Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

763

IMPLEMENTATION OF OPERATIONAL EVALUATION

MODELING IN PASCAL

John A. Quandt
General Dynamics, Pomona Division
Pomona, Ca 91766

ABSTRACT

This paper presents the results of a study of the
implementation of Operational Evaluation Modeling
(OEM) in the structured programming language Pascal.
The study compares the FORTRAN and Pascal programming
languages, and then discusses fimplementation of O0EM
simulation in Pascal. The results show it is possible
to develop OEM simulations in Pascal using a top-down
approach that parallels the development of OEM models
themselves, and that the wuser benefits from this
approach in the clarity of the resultant Pascal
program.

OPERATIONAL EVALUATION MODELING

Operational Evaluation Modeling (CEM) has been
described as "being comprised of a collections of
ideas, concepts, and techniques which provide a means
to evaluate a system from the user's point of view".
“The main concepts incorporated dinvolve parallel
processes, discrete event simulations, and queuing
theory"[1]. The system user begins by defining a
crude version of the entire system he wishes to model.
The model is then run varying the inputs to determine
the areas of the model which are sensitive to change.
These areas are then refined by the user to obtain a
model which accurately simulates the system's
response. The main thrust of OEM is to quickly develop
system models from a top-down approach and only refine
the overall system model where required.

DEVELOPMENT OF PROGRAMMING LANGUAGES

when computers were first developed, no high Llevel
programming languages existed. ALL programs were
entered by setting switches on the control panel and
pressing the enter button [2]1. HNeedless to say, this
was not conducive to writing and entering Llarge
programs.

Next to be developed was assembly Language, which is a
symbolic representation of the processor's machine
language. While easier than machine Language coding,
assembly language programming fis both time-consuming
and difficult to read. Development of assembly
language programs are typically conducted from the
bottom wup, coding humerous dindividual assembly
Language modules and then Linking them together dinto
one large program. Assembly Language programming is
also not easily transportable from one machine to
another, as different processors have different
architectures and instruction sets.

Next in 1956 came the first generally-accepted high
level language, FORTRAN, which was designed primarily
for scientific wuse. Unfortunately, FORTRAN was
structured much the same as the assembly Llanguage
programming it reptaced. This becomes evident once

one examines the action resulting from a Llogical
comparison. As in assembly language, FORTRAN logical
IF statements result in immediate branching to another
location in the program, if the conditions for the IF
statement are met. While easier for the compiler
author to implement because the high-level language so
closely resembles the assembly language structure he
has to work with, these bottom-up design concepts make
it difficult for the high-level language software
author to follow the logical flow throughout his
program. Recalling the period in which FORTRAN was
developed, it is easy to see why many of the bottom-up
design concepts of assembly Language were
incorporated.

Gradually, the computer science field has moved
towards a top-down design structure concept that is
usually referred to as structured programming [31. In
1968, Niklaus Wirth defined a language, called Pascal,
named after the French mathematician [2]1, to teach
structured programming concepts.

PASCAL VERSUS FORTRAN

The primary advantages of using a structured high
Level language, Like Pascal, over FORTRAN are clarity
and flexibility. Also note the top—down structure of
pascal programs more closely mimics the development of
OEM models than does FORTRAN. Both Pascal and OEM
start with a Lloose top-down design that is expanded
upon by piece-wise refinement.

Pascal was designed to be clear, readable, and
unambiguous [4]1. There are many reasons for the added
clarity being dnherent in the design of Pascal
programs. Top-down design is more natural for people,
who tend to solve problems by defining a general
approach to the problem and then refining it until the
problem is solved [31. Breaking parts of the program
into small modules, each with its oun specific task to
perform, is easier to comprehend than having one large
cumbersome program.

pascal also requires strong data typing. ALL
variables must be clearly defined before they can be
used. There are no default variable types. The
majority of variables used in the program are defined
in the main declaration section, and, as such, are
available globally without the confusing and
repetitious chore of defining them in every routine's
COMMON block, as in FORTRAN. For example, in the dice
program of appendix 1, "FirstRoll" and "NextRoll" are
declared to be variables of type "INTEGER" in the main
program declaration (lines 8 and 9), and as such are
available globally throughout the program, while
"Toss" is declared to be of type "INTEGER" in the
"RolLEm" procedure (line 11), and as such is defined
only within that procedure (lies 11 through 15).
Another example of the strong typing in Pascal is the
distinction made between the value assignment operator

764

(:=) and the equality test operator (=). Improper use
of these operators results in the declaration of a
syntax error upon compilation. Also, there is no need
to limit the variable and subroutine names in Pascal
to six letters, as in FORTRAN. The name can be as
tong as necessary to be descriptive of the function it
performs. For example, jt's far easier to understand
"PopEventQ” than the FORTRAN OEM equivalent [11, which
was "REMOVE(I,1)". In the particular Pascal
implementation used in the preparation of this paper,
Apple Pascal 1.1 '[53, both wupper and Llower case
letters were available to add clarity to the
user~defined names. For example, "FirstRoll" is
easier to read than "FIRSTROLL".

Pascal also encourages clarity by allowing indentation
to show the limits of effect for any logical block of
code. Most FORTRAN and BASIC language implementations
consider indentation an error and either remove it or
declare it a syntactical error. Looking at the dice
program in appendix 1, one observes that statements at
the same Llexical Llevel are indented to the same
column. For every "BEGIN", there is a corresponding
"END" at the same column to show the Limit of effect
of this block of code. The "BEGIN/END" pair farthest
to the left (lines 29 and 42) defines the limits of
the main program. The indentation is merely a user
convenience, as Pascal compilers require the
semi-colon or other delimiter to define the break
between statements and ignores blanks.

One other ‘change to note is that standard Pascal
prohibits the use of the "GOTO" statement. "GOTO's"
were found to be disruptive din terms of the user's
ability to follow the natural and logical flow of the
program. Instead, more logical statements were added
to provide for conditional execution, such as
"IF..THEN..ELSE", ""CASE", "REPEAT..UNTIL", and
“WHILE". Once again, examining the dice program in
appendix 1, one notes the "REPEAT..UNTIL' statements.
These define the limits for conditional execution of
the code present between corresponding limits, d.e.
all the code between the "REPEAT" (Lline 30) and the
"UNTIL HellFreezesOver'" (line 41) will be executed
until the parameter "HellFreezesQver" becomes 'TRUE",
which will Literally take ™until hell freéezes. over",
as the value of a constant cannot be modified. The
other new conditional statement utilized in the dice
program is the “CASE" statement (line 35). This is
used to replace a series of "IF..THEN..ELSE™
statements.

one other feature that FORTRAN does not have is
recursion, i.e. a FORTRAN subroutine cannot call
itself, whereas a Pascal procedure can. Sometimes it
is more straightforward to describe a task recursively
than by other means. For example, this can be seen in
appendix 1, where the dice game contains the recursive
procedure "RollAgain". This procedure will call
itself until such time as the roll of the dice -equals
either the first roll or seven. This form more
closely approximates the mental processes utilized by
a person to perform this action. For many
applications, the recursive -description of a process
is a "perfect example of top-down programming" [71.

Pascal also tends to be a more flexible language than
FORTRAN. In Pascal, the programmer has the option to
define his own data types, even associating dissimilar
data types. For example, the implementation of the
queuing data structure for the program in appendix 3
directly associates a real number, three integer
numbers, and a pointer. The declaration of this
structure is performed in the "TYPE" definition.

|
|
1

dJohn A. Quandt

Instead of using the confusing approach of numeric
subscripts to access each field within the defined
record of "QueueEntry”, Pascal uses the more
straightforward approach of addressing each field by
its user-defined name. For example, the field "Time"
;woul.d be addressed as follows:

TimeNow := QueueEntry.Time;

This statement says that the variable "TimeNow" is
assigned the value of the "Time" field within the
record of “QueueEntry". Also associated with the real
number value of time are fields to represent event
inumbers, process numbers, duplicate process numbers,
and a pointer to the next entry in the linked List
which comprises the queue. FORTRAN has no ability to
provide such a direct association or means of
addressing.

By now you're probably asking yourself, "What's a
Pointer?”. Pointers can be used 1in Pascal to
construct dynamically allocated data structures, such
as queues. The pointer is represented symbolically by
", which reads as "points to'. Pointers correspond
to an address in memory and, as such, provide a means
to Link records together to generate a structure such
‘as a queue. A list would be constructed by defining a
pointer to be the start of the List. The list is
terminated with a pointer value of NIL, which can be
tested for when searching through a list. A graphical
representation of a linked list is presented in figure
1. Insertion of an element 1into a Llinked list is
‘accomplished without physicalty moving any data by
altering the pointer used to address the next record
iin the List. beletion 1is accomplished, just as
leasily, by altering pointers to éeliminate the record
“from the list. Thus the event scheduling and wait
queues of OEM can be <implemented dynamically with
logically associated elements rather than with a
lconfusing collection of disassociated fixed Llength
arrays.

i HEAD record record record
LT e——
\ =t | pa— NIL
I]
| Y]
CoTEMP ! A
‘ [:-:;::4__L__’(record | Before
‘ J -—=- After
®— 4 —
I Figure 1: Insertion of a Record into a Linked List

As a result of these conceptual changes, well-written
‘Pascal programs tend to be self-documenting [61. One
‘criticism of this is that well-written Pascal programs
also tend to be wordy. However, it is this wordiness
which tends to make Pascal programs easier to read,
'much Like reading a recipe. One may verify this by
'comparing the Pascal version of the dice game in
appendix 1 with the FORTRAN version in appendix 2.
Both programs execute almost didentically from the
‘user's point of view.

Implementation of Operational Evaluation Modeling in Pascal

THE _CALCULATOR FACTORY SCENARIO

The system simulated was a standard classical parallel
process, the producer-consumer process of a calculator
factory [11. The system simulates the actions of a
calculator assembler, the producer, placing his
completed calculators on a conveyor belt, from which a

765

0EM simulates this parallel process through the use of
two scheduling queues. The first Llist is an event
scheduling queue, which schedules events to occur on a
time-ordered basis, dependent on the Llength of time it
takes to complete each step of the process. The
second List is a wait queue, which schedules events to

occur, dependent on the availability of Llimited,
packer, the consumer, removes the calculators and shared resources. The wait queue ds checked on a
packs them for shipment. Figure 2 shows how a first~come, first-served basis. More information on
conflict arises over access to the conveyor belt, as a this subject is available in reference [11.
door exists on each end of the belt, as a safety
measure, with an interlocking mechanism to prevent Based on the directed graph model, the
having both doors open at the same time. This system producer-consumer system behaves as follows:
is represented graphically by the directed graph model
of figure 3. 1. The system begins operation dnitializing the
number of units on the belt as zero, setting the
number of empty positions on the belt to the
default buffer size, and indicating the belt as
PRODUCER being free. Initialization proceeds to schedule’
the "Calculator Completed” event (E2) and places
WORK the '"Calculator Available" event in the wait list,
STATION i.e. the packer will wait until a calculator is
NO. 1 available.
2. When event E2 occurs, the action of event E2
DOOR 1 places event E3, the '"Space On Belt" event, on the
 ——. wait list.
3. Upon checking the wait list, if space exists on
the belt, then event E3 occurs and event E4, the
"Belt Free" event, is placed on the wait List.
CONVEYOR BELT [DOOR 2 4. Upon checking the wait List again, if the belt is
available, then event E4 oceurs and schedules
n
CONSUMER 2z22: E?;tfhe Calculator On Belt" event, on the
WORK 5. The decision is then made on whether to terminate
STATION the assembLy‘o?eration for the day, or not. @ased
NO. 2 on that decision, the assembler process either
° proceeds to the "PRD" state and begins assembling
another calculator or proceeds to the "I1" state
. and waits for the packer before ending the day's
Figure 2: The Calculator Factory Scenario operation.
ST
Ng <= O Process = 1 ACTION: >
NE <= N v(B) ,VINQ)

B <—— TRUE VP(NE) P(B) $1 .
D) <>~ >~ @ >~ <D <>~
BEGIN CALCULATOR SPACE BELT CALCULATOR END
OPERATION COMPLETED ON BELT FREE ON BELT OPERATION

S1: LAST CALCULATOR PRODUCED
S2: I1 STATE and NQ EQUAL O
ACTION:
P(NG) P(B) v (B) ,V(NED $2
@ oy ~(@—o Yol oy @)

CALCULATOR BELT CALCULATOR CALCULATOR
AVAILABLE FREE REMOVED PACKED
Process = 2
B: BeltFree
NE: NumberEmpty 2
NQ: NumOnBelt

Figure 33

Directed Graph Model of the Calculator Factory

766 dJohn A. Quandt
6. Meanwhile, the packer has been waiting in the twenty-three hundred records of "QueueEntry" for
"WTC" state for a calculator to appear on the this problem, Apple Pascal 1.1 [5]1 Llacks the
conveyor belt. As soon as one does, event E7, the "DISPOSE" intrinsic, which would allow automatic
"Calculator Available" event, occurs and event ES, ! reallocation of wunused dynamically allocated
the "Belt Free" event, is placed in the wait Llist. | memory, commonly referred to as garbage
7. When the conveyor belt becomes available, event E8 . collection. Thus, 1in order to conserve memory,
occurs and event E?, the "Calculator Removed" queueing records not in use are placed in a spare
event, is scheduled on the event list. } record queue. Only when the spare record queue is
8. When event E9 occurs in time, event E10, the | empty are new records created.
“Calculator Packed” event dis scheduled in the 10. Procedure "PopEventQ" removes the first record
event Llist, ‘ from the event queue, i.e. the record with the
9. Here the packer has to decide whether to proceed lowest “Time".
back to the "WTC" state, or continue on to the 11. Procedure "FileEvent" is used to place a record
"I2" state, signifying the belt is empty and the : on the event queue in a time-ordered manner, from
assembler has finished for the day. At this lowest to highest.
point, if the end of the day has been reached, 12. Procedure "InsertEvent” is called by “FileEvent"
event E6, the "End Operation" event is scheduled. to search through the event queue and place the
new event 1in the proper place. "InsertEvent"
Implementation in Pascal calls itself recursively until it finds the
proper place.
The producer-consumer problem described herein has 13. Procedure "RemoveWait" is used in the process of
previously been implemented in FORTRAN [1, App. BI. ‘ removing records from the wait queue. The
As previously mentioned, FORTRAN is not ideally suited handling of the pointers 1is managed in the
to development of these simulations. The Pascal ‘ "CheckWaitQ" procedure.
versioh of this system incorporates three simple 14. Procedure "FileWait" is used to place a new
queues to replace FORTRAN's fourteen fixed~length record at the end of the wait queue.
arrays and seven pointer variables. Discussion of the 15. Procedure "AddWait" is called by "FileWait" to
specifics of the Pascal implementation of the search through the wait queue until it finds the
Calculator Factory Scenario follows. end of the gueue.
16. Procedure "UnfileAll" 4is wused to release all
One implementation of the producer-consumer process in dynamically allocated memory used by the queues
Pascal is given in appendix 3. Examining the program during the day's operation.
Listing, one notes the following features: 17. Procedure "TimeTranslate" is used to convert the
value of time from a real number of seconds to
1. The program begins with a declaration block. Here integer hours, integer minutes, and real seconds.
all external software Llibraries, global constants, 18. Procedure "EventTrace" is used to print out the
global data type definitions, and global variables } event trace data.
are declared. Pascal requires all wutilities, 19. Procedures "Event2" through “Event10",
constants, user-defined data types, and variables "prodsimulation”, "ConsSimulation”, and “Events"
be defined prior to their usage. The type are used to handle the processing of events.
declaration contains the definition of the entries 20. Procedure "StatsCollect" is used to collect data
in the queues, conveniently addressed as a on the wait times for each wait state and the
"QueueEntry" with fijelds of "Time", "Event", measure of effectiveness.
"Process”, "bupProcess", and “NextPointer". Note 21. Procedure "CheckWaitQ" s used to scan through
that "NextPointer” 1is declared to be of type the wait queue to determine if any wait events
"QPointer”, which is defined as being equal to can be performed.
""QueueEntry". what this means is that 22. Procedure "StateTrace" is used to print out the
"“NextPointer" is an address which points to a state trace data.
record of "QueueEntry". That is, variables of 23. Procedure "Initialize" js used to initialize the
type "QPointer' are used to point to records of simulation at the start of each operation, i.e.
the five field long "QueueEntry". As one of the day.
fields of "QueueEntry" is a "@Pointer", then one 24. Procedures "VarUpdate", “RndvarUpdate”, and
can Llink records of "QueueEntry" together by “probUpdate" are used to optionally change the
having each record point to the next record in the . default values of the random variables and idle
list to create a linked list, i.e. a queue. ' probability.
2. Definition of each of the global variables is 25. Procedure "ReadInputs" is used to read the user
fairly self-explanatory due to Pascal's ability to selected program options.
handle names with more than six Lletters and the 26. Procedure "Report" is used to print out a report
ability to use both upper and Lower case letters. at the end of the simulation .run.
3. Function "Rand" generates a pseudo-random series 27. The block of code between the Last BEGIN/END is
of re?L ngmbers"between zero and one. . the main program. The main program starts by
4. Function "Gamma genefatef a fandom number with a initializing the random variables, idle
range of values and distribution controlled by the probability, event and state names, and the
random variables, RndVar, used. event, wait, and spare record queues. The
5. Procedure "RndvarInit" is wused to initialize the program then proceeds to read user inputs. The
random variables, Rndvar. main processing loops follow. The outer "“WHILE"
6. Procedure "NameInit" Jjs used to initialize the . loop executes until such time as the user inputs
event, producer state, and consumer state names. from “ReadInputs" tell the program to stop. The
7. Procedure "ProbInit" 4is used to initialize the 1 next inner loop, the “FOR" loop, executes until
value of the idle probability. i the total number of days have been processed.
8. Procedure "QInit" is used to initialize the event, ! The inner "REPEAT..UNTIL" loop executes until
wait, and spare record queues. "Eventé" clears the event and wait queues at the
9. Procedures "PopSpare@" and “pushSpare@" are used ‘ end of the day.
to remove and place records onto the spare record i
queue. While capable of generating over

Implementation of Operational Evaluation Modeling in Pascal

In addition to resulting in a program that was far
easier to understand, the Pascal version executed
faster than the FORTRAN. This was expected, as Pascal
programs tend to execute "50% faster than FORTRAN"
versions of the same program on the same machine [6].
My own personal experience on the Apple [5] shows that
similar programs tend to run 25% faster in Pascal than
FORTRAN, although this 1is with similar structures
between both programs. Restructuring the Pascal
version utilizing the additional features of Pascal
does tend to improve upon this.

CONCLUSIONS

This paper has presented the results of a study into
the implementation of Operational Evaluation Modeling
(OEM) in Pascal, a highly-structured, top-doun design
programming language. This is significant as the
simulation community is just becoming aware of the new
structured programming languages, such as Pascal and
Ada. As a result, this paper represents one of the
first implementations of OEM in a top-down structured
language. Pascal was demonstrated to be superior to
FORTRAN for this application, due to the similarity in
structure between the OEM simulation technique and the
top-down program development technique used 1in the
pascal programming Llanguage, resulting 1in a program
that was far easier to read and comprehend than the
FORTRAN version. A side benefit of programming
highly-structured programs in Pascal is slightly
faster execution times than the comparable program
written in FORTRAN.

APPENDIX 1: PASCAL LISTING OF DICE GAME PROGRAM

Line
1 PROGRAM Craps;
2
3 USES APPLESTUFF;
4
5 CONST
6 HellFreezesOver = FALSE;
7
8 VAR
9 FirstRoll, NextRoll : INTEGER;

1 PROCEDURE RolLEm (VAR Toss : INTEGER);
12 BEGIN

13 Toss := RANDOM MOD 6 + 1;

14 Toss := Toss + RANDOM MOD & + 1;
15 END;

16

17 PROCEDURE RollAgain;

18 BEGIN

19 RolLLEm (NextRoll);

20 WRITELN (' NEXT ROLL IS ', NextRoll:2);
21

22 IF NextRoll = FirstRoll THEN

23 WRITELN (' YOU WIN'D;

24 ELSE IF NextRoll =7 THEN

25 WRITELN ¢ 'YOU LOSE®);

26 ELSE RollAgain;

27 END;

28

29 BEGIN

30 REPEAT

31 RolLLEm (FirstRoll);

32 WRITELN;

33 WRITELN (' YOU ROLLED A ', FirstRoll:2);
34

767

35 CASE FirstRoll OF

36 7, 11 : WRITELN (' YOU WIN');
37 2, 3,12 : WRITELN ¢' YOU LOSE");
38 4, 5,6, 8,9, 10 : RollAgain;

39 END;

40

41 UNTIL HellFreezesOver;

42 END.

APPENDIX 2: FORTRAN LISTING OF DICE GAME PROGRAM

Line

$USES APPLESTUFF

PROGRAM CRAPS

FORMAT (/' YOU ROLLED A ',I2)

FORMAT (' YOU WIN')

FORMAT (' YOU LOSE")

FORMAT (' NEXT ROLL IS ',I2)

CALL ROLLEM(IROLLT)

WRITE(*,1) IROLL1

IF(IROLL?T.NE.7 .AND .IROLLT.NE.11) GOTO 200

10 150 WRITE(*,2)

1 60TO 100

12 200 IFCIROLLT.NE.2.AND.IROLL1.NE.3.AND.
1 IROLL1.NE.12) GOTO 300

13 250 WRITE(x,3)

o=

10

W NOUV W=

14 GOoTO 100

15 300 CALL ROLLEM(IROLLZ)

16 WRITE(*,4) IROLLZ2

17 IF (IROLLZ.EQ.IROLLT) GOTO 150 .
18 IF(IROLLZ2.ER.7) GOTO 250

19 GOTO 300

20 END

21 SUBROUTINE ROLLEM(ITOSS)

22 1T0SS=MOD (RANDOM () ,6)+1

23 ITOSS=ITOSS+MOD (RANDOM () ,6)+1
24 RETURN

25 END

APPENDIX 3: THE CALCULATOR FACTORY PROGRAM

PROGRAM ProducerConsumer;

USES APPLESTUFF, TRANSCEND;

CONST
BufferSize = 10;
Idlepefault = 0.15;
TimeInitial = 0.0;
TYPE

QPointer = "QueueEntry;
QueueEntry = RECORD

Time : REAL;

Event : INTEGER;

Process : INTEGER;

bupProcess : INTEGER;

NextPointer : QPointer
END;

VAR
Process, EventNumber, NumberUnits,
NumberEmpty, DupProcess, NumberMissions,
TotalMissions, NumonBelt, I, J, ProdState,
ConsState, Hours, Minutes : INTEGER;

NumberWait : ARRAY [1..43 OF INTEGER;

Time, TimeNow, Temp, AveMOE, AveThroughput,
Probidle, Seconds : REAL;

Rndvar : ARRAY [1..5, 1..4]1 OF REAL;
TimeWait, AveWait : ARRAY [1..4]1 OF REAL;

768

John A. Quandt
Stop, StraceFlag, EtraceFlag, BeltFree, } ConsName [3] := 'wB2 ';
RemoveFlag : BOOLEAN; ‘ ConsName [4] := 'TCB ';
ConsName [5] := 'PAK ';
Key : CHAR; } ConsName [6] := 'I2 ';
EventName : ARRAY [1..1031 OF STRING; 1 ProdName [1] = " ';
ConsName, ProdName : ARRAY [1..61 OF STRING; i ProdName [2] := 'PRD *';
WaitName : ARRAY [1..4] OF STRING; ProdName [3] := 'was ';
ProdName [41 := ‘w81 “;
HeadEventQ, HeadWaitQ, LastWaitPointer, ProdName [51 := 'PCB ';
ThisWaitPointer, HeadSpareQ, TempPointer : @Pointer; ProdName [61 := 'I1 ';
Heap : "INTEGER; ’
WaitName [1] := 'Was’';
FUNCTION Rand : REAL; ! WaitName [2] := 'wB1';
BEGIN WaitName [31 := 'WrC';
Rand := RANDOM MOD 1024 / 1023.0; WaitName [4] := 'wB2’';
END; END;
i
FUNCTION Gamma (Select : INTEGER) : REAL; PROCEDURE ProbInit;
VAR BEGIN
DegOfFreedom : INTEGER; I ProbIdle := IdleDefault;
Temp = REAL; END;
BEGIN ,
IF Rndvar [1, Select] < Rand THEN PROCEDURE QInit;
Gamma := 1.0E10 BEGIN
ELSE MARK (Heap);
BEGIN HeadEventQ := NIL;
DegofFreedom := TRUNC (RndVar L2, Selectl); HeadWaitQ := NIL:
Temp := 1.0; HeadSpareQ == NIL;
END;

FOR I := 1 TO DegOfFreedom DO
Temp := Temp * Rand;

IF Temp = 0.0 THEN Temp := 1.0E~15;
Temp := =1.0 * RndVar [3, Select] * LN
/ DegOfFreedom;

IF Temp < RndVar L4, Select]d THEN Temp
RndVar L[4, Selectl;

IF Temp > Rndvar [5, Select] THEN Temp
Rndvar L[5, Select];

Gamma := Temp;

(Temp)

END;
END;
PROCEDURE RndVarInit;

BEGIN
Rndvar L1, 11 := 1.0; Rndvar [2, 11 := 3.0;
Rndvar £3, 11 := 60.0; Rndvar [4, 11 := 10.0;
Rndvar E5, 13 := 150.0;
Rndvar [1, 21 := 1.0; Rndvar [2, 2] := 10.0;
Rndvar [3, 21 := 10.0; Rndvar L[4, 2] := 0.0;
Rndvar L[5, 21 := 30.0;
Rndvar [1, 31 := 1.0; Rndvar [2, 3] := 10.0;
RndVar [3, 3] := 10.0; Rndvar L[4, 3] := 0.0;
RndVar L[5, 3] := 30.0;
Rndvar [1, 41 := 1.0; Rndvar [2, 4] := 2.0;
Rndvar [3, 4] := 90.0; Rndvar L4, 41 := 10.0;
Rndvar [5, 41 := 180.0;

END;

PROCEDURE Namelnit;

BEGIN
EventName [11 := 'BEGIN OPERATION ';
EventName [2] := 'CALCULATOR COMPLETED';
EventName [31 := 'SPACE ON BELT 'z
EventName [431 := "BELT FREE ';
EventName [5] := 'CALCULATOR ON BELT °*;
EventName [6] := 'END OPERATION '
EventName [71 := "CALCULATOR AVAILABLE';
EventName [81 := "BELT FREE '
EventName [91 := "CALCULATOR REMOVED ';
EventName [101 := '"CALCULATOR PACKED ';

ConsName [1]
ConsName [2]

= r
= "Wre ';

PROCEDURE PopSpareQ
BEGIN
Sparepointer ;= HeadSpareQ;
HeadSpareQ := HeadSpareQ”.NextPointer;
END;

(VAR SparePointer : QPointer);

PROCEDURE PushSpareQ (VAR SparePointer : QPointer);
BEGIN
SparePointer”.NextPointer := HeadSpareQ;

HeadSpareQ := SparePointer;

END;
PROCEDURE PopEvent®;
BEGIN
' TimeNow 1= HeadEventQ".Time;
EventNumber := HeadEventQ~.Event;
Process := HeadEventQ".Process;
DupProcess := HeadEventQ".DupProcess;
TempPointer := HeadEventQ;

HeadEventQ := HeadEventQ".NextPointer;
PushSpareQ (TempPointer);
END;

PROCEDURE FileEvent;
VAR
NewEventPointer : QPointer;

. PROCEDURE InsertEvent (VAR LastEventPointer :
QPointer);
BEGIN
IF LastEventPointer = NIL THEN
BEGIN
NewEventPointer”.NextPointer := NIL;
LastEventPointer := NewEventPointer;
END
ELSE IF NewEventPointer”.Time <
LastEventPointer”.Time THEN
BEGIN
NewEventPointer”.NextPointer :=
LastEventPointer;
LastEventPointer := NewEventPointer;
END
ELSE
InsertEvent (LastEventPointer”.NextPointer);

Implementation of Operational Evaluation Modeling in Pascal 769

END;

BEGIN
IF Time < 1.0E9 THEN
BEGIN
IF HeadSpare@ = NIL THEN
NEW (NewEventPointer)
ELSE
PopSpare@ (NewEventPointer);

NewEventPointer".Time := Time;
NewEventPointer”.Event := EventNumber;
NewEventPointer”.Process := Process;
NewEventPointer”.DupProcess := DupProcess;

InsertEvent (HeadEventQ);

END;
END;
PROCEDURE RemoveWait;

BEGIN
Time := ThisWaitPointer".Time;
pupProcess := ThisWaitPointer”.DupProcess;
RemovefFlag := TRUE;

END;

PROCEDURE FileWait;
VAR
NewWaitPointer : QPointer;

PROCEDURE AddWait (VAR WaitPointer : QPointer);
BEGIN

IF WaitPointer = NIL THEN
WaitPointer := NewWaitPointer
ELSE
AddWait (WaitPointer”.NextPointer);
END;
BEGIN

IF HeadSpareQ = NIL THEN
NEW (NewWaitPointer)
ELSE
PopSpareQ (NewWaitPointer);

NewWaitPointer”.Time := Time;
NewWaitPointer”.Event := EventNumber;
NewWaitPointer™.Process := Process;
NewWaitPointer”.DupProcess := DupProcess;
NewWaitPointer”.NextPointer := NIL;

AddWait (HeadWaitQ);
END;

PROCEDURE UnfileAll;
BEGIN
RELEASE (Heap);
END;

PROCEDURE TimeTranslate;
BEGIN
Temp 2= TimeNow / 3600;
Hours := TRUNC (Temp);
Temp := (Temp - Hours) * 60;
Minutes := TRUNC (Temp);
Seconds := (Temp - Minutes) * 60;
END;

PROCEDURE EventTrace;
BEGIN
TimeTranslate;
WRITELN (Hours:2, ':', Minutes:2, ':',
Seconds:6:2, ! ', EventName LEventNumberl,
' EventNumber= ', EventNumber:3,
' Process = ', Process:3);
END;

PROCEDURE Event2;

BEGIN
IF EtraceFlag THEN EventTrace;
NumberUnits := NumberUnits + 1;
ProdState := 2;
Time := TimeNow;
EventNumber := 3;
FileWait;

END;

PROCEDURE Event3;
BEGIN
IF NumberEmpty <> 0 THEN
BEGIN
RemoveWait;
IF EtraceFlag THEN EventTrace;
TimeWait [1] := TimeWait [11 +
(TimeNow =~ Time);
NumberWait [1] := NumberWait [11 + 1;
NumberEmpty := NumberEmpty - 1;
ProdState := 3;
Time := TimeNow;
EventNumber := &4;
FileWait;
END;
END;

PROCEDURE Event4;
BEGIN
IF BeltFree THEN
BEGIN
RemoveWait;
IF Etraceflag THEN EventTrace;
TimeWait [2] := TimeWait [2] +
(TimeNow - Time);
NumberWait [2] := NumberWait [2] + 1;
BeltFree := FALSE;
ProdState := 4;
Time := TimeNow + Gamma (2) *
(BufferSize - NumOnBelt);
EventNumber := 5;
FileEvent;
END;
END;

PROCEDURE Event5;
BEGIN
IF EtraceFlag THEN EventTrace;
NumOnBelt := NumOnBelt + 1;
BeltFree := TRUE;

IF ProbIdle >= Rand THEN
Prodstate := 5
ELSE
BEGIN
Prodstate := 1;
Time := TimeNow + Gamma (1);
EventNumber := 2;
FileEvent;
END;
END;

PROCEDURE Eventé;
BEGIN
IF EtraceFlag THEN EventTrace;
ProdState := 0;

ConsState = 0;

HeadEventQ := NIL;

HeadWait@ s= NIL;
END;

770

PROCEDURE Prodsimulation;
BEGIN
CASE EventNumber OF
2 : Event2;
Event3;
Eventé4;
Event5;
Eventé;

»
’

oW
ez s an w3 ss

m
<

END;

PROCEDURE Event7;
BEGIN
IF NumOnBelt <> 0 THEN
BEGIN
NumOnBelt := NumOnBelt - 1;
RemoveWait;
IF EtraceFlag THEN EventTrace;
TimeWait [3] := TimeWait L[31 +
(TimeNow - Time);
NumberWait [31 := NumberWait [3] + 1;
ConsState := 2;
Time := TimeNow;
EventNumber := 8;
FileWait;
END;
END;

PROCEDURE Event8;
BEGIN
IF BeltFree THEN
BEGIN
BeltFree := FALSE;
RemoveWait;
IF EtraceFlag THEN EventTrace;
TimeWait [4] := TimeWait [4] +
(TimeNow = Time);
NumberWait [4] := NumberWait L[4l + 1;
ConsState := 3;
Time := TimeNow + Gamma (3);
EventNumber := 9;
FileEvent;
END;
END;

PROCEDURE Event9;

BEGIN
IF EtraceFlag THEN EventTrace;
NumberEmpty := NumberEmpty + 1;
BeltFree := TRUE;
ConsState := &;
Time := TimeNow + Gamma (4);
EventNumber := 10;
FileEvent;

END;

PROCEDURE Event10;
BEGIN
IF EtraceFlag THEN EventTrace;
IF (ProdState = 5) AND (NumOnBelt = 0) THEN
BEGIN
Process = 1;
EventNumber := 6;
Event6;
END
ELSE
BEGIN
ConsState := 1;
Time := TimeNow;
EventNumber := 7;
FileWait;
END;
END;

John A, Quandt

PROCEDURE ConsSimulation;
BEGIN
CASE EventNumber OF

7 : Event7;
8 : Event3;
9 : Event9;
10 : Eventi0;
END;

END;

PROCEDURE StatsCollect;
BEGIN
FOR I := 1 TO 4 DO AveWait [I] :=

TimeWait CI1 / NumberWait LI + AveWait [IJ;

AveMOE := NumberUnits / TimeNow + AveMOE;
END;

PROCEDURE Events;
BEGIN
CASE Process OF
1 : Prodsimulation;
: ConsSimulation;
ND;
END;
PROCEDURE CheckWaitQ;
BEGIN
LastWaitPointer := HeadWaitQq;
ThisWaitPointer ;= HeadWaitQ;
WHILE ThisWaitPointer <> NIL DO

BEGIN
Process := ThisWaitPointer”.Process;
EventNumber := ThisWaitPointer”.Event;
Events;

IF RemoveFlag THEN
IF ThisWaitPointer = HeadWaitQ THEN
BEGIN
HeadWaitQ := HeadWaitQ".NextPointer;
LastWaitPointer := HeadWaitQ;
PushSpareQ (ThisWaitPointer);
ThisWaitPointer := HeadWaitq;
RemoveFlag := FALSE;
END
ELSE
BEGIN
TempPointer := ThisWaitPointer;
ThisWaitPointer :=
ThisWaitPointer”.NextPointer;
LastWajtPointer”.NextPointer :=
ThisWaitPointer;
PushSpare@ (TempPointer);
RemoveFlag := FALSE;
END
ELSE
BEGIN
ThisWaitPointer :=
ThisWaitPointer”.NextPointer;
IF LastWaitPointer <> HeadWaitQ THEN
LastWaitPointer :=
LastWaitPointer”.NextPointer;
END;
END;
END;

PROCEDURE StateTrace;
BEGIN
TimeTranslate;

WRITE (Hours:2, ':', Minutes:2, ':',

Seconds:6:2, ' ', ProdName [ProdState + 11,

' t, consName [ConsState + 11,
' NumOnBelt = ', NumOnBelt:2,
' NumberEmpty = ', NumberEmpty:2);

Implementation of Operational Evaluation Modeling in Pascal 771

IF BeltFree THEN
WRITELN (' Belt Free")
ELSE
WRITELN (" Belt In Use');
END;

PROCEDURE Initialize;
BEGIN

TimeNow := TimeInitial;
NumonBelt := 0;
NumberEmpty := BufferSize;
BeltFree := TRUE;
RemovefFlag := FALSE;
NumberUnits := 0;

FORI :=1 TO 4 DO
BEGIN
TimeWait CI1 := 0;
NumberWait LI] :=
END;

0;

ProdState :=
Process := 1;
EventNumber :
DupProcess := 1;

Time := TimeNow + Gamma (1);
FileEvent;

ConsState := 1;
Time := TimeNow;
Process := 2;
EventNumber :=7;
FileWait;

IF (EtraceFlag) OR (StraceFlag) THEN
BEGIN
WRITELN ('BEGIN OF DAY ', NumberMissions:4);
EventNumber := 1;
EventTrace;
END;
END;

PROCEDURE VarUpdate;

PROCEDURE RndVarUpdate;
BEGIN
REPEAT
WRITELN (' I Rndvar[1..5, I1');
FOR J := 1 TO 4 DO WRITELN (J:2,
Rndvar [1, J3:11, Rndvar [2, J3:11,
Rndvar [3, J1:11, RndVar L[4, J43:11,
Rndvar L5, J41:11);

WRITELN ('ENTER 1-4 TO INDICATE THE RANDOM',
' VARIABLE VALUES ");

WRITELN ('TO BE CHANGED, OR <space> TO QUIT');

READ (Key);
IF Key < ' ' THEN

BEGIN
FOR J =1 TO 5 pO
BEGIN
WRITELN ("ENTER THE NEW VALUE OF ',
‘Rndvar L ', J,', ', Key, " 1 AS A',
' REAL NUMBER = AND PRESS RETURN');
READLN (Rndvar LJ, (ORD(Key) - 48)1);
END;
END;
UNTIL Key = ' ';
KEY 1= '%';

END;

PROCEDURE ProbUpdate;

BEGIN
WRITELN ('ProbIdle = ', ProbIdle:7:5);
WRITELN ('ENTER NEW IDLE PROBABILITY VALUE AND',

' PRESS RETURN');

READLN (ProbIdle);
KEY == 'x';

END;

BEGIN
REPEAT
WRITELN (' <1> - RANDOM VARIABLES®);
WRITELN (' <2> - IDLE PROBABILITY");
WRITELN (' SELECT THE VARIABLES TO UPDATE ');
WRITELN (' OR <space> TO EXIT');

READ (Key);
CASE Key OF
'1' : RndVarUpdate;
'2' ¢ ProbUpdate;
END;
UNTIL Key = ' ';
END;

PROCEDURE ReadInputs;

BEGIN
AveMOE := 0;
FOR I := 1 TO 4 DO AveWait [I] :=0;
NumberMissions := 1;
EtraceFlag := FALSE;
StraceFlag := FALSE;

REPEAT
WRITE ('DO YOU WISH TO MODIFY ANY VARIABLES ?°',
' - Y(es / NCo ");
READ (Key);
IF Key IN C'Y', 'y'] THEN VarUpdate;
UNTIL Key IN C'Y', 'y', 'N', 'n'];

WRITELN ('ENTER 0, 1, OR 2 TO SELECT EVENT-STATE',
' TRACE');
WRITELN ' <0>
WRITELN (' <1> = COMPLETE EVENT-STATE TRACE");

WRITELN (' <2> = STATE TRACE ONLY");
WRITELN (' = OR <9> TO TERMINATE SIMULATION',
' PROGRAM") ;

NO TRACE");

nnn

READ (Key);
IF Key <> '9' THEN
BEGIN
IF Key IN C'1', '2'] THEN StraceFlag := TRUE;
IF Key IN £*1'1 THEN EtraceFlag := TRUE;
WRITELN ("ENTER NUMBER OF DAYS OF OPERATION',
' TO BE SIMULATED'");

WRITELN (' - AND PRESS RETURN");
READLN (TotalMissions);

END
ELSE
Stop := TRUE;
END;
PROCEDURE Report;
BEGIN
AveThroughput := AveMOE * 60 / TotalMissions;

Av
FOR I :=1 TO0 4 DO
AveWait [I] := AveWait [I11 / TotalMissions;
WRITELN ('REPORT OF SIMULATION RUN');
WRITELN ('THE AVERAGE THROUGH PUT OF',
' THE FACTORY IS', AveThroughput:7:2,
* UNITS PRODUCED PER MINUTE");
WRITELN ('BASED ON ', TotalMissions:3,
' DAYS OF OPERATION");

772

FOR I =1 TO 4 DO WRITELN ('THE AVERAGE ',
'WAITING TIME FOR THE ', WaitName ril,
' STATE IS ', AveWait [I1:7:2);
END;

BEGIN
RndVarinit;
ProbInit;
NameInit;
QInit;
Stop := FALSE;
ReadInputs;
WHILE NOT Stop DO
BEGIN
FOR NumberMissions := 1 T0 TotalMissions DO
BEGIN
Initialize;

REPEAT
IF StraceFlag THEN StateTrace;
IF HeadEventQ <> NIL THEN PopEventQ;
Events;
CheckWait®;

UNTIL (HeadEventQ = NIL) AND
(HeadWaitQ = NIL);

StatsCollect;
unfileAll;
END;

Report;
ReadInputs;
END;
END.

REFERENCES

1. Clymer, John R., OPERATIONAL EVALUATION MODELING,
Unpublished Draft, Department of Electrical
Engineering, California State University,
Fullerton, California, May 1982.

2. Veit, "The Electronic World - A User's Guide to
Computer Languages"”, Popular Electronics, December
1981.

3. Clark and Koehler, THE UCSD PASCAL HANDBOOK, A
REFERENCE AND GUIDEBOOK FOR PROGRAMMERS,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1982.

4. Cooper and Clancy, OH! PASCAL!, AN INTRODUCTION TO
PROGRAMMING, W. W. Norton & Company, New York,
1982.

5. "Apple" is a registered trademark of Apple
Computer, Inc., Cupertino, California.

6. Fox and Waite, PASCAL PRIMER, Howard Y. Sams &
to., India?apo[is, Indiana, 1981.

7. Brainerd, éoLdberg, and Gross, PASCAL PROGRAMMING,
A SPIRAL APPROACH, Boyd & Fraser pPublishing
Company, San Francisco, 1982.

8. Quandt, John A., IMPLEMENTATION OF OPERATIONAL
MODELING IN PASCAL, 13-22401, Univeristy
Microfilms International, Ann Arbor, Michigan,
1984.

John A, Quandt

