.3 | 85.6 NG) 100.0 | 100.0 | 1060.0 | 100.0 | 98.9
Percentage of Exponentlal Actlvities fixed at 50% J(B) 100.0 100.0 06.9 93.7 93.7
Y 93.7 93.7 87.5 87.5 | 84.4
Y 81.2 81.2 78.1 75.0% | 71.9%
5 Y(B) 75.0% | 71.0% | 71.9% | 7L.9% | TL.9%
wlder confiuence Intervals than the estimators using the 3(;7) 100.0 100.0 87.5 87.5 87.5
estimated dlsperslon matrix Se. Consequently the coverage ?(B) 87.5 87.5 81.2 21.2 78.1

was better. Thils, however, 1s the most Important perfor-
mance measure for the practitioner, and It seems reasonable
to glve up some varlance reductlon for improved coverage.

Percentage of Exponentlal Activities fixed at 5093
% -- slgnificantly below nominal coverage
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8. CONCLUSIONS

It appears that when the dispersion matrlx of controls can
be analytlcally computed, 1t Is better to Incorporate this

Information Into the control varlate procedure.

The pro-

cedure ylelds larger varlance reductions with the estimated
dispersion matrix, but the statlstical rellabllity of the esti-
mator based on the known disperslon matrix Is slgnificantly

better.
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