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1. INTRODUCTION

The Box-Jenkins methodclogy is a model based
approach to analyzing and forecasting time-—
series which has been especially successful
in applications to short term forecasting.
Many other time-series methods, such as the

various forms of exponential smoothing are
special cases of this model. The approach is
exhaustively descrihed in E11. It

presupposes a form known as the ARIMA model,
short for AutoRegressive Integrated Moving
Average. In its forecasting form, the
forecasted value of the time-series is a
finite linear combination of previous
observations of the series, and of previous
observations of a series of shock terms. The
shock terms are completely random and are
assumed to embody all the unknown factors
that are relevant to the series of interest.
As with many other mathematical models, the
coefficients must be estimated by non-—linear
approximation methods. (AN important
exception is the class of multivariate
models including regression, analysis of
variance and discriminant analysis whose
coefficients can be evaluated as closed form
enpressions in the data. This +feature of
these models is at least partly responsible
for their great popularity.)

In this paper, the emphasis is mainly on the
estimation of the coefficients of ARMA
models by various non—-linear approximation
algorithms. A non—linear approximation
method can be simply described as a trial
and error approach to minimizing the error
in a model. This error is usually taken as
the sum—of—-squares of the residuals, {the

exact Ffor of the error term is actually a
function of the probabilistic assumptions
about the model. {The residuals can be

defined as the difference between the values
that would have been forecasted by the model
and +the past wvalues that were actually
observed. In geometric terms this involves
finding lowest point on an N-dimensional
surface in where M is the number of coeffi-
cients to be estimated. For example, if two
coefficients are to be estimated, the
surface lies in 3F—dimensional space with the
n-axis and y—axis representing the
coefficients and the z—axis representing the
sum—of-sguares of the residuals. Such
methods start with an educated guess for the
location of the minimum point and then use
information about the shape of the surface
to improve the value by +finding the
direction of steepest descent. The Marquardt
algorithm {21 is advocated for estimating
ARIMA models in [13 and we use it most often
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in the case of univariate series. We also
use several other estimation methods in our
programs .

We introduce another estimation method for
ARIMA models based on a general estimation
method proposed by Nelder and Mead [43 and
brought +to the attention of the author by
the article [31. It is based on the concept
of a simplex in N-dimensional space named
here the siwmplicial method so as not to
associate it with the well known simplex
method of linear programming. For example,
in *the case of the above mentioned two
dimensional surface, the simplex is a
triangle and the direction of descent is
determined by a straight 1line from the
highest point through the midpoint between
the two other points. Though this may not be
the direction of steepest descent, it can
generally be expected to be a direction of
descent and is far easier to determine than
the direction of steepest descent obtained
by calculating derivatives.

2. ARIMA Models and Box—Jenkins Method

A time-series is a series of values {u(t)3
defined at egually spaced time intervals t =

0,1,2,... A time—series is an autoregressive
process of order p, AR{(p) if it depends on
its previous values accarding to
¥{t) = a(l) x(t—-1) + af{2) ={t-2) + ...
+ a(p)xf{t-—p) + ef(t)
where {ef{t)} is a series of independent
identically distributed normal random
variates, called the shock series.
x(t)}> is called moving—average of order q,
MA(g), if it satisfies the relationship
w{t) = e(t) — b{1) e{t-1) — b{De(t-2) -
vue = blg)x{t-q)
Combining these two forms gives the
ARMA(p,q) model
x{tr)=a(1lI)x{t—-1) +  a(2)x{t-2) + “ea

+ a{pini{t—p) + e(t)-b{ldel(t-1)
- b{2)e(t-2) - ... - bBi{gIxn{t—qg)

The ARMA(p,q) models are usually assumed to
be stationary, which means, essentially,
that one piece of the series has the same
behavior as another piece. In particular,
the mean and variance of different sections
of the series remain constant. This

assumption is important for identification
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of the series, i.e. determination of (p.qg)
order of the series. However, the assumption
of stationarity excludes most commonly
chserved series in business and economics,
such as any series exhibiting a growth
trend, and hence the use of the ARIMA model.

If {X{t)3? is a series whose differences
Xy - Xtk-1)3 or seasonal differences
{X () — X{t—-5)3> Form a stationary ARMA

model, or if several applications of such
differencing form an ARMA model, then {X{&)}
is called an Integrated ARMA model or an
ARIMA model. Actually, the definition of
ARIMA is more general than described but
this definition is sufficient for most
applications. When the resulting ARMA model
has been determined, then the original ARIMA
model can be recovered for forecasting
purposes.

The Box—Jenkins wmethod consists of three
stages: (1) identification, in which the
series is transformed by differencing and{or
octher transformations until it is
stationary, then an examination of the
autocorretation function and the partial
autocorrelation function suggest the {(p,q)
order of the resulting ARMA series, €2)
estimation af the coefficients {ar
parameters) ARMA series and (3) diagnostic
checking of the residuals to ensure that all
the structure in the series has been
accounted for by the estimated series.

The preceding paragraphs describe the
univariate model, however 1if 1let ()3
dencte a time dependent vector, say of
dimension m, and a and b above m x m
matrices then we have described the
mizl tivariate ARMA model.

EXAMPLES UNIVARIATE MODELS

We shall first illustrate the Box—Jenkins
approach on univariate simulated series. We
start by simulating a sequence af
independent normally distributed numbers
with mean 0 and standard deviation 1 as the
series e(t) above. We generate several terms
more than the desired length of the x(t)
series in order to minimize starting
effects. Then using ( ) above we can
generate the series x{t). The variocus types
of models can perhaps best be illustrated by
three ‘canonical® examples, namely, the
AR(1), MA{1) and ARMA(1,1) models. A plot of
the series, the autocorrelation function
(ACF) and partial autocorrelation function
(PACF) is shown below for each of these
models as realized with a generated series
af 100 terms.

Figure 1. Generated AR{(l) series,

a(1)=0.8

%% AUTOCORRELATION FUNCTION %XxX

K R
[+3R 233332233222 23 2328 [ I 1

jRR 232322228222t i .74
ZIRERKKKRKK i .49
JIRRKkX i .27
41 %KX .12
51 HIE ¢ 74
bix i —.08
7ix i —.07
gt i —.04
i HE. 1 1
101% ;] -05
131% i .07
121% I .06
131 % P .05
141 % P .05
151 i —.01

Table 1.a

%X PARTIAL AUTOCORRELATION XXX

4 P>
1ikkkokkkkkkkkkkk P .74
2i%% i —.11
Iik% i —.11
4% HEE ¢}
Sik% i —.14
61 i .03
7ix I .09
ai i —.01
24 i .04
101 HE ¢ X1
114 f —.04
124 } —.01
131 i .04
14} i .01
1St &% Po—.12
Table t.b

Tables 1 (a,hb)
ACF and FACF of AR(1) series

144



Microcomputer-Based interactive Analysis of Univariate and Multivariate ARIMA Models

ML

iP

A f\. il
T

Figure 2. Generated MA(l) series,

Tables 2 (a,b), ACF and PACF of

MA{l) series

XXX AUTOCORRELATION FUNCTION XXX

|

b{(1)=—0.

K RA{K)
[ ER 332333332333 33229¢ ¢ i1
TIRRKKKRRKKK i .5
24 i —.03
3% ! —-.08
4% P —.09
Sikkk P —-.17
3R £ 2 i —.18
Tik i —.0B
8! i ~.03
24 i 0
101 % i .05
11ix% i .06
123 H O3
131% N P .09
141 %% i .14
153 i .01
Table 2.a
k% PARTIAL AUTOCORRELATION XXX
K P (K)
1ikkkkkkkkkx L
AR S S 243 4 1 I —.37
Iikkx i .18
A1 kkkxk P —-.22
Six ! —-.05
238 3 HEE |
7i% P .05
8ixx ] —-.1
ik I .06
10} I 4]
111 i —.01
121 LI ¢}
1XIxx i .14
143 IS
150 % t —.07
Table 2.b
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Figure 3. Generated ARMA(1,1) series,

a(1)=)=0.8, b(1)=-0.8.

Tables 3 (a,b) ACF and PACF of
ARMA{1,1) series

*Xxx AUTOCORRELATION FUNCTION XXX

K R
[ AR 2244332820322 0 88 . |
Likkxiokkkkkkokokkkokk i -84
AR 2323223283 LI =)
Jikkkkkx i .32
41 %% .14
S i .01
bixk i —.08
7ix i —.08
al P —.04
g1 P90
101 i .04
111% i .05
121% I .05
131 % i .05
143 .04
151 i 0

Table 3.a

XXX PARTIAL AUTOCORRELATION XXX

K F )
LikkkRRkkRIKKKKXKK i .84
2ikkkkkkkixx } —-.53
Jikkkk .22
4ikkkx% i -.24
= i .04
i X T .07
} i -03
H R ¢
! i .04
101 i —-.03
11} P—-a02
121 .04
13518 .02
141% P06
151X I —-.08
Table 3-b
The main tools for identification are the
graph of the series, the sample
autocorrelation function and the sample
partial autocorrelation function.
From the graph of the series certain gross
behavior may observed such as non—
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stationarity due change in level or trend.
Alsc as we see from the graphs in Figure i,
the AR series seems to have more “memory’
while the #MA series looks more like white
noise. {(The graphs of these three series are
quite similar as they were all generated
from the same shock series.)

An MA{g) series has the property that
theoretical autocorrelation function is zero
for lags greater than g, and dually, an
AR{p) series has its theoretical partial
antocarrelations egual to =zero for lags
greater than p so that we can seek these
properties in the corresponding sample
functions to identify these particular types
of series. A rough estimate for the standard
error of the sample auto— and partial
autocorrelations is 1/{square-root of n),
where n is the length of the series so that

a term is significantly different from zero
as the 5% level only if its absolute value
is greater than two standard errors i.e. >

2/ (sqrtin)). In practice, most (stationary,
non—-seasonal) series can be adequately
modeled by ARMA(p,qg) with p,gq <= 2, and
these examples are exhaustively discussed
and graphed in many texts, e.g. [11, so that
a direct comparison with these *textbook®
models can often go a 1long way toward
identifying an adequate model.

Often the identification stage will present
more than one possible model. In such cases
two or more different models may be
estimated and the ‘*best”’ one chosen
according to criteria which can be examined
at the estimation or diagnostic checking
stages. Usually, such alternative models
will yield barely indistiguishable
forecasts.

=
D

ESTIMATION OF UNIVARIATE MODELS

This is the process of determining the
actual coefficients of the model. For the
ARMA estimation we discuss three methodss
(1) the Marquardt [2] algorithm as presented
in Box and Jenkins [113, (2) the simplicial
iteration algorithm of Nelder and MeadL[31,
and (3) the algorithm of Spliid [51. The
Marquardt and simplicial algorithms are
maximum likelihood methods. The Marquardt
algorithm is extensively described in [113.
The algorithm if Spliid is described in [51
and compared with the Marquardt algorithm.
Bpliid calls this method “essentially a
method of moments, although not in a
traditional form.” This method is usually
even faster than the Marguardt algorithm.
Also this method provides its own starting
values at the first iteration and may be the
best way of providing starting values when a
maximum likelihood estimator is desired.
Also this method works for the more general
situation of multivariate series with
exogenous variables and we use this method
for the multivariate case.

In this paper, I will briefly describe the
simplicial algorithm as, to my knowledge,
this method has not been elsewhere discussed
in +the context of ARMA estimation, and

146

present an example using all three

estimation procedures.
MARBUARDT AL GORITHM

a tentative model and a trial set of
coefficients for that model, the basic
equation for the series and the observed
data can be used to calculate the residual
{or error) terms ef{t). The maximum
likelihood estimator of the coefficients is
equivalent to those cbtained by minimizing
the stin of squares of the
residuals (85R):

Given

2

858R sumlet(t) 3

The algorithm of Marquardt [21 is propounded
in £11 as an efficient non—linear estimation
procedure. This method is an efficient
estimation procedure whenever the function
85R {(as a function of the parameters to be
estimated) i sufficiently smooth and
approximately guadratic near the minimum.
This method also gives the variance—
covariance matrix of the estimates so that
significance of the coefficients can be
assessed.

THE SIMPLICIAL ALGORITHM

The simplicial algorithm has as an advantage
the property of being very general in its

application so that it can be used Ffor
finding a (local) minimum of any function
without any knowledge of the form of the
derivatives of the function. Also the

estimation process does not reguire storage

of large matrices, matrix inversion of
solutions of systems of eguations. Under the
stronger assumption that the response

function is approsrimately guadratic near the
minimum, we follow Nelder and Mead in
fitting this gquadratic (after computation of

additional points) to estimate the variance
covariance matrix of the parameter
estimates, though this process does reguire

matrix inversion.

A motivation for the application of this
estimation algorithm is the desire for a
self contained tool for the study of perhaps
more general time series models than the
Box—Jdenkins ARIMA models in situations where

there is not sufficient smoothness in  the
dependence on the parameters for the
derivative methods to be applicable. A brief

description of this method follows:

tet FLOl, PIL1}, ..., PELml be m+l points in
m—dimensional space, defining a simplex,
f(P) the function we wish to wminimize, in
our case of an ARMA model the sum of squares

of residual of the ARMA model with the
components of F as its parameters. We
arrange the points so that PEOI is the
"worst " point i.e. f(PEOT)Y >
F(PLil) for i = lgaeaym.

Let F{(ps;g,-.-.) be a function depending on
several parameters, in the present case we
are considering F as the sum of sgquares of
the residuals of an ARMA model where p,Qp--»
are tentative values of the autoregressive
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and moving average parameters. I+ k
parameters are to be fitted we consider a
simpley in the k~dimensional parameter space
formed by k+1l points. Each of these points
has an associated value of F. At least one
of these points will have a worst (i.e.
largest) value of F. A reasonable and simple
choice for for an improvement in this worst
value is a point lying in the direction of
the straight line through the center of the
remaining points of the simplex. This is the
basic idea of the algorithm that replaces
the “"steepest descent” concept of derivative
methods. The new point is "better" than the
"worst” then it replaces the "worst” point
of the simplex and the process is repeated.
If PELcenterl is the midpoint of the
worst points i.e.,

non-—

PLcenterl=(PL1d+...+ FLml)/m
then the new reflected point is given by

Flreflectedl=PLO0l+{1+a) (PLcenterl- PLO1),

where a is a positive constant known as the
reflection coefficient. (IF a=1, this
carresponds to exact geometrical
reflection). If the point obtained by
reflection is better than the "best"” point
of the simplex, then a new point is tried
which is yet farther from the worst peint

along the same straight line at a distance
determined by an expansion coefficient. I+
the reflected point is worse than the worst
point of the simplex, then this point is not
accepted and we try a contracted new point
given by

PLcontractedl=PL0O]1+ b(FPLcenterl - FPLO1),

where the reflection coefficient ¢ < b < 1.
Reflection usually occurs as convergence is
approached. If the reflected point is better
than the worst, then it replaces the the
waorst point and the process continues. If
the reflected point is worse than the worst
then all points of the simplex are shrunk
towards the best point i.e. each point, ~F,
other than Plbestl is replaced by the
midpoint between P and Pibestl. This process

will always converge to some point which is
a local minimum. A Pascal program for the
general use of the simplicial algorithm is
given in [21.

AN EXAMPLE OF UMIVARIATE ESTIMATION

An ARMA(1,1}) series with 200 terms was
generated with autoregressive coefficients

ar€1)=0.8,
maf1)=-0.8 .

and moving average coefficient
This series was, estimated on a

COMPAR portable microcomputer with an 8087
math coprocessor. The estimations were
performed without back—forecasting. Using
the Marguardt algorithm with zero initial
parameters convergence was achieved in 5
iterations and 7 seconds. With the
simplicial algorithm, convergence was

achieved in 18 iterations and 15 seconds.
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S.8. t-value

arl 13: 0.6892 0.0527 13.084
maf 2}: -0.7554 0.04464 -—16.295
squared residuals: 206.86
shock variance: 1.04475
Correlation Matrix

1.0000 0.2044

0.2044 1.0000
Table 4.a. Results of estimation with
Marquardt algorithm

S.€a t

arf11: 0.6962 0.0525 13,2546

.mab23: ~0.7502 0.0650 ~11.5424
squared residuals = 206.857
shock variance= 1.045
Correlation Matrix

1.0000 0.3193

0.3193 1.0000
Table 4.b. Results of estimation with

simplicial algorithm

Table 3.c Results of estimation with Spliid
algorithm

S5.8. t
arf1]: 0. 6601 0.0781 8.452
mal2l: -0.7142 0.0574 —12.432
squared residuals = 207.82

shock variance= 1.049

Correlation Matrix
1.0000 ©.4538

0.4538 1.0000
Table 3.Results of estimation with Spliid
algorithm

MULTIVARIATE MODELS

For multivariate models we
restrict ourselves to estimation
See [61,L7]1 for identification techniques
and references in them for maximum
likelihood estimation. We use the method of
Spliid which seems much simpler to program
(though we have not actually programmed the
maximum likelihood method). Spliid shows in
[51 that his method is much faster for large
models than maximum likelihood.

currently
programs.

We generate an bivariate ARMA(1,1) series of
300 terms from a from a bivariate white
noise series with covariance matrix:

T4 1

i_t 1 i
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and AR{1) matrix, A, and MA(1) matrix, B:
p= 1 .2 .3 B= 1 -0.2 —0.3 1}
I_ .6 =11 _| i 0.6 1.1
i.e. the vector shock series e(t) consists

of two white noise series with variances 4
and 1 respectively, and covariance 1. Such a

vector series is generated by computing a
square root of the (positive definite)
covariance matrix, 8, and letting X =8 =z,
where -4 is an uncorrelated bivariate

{normal) series,
0 and variance 1.

each component having mean

The series X is generated from

X(E)=A(1IX{t—1) + el{t) — B{llel{t—-1).

The estimation pFOgram, according to
Spliid®s algorithm, conveargence in 7
iterations and gave the following estimates.

Estimated autoregressive matrix:
AlL): 0.14804 0.27480
—~0. 66407 1.11103
Estimated moving average matrix:
B{1): —~0. 35035 —0. 15281
0.444467 -0.817%0
Residual error covariance matrix:
4.1678 0.9359
0.9359 1.0694

ARMA Estimates of generated series.

AN  EXAMPLE: HOUSING STARTS AND MORTGAGE
RATES

We examine the bivariate monthly series,
from January 1974 to April 1985 (112 terms)
with the components:

1. housing starts, thousands of units,
seasonally adjusted.
2. common mortgage rate as a percent.

Differences are taken for both series and
the resulting bivariate series denoted by X:

X =i ist difference of housing starts_f
; ist common mortgage rates _;
Using the 8pliid algorithm, we it this
series to a vector ARMA(S, 1) model with the
following coefficient matrices:
a1y = i_ -0.27 —b45.04_i
;_ ~0.00 0.33_;
a2 = 1 -0.81 -729.18_5
)
;_ -0.00 1.01 ;
A(3) = 1 -0.43 320.93—3
'
;~ G.00 —0.76_;
B(1) = i_—o.oz —354.62—3
;_—0.00 0.27_;
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The estimated model is :

X{E)=A{1) X{t-1)+A(2) X(E-2) +A {3 X {(Et-3)
2)
+ ef{t) — B{l)ef{t-1)

As X is the differenced series, the original

series, Y, can be determined by

Y{t) = X{t) + Y(t—-1).
Also, for prediction purposes, e(t) is
unknown and should be set to its expected
value of O, while past values of e can be

calculated (2) and the known data.

The algorithm converged in 21 iterations.

Though it is not clear whether or not this
model is properly identified, an obvious
point of interest in this model is that the
{2,1) elements are estimated as 0 in all the
coefficient matrices. This signifies that
past values of Housing 8Starts have no
predictive effect on Common Mortgage rate.
Conversly, the large values of the (1,2)
element indicate that Common Mortgage rates
have a predictive effect on Housing Starts.
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