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ABSTRACT

He study several methods for estimating the
variance of the sample mean from a
stationary stochastic process. Particular
emphasis is placed on comparing the
recently introduced methods of standardized
time series and overlapping batched means.
Comparison criteria include estimator bias
and variance,

1. INTRODUCTION

An active area of research in simulation
output analysis concerns the problem of
confidence interval estimation for the mean
of a stationary stochastic process. Over
the last twenty years, several confidence
interval estimation methodologies have been
proposed: nonoverlapping batched means
(NOBM), independent replications, ARMA time
series modeling, spectral representation,
regeneration, standardized time series
{sTs) [Schruben (1983)], and overlapping
batched means (0BM) [Meketon and Schmeiser
(1s84)].

Approximate 100{1-a)% confidence interval
estimators for the underlying process mean
A are usually of the form:

Pr{ A e X 2 tl_xavﬁ } 21 - a,

= ~
where X is a point estimator for A, V is an

estimator for Var(X), and t is the

i-%o
appropriate quantile of a t—distribution.
The accurate and precise estimation of

var(X) is therefore of prime importance.
In fact, the main differences among the
éonfidence interval methodologies inveclve

the estimation of Var(X).

Various studies have been conducted in
order to compare these methodologies
against each other: Law and Kelton (1982)
empirically investigate the NOBM,
independent replications, time series
modeling, spectral, and regeneration
methodologies. Their results are based on
a large number of simulation experiments
with certain simple simulated processes;
these experiments were all of very limited
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run length (< 2560 observations). Goldsman
and Schruben {1984) consider the NOBM and
STS confidence interval estimators. MWith
regard to several asymptotic performance
characteristics of interest, they find that
the STS estimator strhictly dominates the
NOBM estimator. Similarly, Meketon and
Schmeiser (1984) show that the OBM
estimator outperforms the NOBM estimator.

The current paper compares the variance
estimators arising from a number of the
above confidence interval methodologies.

He pay special attention to the STS and OBM
estimators. Our criteria for comparison
among estimators include estimator bias and
variance. Section 2 of this paper provides
necessary background material. Results are
presented in Section 3, and conclusions are
drawn in Section 4.

2. BACKGROUND
We say that {Z{t): t>0} is a continuous

time stationary increment stochastic
process (SISP) if

a. 2{0) = 0 and
b. for any positive integer n, h 2 0,
and t, £ t. <€ ... < t ,
1t - "2 = = 'n
(Z(ti), Z(tz)—z(ti), eens Z(tn)-Z(tn_i))
and

(Z(t1+h)—2(h), Z(t2+h)—2(t1+h), e
Z(tn+h)—2(tn_1+h))
have the same joint distribution.

(The analogous treatment for the discrete
time case is straightforuward.) As a simple
example, suppose that {X(t): t20} is a
stationary stochasti& process. Then

2(t) = ¢ x(s)as
is an SISP.

He shall be interested in the following:

mean rate of increase of

Efz{t)]/st ( = E[X()]).

the variance time curve, V{(t) =
var[z(t)].

a. the
Z{t), a =

b.
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To motivate the variance time curve, again
suppose that {X{t): 0<t<T} is a stationary

process and Z(t) = Jé X{s)ds. T is the

run length of the simulation. Further,
denote the autocovariance function of
{x{t)} as R{u) = Cov(X(s),X{s+u)). Under

mild conditions [cf. Goldsman and Meketon
(1985)],

t 2
v{t) = 2 JO (t-u)R{u)du = a“t + b + o{i/t)

for appropriate constants 02 and b. 02 is
called the process variance; this quantity
is useful in establishing confidence

intervals for A. Note that V(t)/t =

02 + b/t plus an order term. So for large

V(T)/T = o°.

enough run length T,
He now review various well knoun estimators

of 02:

2.1 Nonoverlapping Batched Means

Here, we fix t = T/k and divide {z{u):
0<ugT} into k contiguous, nonoverlapping
batches, each of length t: Batch i
consists of {Z(u): (i-1)t < u < it},
i=t,...,k. Assuming that b/t is “"small",
we see that o2 = v(t)/st =

E[{z(it)-Z((i-1)t)-at)?]/t, v, by
stationary increments. A reasonable

”~
estimator for A is clearly a_ = Z{T)/T.

T =
~

Substituting A; for A and then averaging

across batches, we arrive at the

nonoverlapping batched means estimator for

2
(-]

o2 =4 z$=1[z(it)-z((a-i)t)-iTt]Z/t.

This is the most popular process variance
estimator used in simulation analysis.

Q
il

2.2 QOverlapping Batched Means

All batches of the form {Z(u): x<ugx+t},

0 { x £ T—t, can be used to estimate 02.
This leads to the overlapping batched means
estimator:

~2 1 T-t . 2

oy E 7% IO [Z(x+t)-Z(x)-th] /t dx.
Meketon and Schmeiser (1984) introduced the
OBM estimator for simulation purposes.

This estimator seems to be more efficient

in its use of observations than the NOBM
estimator.

2.3 Spectral Representation

The starting point for another variance
estimator is the expression:
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v(t) = 2 [ (t-u)R(u)du.
The autocovariance function R{u) is
commonly estimated by the method of
moments:

Siy - 1 fT-u 7 o
R(u) = 7 jo (X(s)-A7) (X(s+u)-2y) ds.
These facts yield the spectral estimator

for 02:

~D - g t _ ~
OS = t JO (t u)R(U)dU-

Other spectral-type estimators are
described in Meketon (1980) and Goldsman
and Meketon (1985).

2.4 Standardized Time Series

limit theorem,
the

Using a functional central
it is easy to show that as T - w,
standardized time series, BT(s)

(z(sT)—s2(T))/{(adT), converges to a
Brownian bridge process, B(s), 0¢s<i. [A
Brownian bridge process is Brownian motion
which is conditioned to start and stop at
zero.] Schruben (1983) observes that:

el { jé B(s)ds ]2 ] = 1/12,

where [} B(s)ds is the signed area belouw
o g

the Brownian bridge process. Under mild
mixing and moment conditions, we can
replace B(s) by BT(s) in the above equation
to get:

vim 22 e[ ([T (2(s) - 2z(1))as )2 ] = o2
T-w T
Dividing the {Z{t)} process into k
contiguous, nonoverlapping batches,
appealing to stationary increments,
Schruben derives the so—called area

estimator for 02:

and

~2 _ 12 13 2
Oh =5 Liag A7
where
= [it .
A, = J(i—i)t[ Z{u) - z{{(i-1)t)

- (u-(i-1)t) (Z(it)-zg(i—i)t)) ) du.

Schruben (1983) and Goldsman (1984) derive
variance estimators based on other
functionals of Brownian bridges.

3. RESULTS

He wish to compare the bias and variance of
the variance estimators from the previous
section. The bias of an estimator is the
difference betuween its expected value and
the parameter of interest; low bias is
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desirable.
prove:

Goldsman and Meketon (1985)

Theorem 3.1: Under mild conditions

{including t~= and T/t - =),

2
~2 ~2 ~2 v(t gt 1
Elegl = E[og]l = E[og] = —%—l r 5= o)
and
~2 12 rt 3V{t
Since V(t) = %t + b+ o(1/t), we have:
S P N
Blas[oB] = Blas[oO] = Blas[os] =
2
b [
Tt o{ist)
and
. ~2 3b
Blas[cA] =Tt o(1/t).

Concerning the variance of the variance
estimators, Goldsman and Meketon also
prove:

Theorem 3-2:

var(o2) = var(s3) = 20™t/T
and
~2y ~2y 4.4
Var(ao) = Var(os) = 30 t/T.

4. CONCLUSIONS

In terms of the bias and variance criteria,
the 0OBM and spectral variance estimators
are superior to the NOBM estimator {(since
the former estimators have less variance).
Further, the variance of the OBM estimator
is less than that of the STS area
estimator. Comparison of the OBM bias to
the STS bias is not so straightforward;

but if the quantity T/t = «» sufficiently
quickly, the OBM estimator clearly
dominates. Further, Goldsman and Meketon
(1985) show that in a number of respects,
the OBM estimator has smaller mean squared
error [variance plus squared bias] than the
STS estimator.

By no means is all hope lost for the STS
methodology. Schruben (1983) shows how to
combine the NOBM and STS area estimators so

as to produce another estimator for 02.

This combined estimator has variance

o4t/T; however, the bias of the combined
estimator is still not directly comparable
to that of the OBM estimator.

It remains to be seen how the 0BM and STS
methods fare against each other in the
small sample environment. This is a topic
of current study.
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