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ABSTRACT

An algorithm is being developed for
discrete variable stochastic systems
by computer simulation. The

optimization of
that are modeled
algorithm is basically a

complex type search method that interacts with the
simulation model. The capabilities built in the
procedure allows it to take into account the
stochastic nature of the responses of the simulation
model and arrive at a reasonable solution with a
certain level of confidence. This paper reports

preliminary results obtained from this procedure which

is undergoing its final stages of development. An
application of this procedure to optimization of
operation of a manufacturing cell is also presented.
1. INTRODUCTION

Computer Simulation is often employed to analyze
stochastic and complex systems for a given decision

policy. Also the outcomes of various policies are
usually compared through multiple comparisons or
design of experiments employing computer simulation as
the means of experimentation. However, if a decision
policy is defined as a set of values for several
decision variables of the system, simulation can be
used as a means of optimization of such systems. |In
other words, simulation model can be used as an

objective function of an optimization model for which
the decision variables represent the variables that
are to be optimized. To clarify this, consider
following examples.

The manufacturing cell shown in Figure 1 consists of
three machining centers  that perform  their
corresponding operations on the part that goes through
these centers in series [6]. Each machining center
consists of a number of similar machines in parallel,
In addition, there are a number of robot manipulators
that transfer parts from one machine to the next. A
buffer stock of a given size is also provided between
two machining centers to facilitate the smoothness of
the flow of parts through this system. BDue to the
randomness  of the operation times and other
complexties involved, this system can best be analyzed
through computer simulation. For instance, its
production rate can be evaluated for a given number of
machines from each type. However, more useful and
practical results can be obtained if one could
determine the optimal number of machines from each
type to employ to maximize the production rate or to
minimize the unit production cost under system's
constraints.

As another example consider a two way highway one lane
of which is blocked in a section of tength L for
construction purposes [11]. As a result cars from both
directions have to take turns for using the open lane.
This is accomplished by installing traffic lights at
the two ends of the construction zone. This system too
can effectively be modeled by computer simulation. For
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this system one might be interested in minimizing the
overall delay per car. The decision variables to be
optimized in this system are the Jlengths of green
light in each direction.

In optimizing systems such as above, one is usually
interested in finding the optimum values for the
control variables such that the total operation of the
system is optimized in terms of a given measure of
effectiveness. In order to optimize such systems a
systematic procedure in the form of an algorithm is
needed to be capable of interacting with the
simulation model and obtaining the optimal values for
the decision variables. One of the main problems in
developing such algorithms is the stochastic nature of
the responses of simulation models. Since the result
of simulation is almost always noise corrupted,
comparison of the alternative decision points, which
is the building block of almost all search methods, is
not always reliable for simulation output analysis.

Several algorithms developed in the literature for
optimization by simulation that consider the noisiness
of the responses can only be applied to systems whose
decision variables can be represented by continuous
variables ( e.g. SAMOPT by Azadivar [2] ). This type
of problems include the highway traffic example
mentioned earlier, but not the manufacturing system
problem, because the decision variables for the latter
are discrete, In some cases of discrete variable
simulation-optimization problems, rounding up of the
continuous optimum values for decision variables have
been used [3], [4]. This procedure is not recommended
in most cases because it can lead to a point which may
or may not represent the real discrete optimum [7].

An algorithm has been proposed for optimization of
discrete variable simulation models and has been
tested with known stochastic functions [1]. The

results from these tests have been very encouraging.
In this paper we describe this procedure briefly and
apply it to a steady-state simulation model.

2. FORMULATION OF THE PROBLEM

Consider the problem of

minimizing a system response
f(X) subject to a set of

constraints as follows :

Minimize f(X)

subject to a; S x; Scp, i =1,2,.,n (2.1
g;jX) <bj, §=1,2,.,m (2.2)
h(X) < ey, k=1,2,.,p (2.3)
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where X is the vector of decision variables, 's i
= 1,2,....,n and constraints a; £ x; < ¢
1,2,...,n in (2.1) are the upper and lower bounds on

each variable. These bounds arise from prior knowledge

-xi
| =

of the system, equipment limitations, and
specifications on the product or process. The
constraint g;(X), j = 1,...,m in (2.2) are the
explicitly kiown deterministic functions in terms of
the independent variables of X. The constraints
h(X) in (2.3) are implicitly unknown stochastic

functions or other responses from the system that must
be evaluated via computer simulation.

3. THE SEARCH PROCEDURE

The simplex method as proposed in [12] and [13] is a
search method in which several points (usually n+i
where n is the number of variables) are selected to
form a simplex. The objective function is evaluated at
all these points and the point with the least
desirable value for the objective function is dropped
and replaced by a new point according to a particular
rule. This process 1is repeated and as a result the

simplex moves steadily towards the
the optimum. This search method
unconstrained optimization problems.

region containing
is applicable to

A modification to the simplex method has been proposed
by Box [10] to give it the capability of solving
constrained problems as well. The modified simplex is
calied Complex (Constrained-Simplex) method and
handles constraints by the use of a flexible simplex
of more than n+l1 vertices, which can expand or
contract in any or all directions. The complex method
of Box for continuous variabie problems constrained by
bound and explicit constraints, can be summarized as
follows:

The vertices of initial simplex are randomly generated
by the use of pseudo-random numbers and the boundaries
of each wvariable. Each vertex is evaiuatd and the
worst point is replaced by a point obtained by its
reflection through the centfoid of the remaining
points. If this trial peoint is also the worst, it is
moved halfway towards the centroid of the remaining
points. The above procedure is repeated until at
least one constraint is violated., |[f the trial vertex
vioclates a bound constraint on a variable, that
variable is re-set to an infinitesimal value inside
the appropriate limit. If an explicit constraint is
violated, the trial point is moved halfway towards the
centroid of the remaining points. This process
continues until all points of the simplex collapse
into its centroid.

To apply the complex method to the discrete variable
simulation models two major points have to be taken
into consideration. First, provisions have to be made
to’ assure the points in the original simplex and
subsequent vertices consist of integer values for the
decision variables. The second major concern is the
procedure by which the responses of the simulation at
each point are compared. Note that the responses of
simulation models are often stochastic. Thus, if a
simutation run at one point yields a better response
than another point, this does not necessarily mean
that the first point is better than the second. It is
possible for the variability of the responses at these
two points to lead to erroneously preferring one point
to another., In the present algorithm [1] these two
points and the stopping rules have been treated as
explained in following three sections.
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3.1 Generation of Discrete Simplex and Vertices

Rather than selecting the initial simplex randomly,
exploratory runs are made through a uniform search and
a suitable initial point is selected. Using this point
and boundaries of each variable, 2n additional points
are located. Each pair of these points are selected as
almost halfway between the initial point and the
boundaries of each variable at each side of the
initial point. Using this method of selection of the
first simplex helps in making sure that the points are
discrete.

After the first simplex has been constructed the
subsequent points are found following the rules given
by the compliex method. However, if a point is not

discrete, following the method suggested by Beveridge
and. Schechter [9] the closest discrete point is
selected. Note that this rounding is hot the same as

solving the problem for the continuous case and then
rounding the result. These points are all intermediate
points and their function is to move to simplex along
a desired direction. In the final stage when a point

is to be selected as the optimum, more thorough
investigation of the neighborhood of the point is
conducted.

3.2 Comparison of Decision Points

The search algorithm for the discrete optimization
probiem requires that the responses of the system be
evaluated at different points and compared. The
results of comparison is supposed to reveal the worst
point. However, if the response is noise corrupted,
the distinction of the worst point is not easy. Since
due to the stochastic nature of the problem selecting

one point over others is always accompanied with
uncertainty, the second best thing to certainty would
be to seject among two points with a high level of

confidence.

Suppose that in addition to the mean response at each
point, the confidence intervals on the mean are also
evaluated around the mean at a given level. Obviously
the range of these intervals will be narrower for
longer simulation runs. Let the Tlower and upper
confidence limits on the response of the system at
point X at B confidence level be represented by ZL (X)
and 'ZU(X) . Now if after comparing the responses at two
points, it is found that ZU(X1)<ZL{Xz) . we can almost
be sure (with a certain probability) that point X1 is
better than point X2. If this conclusion is made based
on a relatively short simulation run there will not be
any need to continue running the model further for the

unfavorable point. However, if such a conclusion
cannot be reached, running the model for a longer
period that results in narrower confidence intervals

may provide a better chance for such conclusion.

From the above discussion
confidence intervals into the optimization process
results in two major advantages. First, it makes the
results of comparisons among the responses of the
system at different points more reliable. Secondly,
the procedure causes the allowable simulation runs or
the computer time be spent more economically.

it is seen that entering

For constructing confidence intervals,
batch means method suggested in [5]
extended in [1] is employed.

the modified
and further
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3.3 Stopping Rules

In this algorithm there are two stopping rules.

a) The algorithm stops when all points in the
simplex collapse into one of the vertices. This point
is then identified as the optimum. There is an option
available to the user to request the evaluation of the
neighborhood of this point for a possible better
optimum.

b) It is possible that at the final stages of the
process all points of the simplex be tried for the
reflection without success. In that c=2se the best
point in the current simplex is identified as the
optimum. The option of the searching the neighborhood
of this point is also available,

L. APPLICATION TO A ROBOTIC MANUFACTURING SYSTEM

To demonstrate the capabilities of the algorithm it is
applied to a robotic manufacturing cell consisting of
several robot manipulators and three work stations
(roughing lathes, finishing iathes and grinders) in
series. Each work station consjsts of several similar
machines each of them capable of performing the
required operation independently (see Figure 1}.

The workpieces are introduced into the system by the
conveyor which can be adjusted to any speed. Each part
is first picked up by a robot and is loaded onto a
lathe for rough sizing. During the time the workpiece
is on the lathe, it does not require the robot's
attention. When this operation is completed, the robot
returns to the lathe and unloads the workpiece , and
loads it onto a second lathe for finishing. Because
the roughing operation is faster, intermediate storage
is provided between the two lathes. This means that if
none of the finishing lathes are available, the robot
will store the workpiece in the buffer area. As
before, the robot's attention is not required during
the finishing operation. Upon completing the finishing
operation, the robot unloads the workpiece from the
lathe and moves it to a grinder and returns its
attention to other machines. Upon completing the

grinding operation, the workpiece is
unloaded onte a conveyor which removes
part from the manufacturing cell.

automatically
the completed

The robot manipulators are employed for five different
duties: to load the first lathe; to unload this
machine and load the second lathe: to unload the first
lathe and put the wrokpiece in the buffer; to remove
parts from the buffer storage and load the finishing
lathe; to remove the parts from the finishing lathe
and load the grinder. Under normal conditions, several
workpieces are in the system at the same time. The
robots respond to requests for services based on a
priority list for the operations. For example, if more
than one workpiece is waiting to be moved, the
priority will be assigned in the order of finishing
lathe, roughing lathe, buffer storage and input
conveyor respectively. Priorities are assigned in a
way to make the flow of workpieces more efficient. For
instance if the robot unloads the roughing lathe prior
to the finishing lathe, the part will become a burden
on the limited capacity of the buffer storage.

The objective for this optimization problem is to
select the optimum values of controllable variables to
minimize the unit production cost. There are four
discrete valued decision variables 3 the number of
robot manipulators, and the number of machines in each
work station. The size of buffer and the speed of
robots and machines are assumed to be constant. The
variables and parameters of the system are defined as
follows:

% X1 = number of roughing lathes

* X2 = number of finishing lathes

* Xa = number of grinders

* X4 = number of robot manipulators

* Buffer size : 30

% Service time of roughing lathe: exponentially
distributed with a mean of 3 min

* Service time of finishing lathe: exponentially
distributed with a mean of 4 min

Finishing Lathes

Roughing Lathes

Robot

L

: L
N
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[]

Grinders

]
]
L]
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Figure 1: An Example of A Robotic Manufacturing Cell
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# Service time of grinder: exponentially
distributed with a mean of 2 min

% Transport time by robot: exponentially
distributed with a mean of 0.5 min

The operating cost
selected as follows;

for each machine or robot is

of
of
of
of

% QOperating
% Operating
% QOperating
% Operating

cost
cost
cost
cost

roughing lathe = $ 40.00/hour
finishing lathe = § 50.00/hour
grinder = § 20.00/hour

robot = $§ 90.00/hour

The unit production cost is calculated as follows;

% Unit production cost = Total operating cost/Number
of units produced

4.1 Unconstrained Optimization

The unconstrained optimization problem for the above

manufacturing system is represented as

‘minimize y = £(X)
subject to 1£x1 210
1<x2210
1<x3 510
1< x4 £3
Here f(X) is the noise corrupted response of the
simulation model for a set of values for decision

variables represented by the vector X. To optimize
the problem, the algorithm was run with the simulation
program which is written in SLAM simulation language.
The algorithm stopped after evaluating 35 points. All
points in the last simplex were used for reflection,
but no better point was found. Then according to the
second stopping rule given 3.3.b the optimal
solution was obtained as

in

X1 = 5 roughing lathes

x2 = 5 finishing lathes

X3 = 5 grinders

X4 = 3 robots

Optimal unit production cost = § 11.65
Confidence interval on the optimum value

11.72]

= [11.57,

L.2 Constrained Optimization

The general constrained optimization problem may
consist of bound, explicit and implicit constraints.
For this problem, in addition to the bound constraints
an explicit constraint (g1) and an implicit constraint
(h1), are considered. The explicit constraint is an
analytical function of the decision variables and
represents the limit on the available budget to spend
on all machines. The implicit constraint is imposed on

the acceptable minimum production rate which is a
response of the simulation model.
g1 = 2000x1 + 3000x2 + 1000xs + 5000x4 < 45000
h1 = Expected production rate per hour 2 50 units
L.1)
Due to the stochastic nature of hi, the above
representation of the constraint for hi is not

mathematically correct, because the left hand side is
a2 random variable while the right hand side is a
deterministic value, This constraint can better be
stated in conjunction with a probability assigned to
the possibility of violation of the constraint. This
can be accomplished by expressing it as
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PLh1250]=1-8 (4.2)

where B
maker is

(0<B < 1) 1is the risk that

willing to accept for violating the
constraint. The constraint in (4.2) is now in a form
that can be handled by the optimization process. We

write this constraint as:

the decision

HLt 2 50 (4.3)

where HLy is the lower limit on the response hi with

B=0.1 confidence level.

After 29 experimental search points the algorithm
stopped when all vertices of the last simplex
coincided. This satisfied the first stopping rule
given in 3.3.a. The optimal solution obtained is

X1 = 5 roughing lathes

x2 = 5 finishing lathes

X3 = 4 grinders

X4 = 2 robots

Optimal unit production cost = $ 11.99

Confidence interval on the optimum value = [11.80,

12.171

5. EVALUATION OF THE RESULTS

The results from this application show that the
proposed method in [1] is an effective tool for
optimizing discrete variable stochastic systems
through simulation. In  unconstrained problem only
1.17% of possible points were evaluated (Number of
evaluated points/All possible points in the feasibie
reglion = 35/3000 = 1.17%). In addition, by using the
sequential procedure to compare alternative systems

the computer time was utilized very economically.
More specifically, since for many points the
conclusion was reached before running the simulation
for the full length of the simulated period, a
considerable amount of the computer time was saved.
For instance, for the unconstrained probiem, the
average simulation time per run was 36.57% less than

the time specified for a full length run. The saving
was 34.48% for the constrained probiem.
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