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For analyzing stochastic models, simulation trades the tractabilily problems of analytical
techniques for the problem of sampling variability. Variance reduction techniques (VRTs)
attack this problem by transforming the simulation experiment in a way that makes it
more statistically efficient. Unfortunately, VRTs are infrequently used, even though
significant reductions are possible in practical problems. This tutorial introduces some
basic concepts of variance reduction, and uses a new taxonomy of VRTs as the basis
for an algorithm to select appropriate VRTs for general simulation experiments.

i. Introduction

Simulation is conceptually the simplest methodology for
analyzing dynamic, stochastic systems: A model is defined by
probability distributions that characterize the uncertain, or
uncontrollable elements in the system, and by an algorithm
that mimics the behavior or response of the system, given
values of the uncertain elements, A simulation experiment is
performed by sampling values of the unceriain elements,
exercising the algorithm, and observing the resulting behavior,
Almost any system that can be modeled can be simulated, and
there are now many computer simulation languages that
facilitate sampling from probability distributions and
representing logical relationships as algorithms. In addition,
behavior is often automatically summarized by statistics, and
will soon be routinely observed via animation.

Of course, all of the problems associated with modeling in
general —- validation, for example -- are also problems in
simulation. However, tractability, the primary curse for
analytical analysis, is not an issue. By sampling system behavior
simulation trades the tracability problem for the problem of
sampling variability; if a longer realization of system behavior
is generated, then almost certainly new behavior will be
observed. Even with increasing computer speeds it is not always
possible to observe the system long enough io ensure a
representative sample. In fact, the availability of faster
computers, rather than diminishing the problem, has spurred
interest in experimentation that was previously unmanageable.
For example, the use of simulation toc optimize stochastic models
and in conjunction with real-time control systems are twe
applications for which available computer budgeis and
computer speed, respectively, are not adequate.
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One measure of the uncertainiy inherent in sampling is the
variance of the estimators (statistics). Variance reduction
techniques (VRTs) reduce the population variance of estimators
based on sampling, without increasing the computer (sampling)
burden. VRTs succeed by increasing and making betier use of
the information generated by the simulation experiment.
Although historically VRTs have been applied to estimators
of unknown system performance parameters, they will become
more important with the increasing use of animation. Animation
necessarily implies that only a brief realization of system
bhehavior will be observed. Thus, to make reliable decisions a
representative sample is essential.

Unfortunately, VRTs are seldom used, despite the fact that
significant (one to two orders of magnitude) variance
reductions are possible in practical experiments. There are at
least two reasons for this situation: First, VRTs were originally
developed for survey sampling (Cochran (1)) and Monte Carlo
estimation (Hammersley and Handscomb [23), and it is difficult
to adapt techniques appropriate for sampling from static
populations and evaluating definite integrals to simulating
dynamic stochastic processes. Secondly, there is no unifying
theory of variance reduction, making it difficult to select a
VRT that will work from among the multitude that have been
developed. Researchers have attacked the first problem in
recent years, primarily by restricting attention to classes of
models, and there now exists both theory and computational
experience for variance reduction in simulation. Nelson and
Schmeiser [3, 4] have addressed the second problem by proposing
a parsimonious taxonomy of VRTs. One purpose of this tutorial
is to combine these two research efforts into a guide for
selecting VRTs and finding available information about using
them,
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The tutorial is divided into two parts, The first part (sections
2 - 4) introduces some basic concepts of variance reduction
and presenis an overview of the taxonomy of Nelson and
Schmeiser. While not an exhaustive survey of VRTs (we reference
several good ones later), we do discuss five VRTs as illustrations
and list several others. The second part (sactions 5 - D is
an algorithm for selecting potentially useful VRTs and a guide
to the literature on them. A practitioner with indepth
knowledge of variance reduction will likely do a bettier job
of selecting VRTs than the algorithm presented here. However,
the possibility of such an algorithm demonstrates that the
use of variance reduction need not be limited to such
practitioners. Additional research is needed to develop an
effective, automated procedure to both select and apply VRTs
in general simulation experiments, bui the approach presented
here may suggest what part of such a procedure would be
like.

2, Some Principles of Variance Reduction

Before discussing any particular VRT or the taxonomy of VRTs,
we cite some basic results that are the underlying principles
of many VRTs.

Suppose we are estimating some unknown scalar parameter, g,
using an estimator that is a function of the sequence of random
variables Y = (Y4, Y5,.., Y3, where ELY;] = 8, Varl¥;l = o2 for
all i, and Covi¥;,Y3) = ¢y when!i~ ji=h Ge Y is covariance
stationary). Let Z = X¥{/I be the sample mean, and let X be
some other random variable with cumulative distribution
function (cdf) F(x). The following are well-known rasults in
statistics (see for instance, Bickel and Doksum [5)):
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If the Y; are independent, then (1) reduces to o2/, Now let
X be a scalar random variable with variance 6,2, b a constant,
and Z = ¥; ¥ bX. Then

Varizl = o2 + b2 62 t 2bCovlY;,X] €2)

Finally, (3) expresses the expected value of Y in as an average
over the random variable X,

8 = J ELY; IX = x3dF(x) ($<H

Result (1) shows that there are three components that determine
the variance of a sample mean: 02, ¢4, and L Decreasing o2
and ¢p, or increasing ! can reduce Var{Zl. Resuli (2) shows
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that the combination of Y with another random variable X
may yield a random variable with smaller variance, provided
the covariance between them is large enough and has the
correct sign. Variance reduction involves changing ar
transforming a simulation experiment in ways suggested by
these results, Of course, in the process of making any changes
we need to take care to preserve Z as an estimator of 6,

To change an experiment in a useful way often depends upon
being able to express the unknown parameter 8 in terms other
than ECY;), Result (3) is one of the most useful alternative
expressions, In particular, if we have prior knowledge about
either ELYjiX] or F(x) we may be able to use it to estimate
8 with smaller variance than using Y directly,

It is important to stress that variance reduction refers to
reducing the population variance of an estimator of @, vhare
8 may be a variance, Variance reduction does not necessarily
affect the variability of the simulated stochastic process,

3. A Taxonomy of Variance Reduction

In this section we give an overview of the taxonomy of VRTs
proposed by Nelson and Schmeiser [3, 41, The taxonomy
characterizes VRTs as transformations from one simulation
experiment to another, and decomposes VRTs into combinations
of transformations from six elemental classes, Thus, a definition
of simulation experiments is needed to make the concept, of

& transformation precise,

For our purposes, & simulation experiment is a collection of
interrelated random variables. Given a source of randomness
(usually independent, identically uniformly distributed random
variables on [0,1], denoted U(D,1), realizations of the simulation
experimeni can be generated, We partition the random variables
into three subsets, inputs, cutputs, and statistics, that can
be described loosely as follows:

The inputs, denoted by X, are random variables defined by
known (possibly conditional) probability distributions, Examples
are the interarrival and service times in a queueing network
simulation or the time until component failure in a reliability
model. Another example is the demand per period in an inventory
system whose distribution, conditional on the time of the year,
is known, The disiribution of the countably infinite set X is
denoted Fix),

The outpuis, denoled by Y, are random variables defined by
known (possibly implicity) functions of the inputs. They include
the observations of system performance. Examples are the delay
experienced by a customer in a queueing simulation or the time
between total system failures in a reliability model, For
theoretical reasons (Nelson [3D) we restrict Y to the essential
random variables defined by functions of X, in the sense that
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all remaining random variables that are functions of X can
be derived from Y,

In a simulation experiment there may be many sequences of
outputs and (conceptually) we can sample indefinitely, Thus,
we define a sampling plan, denoted by Ry, that specifies a
stopping rule for the simulation experiment in terms of the
lengths of the various output sequences. We write Y = gOLR#),
The function g embodies the operating logic of the system
we are modeling.

The séatistics, denoted by Z, are functions that aggregrate
the outputs into point estimators of the system parameters
of interest, 8. We write Z = h(Y¥), Variance reduction refers
to reducing the variance of Z, and not necessarily any of the
elements of X and Y.

Suppose that Z and 8 are scalars, and Z is an unbiased estimator
of 8, Then

Varldl =

J[h(g(x;R*) - 81 F¢x <4

Nelson and Schmeiser [4) view VRTs as transformations that
redefine F, g, R# and/or h to reduce Varl(Zl, while holding 8
and the sample space of X fixed, All possible transformations
can be formed by compositions of members of six elemental
classes. Loosely defined, the classes are:

1. Distribution Replacement (0K): Redefine the scalar
marginal distributions of the inputs without altering any

statistical dependencies among the inputs.

2. Dependence Induction (D7) Redefine the statistical
dependencies among the scalar inputs without altering any
marginal distributions of the inputs,

3. Equivalent Allocation (EA): Redefine the functions
from inputs to outputs, g without altering the sampling plan,
Rx,

4, Sample Allocation (5A): Redefine the sampling plan,
R# without altering the functions from inputs to outputs, g.

5. Auxiliary Information (Al): Redefine the argument
(subset of Y) of the statistics without altering the functions
from outputs to statistics, h.

b, Equivalent Information (EI): Redefine the functions,
h, from cutputs to statistics without altering the argument
set of the statistics.

These six classes of transformations exhaust the ways to
transform a simulation experiment to reduce (4); the rigorous
definitions needed to prove this property are given in {3, 4),
along with the proof. While there are other possible partitions
of the transformations, this set is useful for studing variance
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reduction. In particular, VRTs can be decomposed into to their
elemental transformations thereby facilitating selection and
application of appropriate VRTs (see Nelson (4D,

4. Some Variance Reduction Téchniques

In this section some specific VRTs are presented, emphasizing
the basic principles they employ (section 2) and, their
decomposition in terms of the taxonomy (section 3). The notation
is the same as section 3. We do not discuss issues of
implementation or effectiveness, but refer the reader to the
references cited later. Since there is no universally accepted
definition of any VRT, we present simple versions that are
useful in a tutorial setting; see Nelson and Schmeiser [4) for
a more complete development, Broadly defined variance reduction

strategies are the subject of Nelson (7).

4.1 Antithetic Variates (AV)

Suppose we estimate 8 by the sample mean Z = ZY;/1 AV exploits
(1) by inducing favorable covariance terms $§p. The required
covariances between the outputs are realized indirectly by
inducing dependence among previously independent inputs (a
transformation in DI). There are two major problems: First, it
is not possible to make all the covariances negative, Thus AV
often induces negative covariance between pairs of outputs,
{¥2i-4, Y2i}, leaving different pairs independent. The second
problem is that inducing negative cavariance between inputs
does not guarantee negative covariance between outputs. A
number of researchers have addressed these issues (see the
references),

A fundamental result is that if X544 and Xp; are scalar inputs
with cdfs F4(x) and Fa(x), respectively, then letting

= F7!
Xpi-y = F{lew 5

= Flcq-
Xp; = Fa!l1-)

where U ~ U(0,1), yields realizations of X3j-4 and Xp; with the
correct marginal distributions and the minimal achievable
covariance. This method of variate generation is known as the
inverse transform. If the output transformation ¥ = g(X;R¢)
is monotone in the inputs then the negative correlation between
the inputs is preserved in the outputs.

4.2 Common Random Numbers (CRN)

Suppose that, instead of 8 being an absolute measure, 8 = «
- B, a difference or relative measure, This siluation is common
since we frequently compare the performance of system 1 (o)
and system 2 (p) to determine which is better. Of course, in

general we may want to compare several systems, not just two.
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If sample means of the output sequences Y and Y’ are used
to estimate « and B, respectively, then CRN exploits (2) (where
X = Y, and b = {) by inducing positive covariance between
pairs of outputs and usipg the difference of pairs (¥; ~ ¥
i®4, 2., 1D as the basic observations, Again, the covariance
is induced by inducing dependence hetween the inputs (a
transformation in DI); the issue of preserving this covariance
is also a factor in CRN, as in AV, In the warst case, the sign
of the covariance between the outputs is reversed!

The maximum possible covariance betwaen pairs of inputs is
induced via (5) with { - U replaced by U (a "common” random
numhber) in the second expression. CRN is the most intuitively
appealing VRT because the idea of comparing systems under
as nearly identical conditions (here, the inputs) as possible
is easily accepted. In fact, if F4 = Py then identical inputs
drive both systems.

Practically speaking, preserving induced dependence requires
the inverse transform approach to variate generation (6) and
synchronizing the inputs between antithetic or common random
number runs. Bratley, Fox and Schrage [8), pages 44-57, give
an excellent discussion of, and practical suggestions for,
synchronization,

4.3 Stratified Sampling (STRAT)

STRAT exploits (3) by dividing the range of X (usually an input)
into nonoverlapping intervals (strata), sampling from each
strata a fixed number of times, estimating the conditional
expectation of Y in each strata separately, and then combining
the estimators via (3), Denote the strata by L; and let pj =
Pr{Xelski=1, 2um

Within each strata, ELYIX € L;3 is estimated by the sample
mean of 1; independent observations of Y3, where Y;; is the
ith output when X € Ly, and Il = 1, Since the variance of
a sample mean decreases as the number of observations
increases by (1), an intelligent selection of the I j @
transformation in SA) that allocates more cbservations to those
strata with larger variance will reduce the overall variance
of the combined estimator.

The new estimator (a transformation in ED is

1

1Yy ]P‘J &
L

The term inside the brackets is an estimator of EIYIX € Lj),
and these estimators are weighted by pj=P(X e L, 3+ and summed
as in (3}, Note that the p;j must be known, and they will be
if X is an input.
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Although widely used in survey sampling, STRAT has been less
successful in simulation because it is often difficult to control
the sampling plan of a dynamic stochastic process and the
¥; are dependent, Good stratification variables (X) that are
sometimes available in simulation are initial cenditions
generated randomly at the beginning of independent simulation
runs (e.g. the number of employees that show up for work at
the beginning of the day),

4.4 Postratifying the Sample (FSTRAT)

One source of variance in estimating © is that the empirical
distribution of Y will almost surely not match the theoretical
distribution, Of course, the distribution of Y is unknown in
general, so0 there is no vay to measure just how significant
ihe deviation is. However, again using (3), if the distribution
of X is known then we can measure how far its empirical
distribution deviates from its theoretical distribution. STRAT
fixes the number of ohservations from each strata, I, in the
sampling plan., When predetermining the sampling plan in this
way is not possible, then the I j become random outputs of
ihe simulation, and provide an empirical distribution for X,

We expect Ij=1Ip g 1f 15> 1p j then strata J is overrepresented
prokabilistically, and if 1 j < Ipj it is underrepresented. Using
functionally the same estimator (&) as STRAT, the PSTRAT
estimator gives weight 1/1 to each ¥j; only if the sample
distributes itself proportionately (all I § = Ipy); otherwise it
gives a smaller or larger weight to Y;; depending on whether
strata j is over or underrepresented, respectively, PSTRAT does
not alter Ry, but rather uses the auxiliary outputs 15 (an Al
transformation) and the estimator (4) (an EI transformation)
to reduce variance,

4.5 Control Variates (CV)

PSTRAT uses
disproportionate sampling. CV also employs Al and EI to adjust

an auxiliary variable io correct for
an estimator, We will discuss only the linear CV, but there
are many other forms (Nalson [9D).

Suppose E[X;) = ¢, and p is known (as it would be for an
input). Then CV exploits (2) by forming the estimator

2=9 - b(X - €7

where the bar over X and Y denotes sample means, For any
constant b, (1) is unbiased for 8, The difference between X;
and its expectation is used to correct the abserved value of
Yj, and (2) shows that if CovIY;X;] is large enough then the
variance of the new estimator will be smaller. Since the outputs
are functions of the inputs, correlation is likely to be present.
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The value of b that minimizes the variance is b¥* = CovI¥;X;1/
Varl¥;], which is seldom known., The issues involved in
estimating b¥, called the CV multiplier, have heen a research
topic for some time, The CV estimator (7) readily generalizes
to multiple control variates and estimating multivariate 8.

AV and CEN are based on the potential to induce correlation,
If X is an output from simulating a second system, similar
to the system of interest but for which the analytic solution
is known, then simulating the two systems using CRN may induce
positive correlation between the corresponding outputs., The
output of the second system can then be used as a control
variate, This variation is called exfernal control variates (ECV),
and combines transformations from DI, Al and EL

4,6 Summary

AV, CRN, STRAT, PSTRAT and CV are only five of many VRTs.
Two additional VRTs that semploy transformations from DR and
EA are decomposed in [6), A necessary condition for successfully
applying any VRT is to have prior knowledge, which we define
to be any knowledge either known with certainty or suspected,

beyond what is needed to construct the original simulation
experiment, Examples we have seen sp far are a) monotonicity

of g, the function from input to output, b) conditional
relationships between random variables, and o) correlation
between random variables, In the next section we present an
algorithm for determining some of the available prior
knowledge and using it to select VRTs in general simulation

experiments.

5. An Algorithm for Selecting VRTs

This section contains an (informal) algorithm for selecting
potentially useful VRTs for general simulation experiments. The
three major steps (and the three subsections of this section)
are 1) expraess the simulation experiment in terms of inputs,
cutputs, sampling plan and statitics (section 3), 2} determine
the available prior knowledge, and 3) select a VRT from those
completely or partially decomposed into elemental
transformations in Figure 3. A list of references organized

by VRT (section 6) can then be consulied for specific details,

The philosophy of this algorithm is to select a single VRT,
since great care must be taken to combine VRTs so that they
do not conflict, We also assume that a VRT is sought for a
dynamic simulation model, rather than for survey sampling or
evaluation of an explicit integral {(see [1] and [2], respectively,
for these applications)

To lay the foundation for any simulation experiment, the
experimenter should carefully consider what parameters are
This
contemplating variance reduction, because VRTs that improve

important to estimate. is especially irue when
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the estimators of some parameters may make it more difficult
to estimate other parameters, Another important decision is
whether unbiased estimators are required, since some VRTs
introduce bias. In many cases the variance reduction is so large
that a certain amount of bias is tolerable, but the decision
should be made in advance. Finally, the biggest payoff from
variance reduction comes when the simulation experiment
evaluates multiple configurations of a basic system model. When
only a single simulation model is analyzed then careful
consideration of the experimenter effort required to use a VRT
is necessary,

5.4 Definition of the Experiment

Use the following steps to partition the random variables in
the experiment into inputs, outputs and statistics as described
in section 3:

1, List the system performance measures to be estimated.
These are the parameters of interest, 8. Note that 8 will include
the parameters of interest of all variations of the system that
will be simulated.

2. List a1l random variables whose realizations will be
generated from known distributions. These are the inputs, X,
Note that even though the distribution of a random variable
may be the result of fitting a family of distributions to data,
once a distribution is selected it is considered "known" in the
context of our definition. An input may also be a value selected
from a distribution known implicitly by the experimenter,

3. List all other random variables in the expariment,
Since they are not inputs they must be functions of the inputs.
These are tentatively the outputs, Y. Although for theoratical
reasons (Nelson and Schmeiser (3)) we defined an essential
output set in section 3, for the algorithm presented here it
is hetter to make this set too large rather than too small,

4, List the conditions that determine when the simulation
experiment will end (how many outpuis will be generated), If
the stopping rule depends on a sequential procedure, list the
test for stopping. This is the sampling plan, Rx. Note that
the sampling plan is based on the outputs, but is not an output.

5. Among those random variables tentatively identified
as outputs, list the ones that are point estimators of the
parameters of interest. These are the statistics. There should
be only one point estimator for each parameter, The remaining
random variables are the outputs.

5.2 Determining the Available Prior Knowledge

The set of questions that follow determine some of the prior
knowledge the experimenter has and converts it to knowledge
about a particular class of models and/or the six classes of
transformations defined in section 3, The abbreviations DR, DI,
EA, SA, Al and EI are used to designate the classes of elemental
transformations. The DI and Al classes are further divided into
DI+ and DI- (relative versus absolute measure) and Al.s and
ALf (statistical versus functional relationship). Positive
answers to & question require recording a response,
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0. Given: a simulation experiment expressed in terms of
the definition of section 3, Further divide the outputs into
those that are arguments of a statistic (outputs of interest)
and those that are not arguments of a statistic (auxiliary
outputs),

Classes of Models

1, Can the simulation model be considered a member of
one or more of the following classes of models?

1.1 A stochastic network (see Figure 1)?

Figure 1: Stochastic Network

1.2 A Markov chain?
1.3 An (5,S)-type inventory system?
14 A reliability network?

1.5 A Jackson-type queueing network (see Figure 2)?

Figure 2: Queueing Network

If yes then record the model class.

Parameters of Inierest

2, If the parameter of interest is a function of one
or more other parameters of the system then record ALf.

3. If the parameter of interest is the difference between
parameters of two or more systems then record DI+,

4, If there are any constraints on the parameters (they
must be probabilities, they must be positive, etc) then record
EL

5. 1f the parameter of interest is a conditional
expectation then record SA,

Inputs

6., If some inputs map one-to-cne with an ocutput of
interest then record DI, Als,

7. If some inputs identified in 5 are independent and
identically distributed, record DR,

8, If some inputs have the same distribution for
alternative systems then record DI+,
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9. If an input represenis 2 system starting condition
or initial state then record 84, Als.

10, If an input represents & demand on the system or
the availability of a resource then record ALs,

i1, If some inputs can be generated via the inverse
transform then record DI

Qutputs
12, If an output is monotonic in some input then record
DI-.
13. If there is an approximate analytic model of the
system then record DI+, EA, 54, ALf.

14, If an output of interest is the result of a sequence
of dependent events then record SA, ALf, EL

15, If the outpuls of interest are independeni then
record DI,

16, 1f the auxiliary cutputs are independent then record
SA,

i7. If the output of interest is the result of a rare
event then record DR, SA.

18. If the experimenter has simulated a similar system
then record 5S4, Als.

19. If the sampling plan can be specified in terms of
the inputs then record SA.

Statistics
20. If the statistic is an average then record DJ, EI

5.3 Selection of VRTs
Consider the information recorded in section 5.2,

1. If the simulation model is an element of one of the
standard classes (question i above) then go directly to the
references for that class (section 6.3). The VRTs developed for
these classes are frequently very effective.

2. Sometimes prior knowledge is only suspected to be
true, Rank the knowledge recorded in section 5.2 as classes
of transformations from most to least certain based on the
experimenter’s subjective evaluation.

3, Pick the top one or two classes from 2 above, and
go to Figure 3. The selected classes designate a cell {you may
have to try both row-column and column-row order) containing
names of VRTs to consider. Note that the decomposition of
the VRTs may not be complete, since many VRTs are composed
of more than two classes of iransformations, However, the
decomposition given in Figure 3 is one likely to lead to a match
with the resulis of section 5.2, The VRTs on the diagonal are
those invoking only one class of elemental transformations.

4. After selecting a VRT from Figure 3, go to the
references for that VRT (sections 6.4~4.43) If the VRT is not
appropriate, repeat step 2,
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inputs for estimating an absclute performance measure. See also
Fishman and Huang (1983) abave.
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See section 4,5
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6.6 Conditional Expectations (CE)
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on (3) when E[YIX = x3 is known for all x. It is often useful
when the simulation is performed to observe rare svents.

Bratley, Fox and Schrage (1983), pp. 44-70, 285,

Carter, G, and E.J. Ignall (1978), "Virtual Measures: A Variance
Reduction Technique for Simulation,”" Hgt. Sci., 24, 6,
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6.7 Embedded Process (EP)

Sometimes simulating an embedded stochastic process directly,
rather than the process that mimics the system of interest,
may facilitate variance reduction, This is a relatively new area
of research,

Fox, B.L. and P.W. Glynn (1985), "Discrete-time Conversion for
Simulating Semi-Markov Processes," Technical Report,
Departement d‘informatique et de recherche
operationelle, University de Montreal, Montreal, Canada,

6.8 Importance Sampling (IS)

Replacing F(0 with a distribution that biases sampling toward
regions of interest, where interest is measured by likelihood
and magnitude of the outputs in the region.

Bratley, Fox and Schrage (1983), pp, 63-66, 282~285,

Hammersley, J.M. and D.C. Handscomb (1964), ¥onte Carlo Hethod's,
Chapman and Hall, London,

Jeruchim, M.C, (1784), "On the Application of Importance Sampling
to the Simulation of Digital Satellite and Multihop
Links," JEEE Trans. Comm,, 32, 10, 1088-109272. -

Kleijnen (1974), pp. 164~186,

6.8.4 Russian Rouletie (RR)

Biases sampling by randomly killing off time paths (cutput
sequences) in uninteresting regions,

Kahn, H. (1954), "Use of Different Monte Carlo Sampling
Techniques," in Symposium on Nonte Carlo Hethods (H.
Meyer, ed)), Wiley, NY, 146-190,

McGrath, E. and D.C. Irving (1973), "Techniques for Efficient
Monte Carlo Simulation, Vol. 111, Variance Reduction,
ORLC Report, SAI-72-509-LJ.

6.9 Indirect Estimators (INDIR)

Exploits functional relationships between parameters by
estimating the parameter of interest as a function of the
estimator of a second parameter, Applications have been in
queueing simulation.

Carson, J.8, and AM, Law (4977, "Conservation Equations and
Variance Reduction in Queueing Simulations
Proceedings of the 1977 Hinter Simulation Conference,
IEEE, 187-189.
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Law and Kelton (1982), pp. 361-343.

Minh, D.L. and R.M, Sorli (1983), “Simulating the GI/G/1 Queue
in Heavy Traffic," Op. Ras., 31, 5, 966-971.

6.10 Minimum Variance Estimator (HVE)

In some situations there exists a minimum variance estimator
for 8 given a fixed outpul sequence Y. This problem has been
studied in mathematical statistics,

Bickel, P.J. and K.A. Doksum (1977), Hatkenatical Statistics, Sasic
ldeas and Selected Topics, Holden-Day, San Francisco.

6.41 More Observations (M0)

For any reasonable estimator the variance decreases as the
number of observations increases (see (1)), If the variance is
unacceptably high and there is additional computing budget,
then the simplest VRT is MO. Unfortunately, the rate of
reduction is generally slow (O(n)),
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612 Postratifying the Sample (PSTRAT)

See section 4.4,

Cochran, W.G. (1977, Sampling Technigues, Wiley, NY, pp. 134-135,
Kleijnen, J.P.C. (1974), pp, 116-124,

Nelson, B.L. and B.W. Schmeiser (1985), “Decomposition of Some
Well-Known Variance Reduction Techniques' o/, Statist.
Comput. Simul., forthcoming,

6.13 Stratified Sampling (STRAT)
See section 4.3,
Bratley, Fox and Schrage (1983), pp. 41-53.

Cochran, W.G. (1970, Sampling Techniques, Wiley, NY, Chaps. 5,
5A.

Kleijnen (1974), pp. 110-133,

]

6434 Splitting (SPLT)

A dynamic version of STRAT that prescribes multiple
observations of Y when X falls in certain sirata, rather than
allocating observations of X itself. Useful when the output
series is not independent, and for simulation of rare events.

Hopmans, A.CM. and JP.C, Kleijnen (1979, "Importance Sampling
in Systems Simulation: A Practical Failure?", Xath,
Comput, Simul XYX7, 2, 209~220.

Kahn, H. (1954), "Use of Different Monte Carlo Sampling
Techniques,” in Symposium on Honte Carle Hethods (H,
Meyer, ed.), Wiley, NY, 144~190,

Kioussis, L.C, and D.R, Miller (1983), "An Importance Sampling
Scheme for Simulating the Degradation and Failure of
Complex Systems During Finite Missions," Froceedings of
the 1983 Hinter Simulation Conference, IEEE, 631-639,

McGrath, E. and D.C. Irving (1973), "Techniques for Efficient
Monte Carlo Simulation, Vol, 1II, Variance Reduction,”
ORLC Report SAI-72-509-LJ.

7. Using Pilot Runs

Results from pilot simulation experiments can be used to acquire
prior knowledge needed to answer the questions in section 5.
Since a minimum of some debugging runs have to be made in
any simulation study, this section will list some ways that the
results of these runs, or pilot runs made expressly to gain
prior knowledge, can be used,

One common debugging technique is to test the program under
extreme conditions, For example, fixing some variables at their
maximum or minimum values, The relative contribution of
different simulation inputs to the outputs can be investigatsd
in this way. The inputs that make the largest contribution
are often the best auxiliary information., Fixing the values
of some inputs can also make it possible to determine if the
outputs are monotone in the inputs. Monotonicity facilitates
VRTs based on dependence induction (D).

Once the simulation is running, the results of pilot runs can
be used to determine statistical properties of the outputs. For
example, stepwise regression of outputs on inputs can determine
which inputs are strongly correlated with which outputs, and
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thus provide useful auxiliary information. As a side benefit,
the regression coefficients can later provide estimates of the
CV multipliers (see the references),

The potential effectiveness of STRAT can be evaluated by doing
PSTRAT, which does not require fixing the sampling plan in
advance. The empirical distribution of an ocutpui provides
information needed for VRTs that bias sampling toward areas
that contribute most to the variance.

8. Conclusions

I is interesting to note that there are more empty cells in
Figure 3 than there are cells containing VRTs. This is partially
due to excluding some of the more complex, and less frequently
used, VRTs. However, there are some cells that contain no VRTs
known to us. An open research question is why some cells are
empty, and if they suggest new VRTs waiting to be discovered.

The questions that constitute the algorithm in section § are
based on our assessment of the types of prior knowledge needed
to invoke known results that ensure a VRT, formed from one
or more of the six classes, will be effective, Others can, and
are encouraged, to add questions to the list, The advantage
of this approach, as opposed to a one-at-a-time search of VRTs,
is that it identifies the available prior knowledge in terms
of the six classes of transformations first, then yields all VRTs
that make use of that knowledge, A one-at-a-time investigation
of VRTs produces more dead ends and may overlook some useful
prior knowledge.

Although a practitioner with indepth knowledge of variance
reduction can likely decide on an appropriate VRT more quickly
without the algorithm, the approach proposed here is the kind
needed for automated variance reduction. We believe that only
by incorporating automated variance reduction into general
purpose simulation packages will all of the potential henefits
of variance reduction be realized,
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