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ABSTRACT

The problem of analysis of simulation output data is
motivated and put in the context of related
methodological problems. Examples are given to
indicate why this problem is important, and why it is
difficult.

INTRODUCTION

Simulation has evolved into an extraordinarily
powerful tool for systems analysis, and enjoys a
correspondingly high frequency of application. We now
have available several sophisticated languages for a
wide variety of types of simulation, together with
accompanying capabilities for model specification,
control of experimental conditions, output formatting
(not only final reports but also in data bases for
ease of postprocessing), and animation.

Further, the acceptance of simulation as an
appropriate analysis tool seems to be gaining even
wider acceptance, both in the industrial application
community and among researchers. The ability to model
a system "as it is" rather than "as it must be" to
admit an analytic solution is very appealing and less
open to the (nearly unanswerable) criticism of
"looking where the light is." As a matter of
practicality, one of the main historical drawbacks of
simulation, the sometimes great cost in terms of
computer resources, is becoming less severe as
technological advances in hardware make inexpensive
computing widely available.

It might seem, then, as if all the real difficulties
in using simulation have evaporated. There are,
however, difficulties of another type that will
probably never be overcome purely by advances in
software or hardware. These are methodological
difficulties, and are present regardless of which
language or computer is chosen; also, every user of
simulation faces these difficulties with every
project, although there may not be recognition of this
or appreciation of how important and intractable these
difficulties can be, Examples of methodological
problems in simulation are:

1. Determining whether the model assumed (and
presumably programmed correctly in the simulation)
is an accurate representation of the real system
of interest; this is often called a question of
model validity.

2. Choosing the appropriate constants or probability
distributions to use in driving the simulation.
This is sometimes referred to as input modeling,
and is related to the question of model validity,
since it is, in a way, a part of the modeling
process.
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3. Summarizing, evaluating, and interpreting the
output from a simulation model or from several
models of potentially competing systems designs.
This is usually called output analysis, and leads
naturally into related questions concerning the
design of the course of simulation
experimentation, such as specification of the
initial conditions for the run(s), determining the
length of the run(s), and deciding how many runs
to make of a given system configuration.

The focus here will be on this final difficulty of the
analysis of simulation output data.

Recently, comprehensive surveys of this problem have
appeared giving a great deal of detail and many
references to the original works; see Kelton (1983),
and especially Law (1982). 1In addition, recent books
on simulation have devoted considerable space to
discussion of various methodological questions,
including output analysis; see, for example, Banks and
Carson (1984) or Law and Kelton (1982). Thus, the
focus here will be to motivate the reader as to the
importance and difficulty of this problem.

IS THIS PROBLEM REALLY THERE?

Yes. Perhaps the best way to see this is by an
example, taken from Chapter 9 of Law and Kelton
(1982). Consider designing some sort of service
facility in which "customers” arrive one at a time in
a Poisson process at rate 1 per minute, and we have a
choice of installing either:

(a) A single "fast" server that can serve customers
with exponential service times having a mean of
0.9 minute, or

(b) Two "slow" servers, each of which supplies service
with times being exponentially distributed with
mean 1.8 minutes. (In this case, a single queue
feeds both servers.)

The fast server is exactly twice as expensive to
install, maintain, and operate as a single slow
server, so the two possibilities would incur the same
cost. Thus, we would prefer to install the
alternative that provides the better customer service,
as measured by the expected average amount of time the
first 100 customers have to wait in line, assuming
empty and idle initial conditions.

The answer is (b). This was determined from some
rather involved queueing-theoretic considerations
(which, incidentally, would not be applicable if the
arrival pattern, for example, were not Poisson).
Without access to these analytical tools, a reasonable
approach to this problem would be to make a simulation
run of each system (independently), and choose the
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system giving the lower average queueing time of the
100 customers. There is a chance, however, that
because of the random nature of the inputs driving the
simulation (specifically in this case, the
interarrival times and the service times) that (a)
could come out looking better, and we would
erroneously make this choice. To see how likely this
mistake might be, 100 pairs of simulations of (a) and
(b) were made, and 44 of these pairs resulted in (a)'s
looking better! In other words, there is only a
little better than an even chance that this scheme
would lead us to the correct decision.

Admittedly, this example is oversimplified and
somewhat contrived. However, its general outline
(make one run of each alternative and choose the best)
probably sees more application than most appropriate
output analysis techniques. The remedy here seems
fairly clear: make several runs of each alternative
and use the averages across these runs to make a
decision. Less clear, perhaps, is the question of how
many runs are enough; the reader is referred to the
papers or books mentioned above for discussion of this
and related problems.

IS THIS PROBLEM DIFFICULT?

Yes. The remedy in the above example, basically, is
to make several runs of the simulation. However, this
is not always the solution to a given output analysis
problem.

The above example led to trouble basically because the
output from a simulation is subject to variability,
and we needed to take this into account; the methods
for deciding on how many runs to make all attempt to
estimate this variation and use the result to
prescribe the required number. In other contexts
‘(specifically, in steady-state simulation aimed at
learning about long-run system behavior), we need to
get an estimate of the variability of the output from
a single run of the simulation; again we turn to an
example from Law and Kelton (1982).

Consider a queueing system exactly as in (&) in the
above example, except that it is initialized in
steady-state conditions. That is, the first customer
arrives to f£ind some random number of other customers
already present, whose distribution is known from
elementary queueing theory. Make a simulation run of
just 10 customgﬁs, and let Di be the observed delay in
queue of the i~ arriving cuStomer, and let

_ 10
D(10) = £ D, / 10
i=1

be the observed average delay in queue of these
customers; it turns out that the expected value of
P(10) is 8.l minutes. From a single simulation run,
we obtain the data D.,,...,D,. from which D(10) was
determined, but we realize %Rat this average is
subject to some uncertainty, and that if we were to
make another run, a different value of D(10) would
result; thus we need an estimate of Var[D(10)]. The
most natural thing to do is to estimate this variance
by

2 10 = 2

s“(10) / 10 =z [p, - DQAO]" / {10 (0 - 1)],

=1

the usual unbiased variance estimator from classical
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statistics. The difficulty in using such a formula
for a variance estimator is that it assumes that the
‘basic data (in this case, the D,'s) are independent.
However, the successive delays In queue may naturally
be expected to be correlated with one another; if D,
is long, then it is lakely that D, will also be
long. As a result, s“(10)/10 maylbe a biased
estimator of Var[D(10)]; in this case it turns out
that the expectation of this variance estimator is
only about 3.4% as large as the actual value of
var[D(10)], the quantity being estimated. In other
words, the "usual" variance estimator is nearly 97%
smaller, in expectation, than the quantity it is
supposed to be estimating! Thus, we see that direct
application of the familiar tools of classical
statistics can lead us badly astray in simulation
oBtput analysis. (As a footnote, quantities such as
s7(10) above from a single simulation run often appear
in the standard output of simulation languages, and
they are probably best ignored.)

This example provides just one instance of the
difficulties inherent in the statistical analysis of
simulation output. Again, the reader is referred to
the survey papers or books mentioned above for much
more comprehensive treatment of both the pitfalls and
suggested methods for amnalysis.

CONCLUSIONS

The power of the simulation technigue is by now
generally appreciated, especially with modern software
and hardware tools. Less appreciated, however, is the
need to carry out careful design and analysis to
address methodological problems in general, and output
analysis problems in particular. Ignoring these
problems, however, can lead to very serious errors in
interpretation and conclusion, to the peoint that it
might have been better not to do the simulation at
all. One of the purposes of this paper has been to
point out by example the kinds of errors that might
easily be made, and to direct the reader to sources of
information concerning the appropriate methodologies
for use in simulation output analysis.
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