Proceedings of the 1984
Winter Simulation Conference

S. Sheppard, U. Pooch, D. Pegden (eds.) 645

AN INTROSPECTIVE ENVIRONMENT FOR
KNOWLEDGE BASED SIMULATION

Venkataseshan Baskaran and Y,V.,Reddy

Artificial Intelligence Laboratory
Department of Computer Science
West Virginia University
Morgantown, WV-26505,

ABSTRACT

An intelligent system is developed to help
the wuser in building models which can
disclose their operation, learn, verify
and check their own operations. The
knowledge necessary for this is
represented using the knowledge
representation language SRL and this
allows the user to enter the necessary

information at different levels of
abstraction. In addition to automatic
verification, some important debugging
aids like selective tracing of any
collection of model elements under

different conditions are also developed.

1. Introduction

"The Purpose Of Computing Is Insight, Not
Numbers" was the motto wused in {1} by
R. W. Hamming. Simulations fall within the
category of computing for insight. The
primary goal of this paper is to develop
an introspective simulation environment to
help the wuser in getting an increased
understanding of the dynamics and the
underlying causality of the system that is
being modelled and to help in predicting
how the system will behave in the future
and under altered conditions.

Traditionally, the Simulation Models are
"black boxes" in the sense that, only at
the end of a simulation run we would have
gathered some information about the model,
and after all, that may not reveal what
went on inside the model. Most of the
current modelling systems are batch
oriented or semi-interactive, which puts
severe limitations on the process of model
development. A model is generally
conceived by management personnel who have

little programming expertise and thus
requires the services of a programmer to
translate the model into a program. Often

the programmer has little understanding of
the system being modelled. Because the

various modelling assumptions are
"hardwired" into the code, the model
builder cannot be expected to verify

whether all the assumptions have been
faithfully translated into the program. In
addition, even small structural changes to
the model turnout to be major programming
projects.

A Knowledge Based Simulation System
developed by Y.V.Reddy
[2, 3, 4, 51,

(KBS)
and Mark S.Fox
answers many of these

problems by providing facilities for
interactive model creation and alteration,
simulation monitoring and control,
graphical display, and selective

instrumentation. In this paper, we present
an extension of KBS which provides an
environment for introspection of
simulation models (from here on we will
refer to this as I-KBS), to help the user
in building models which can disclose

their operation, learn, verify and check
their own operations, The knowledge
necessary for this 1is represented using

the knowledge representation language SRL
[6] and this allows the user to enter the

necessary information at different levels
of abstraction. In addition to automatic
verification, I-KBS also provides

important debugging aids like selective
tracing of any collection of model
elements under user specified conditions.

The 1internal model behaviour may be
displayed graphically or recorded for
later analysis by an intelligent program
which may "suggest" model alterations that
may result in a more desirable scenario.
In the remainder of this paper, we explore
these issues via an example from a factory
domain.

2. Understanding simulation

The simulation models can be better
understood in depth by understanding the
cause-effect-chain (i.e., causal links or
causal relationships) of events and
attributes, which wunderlies the system
dynamics approach to modelling [71.

When an event A causes another event B
then we say, A is related to B by the
relation "causes" and B is related to A by
the inverse relation "caused-by". We

646 Venkataseshan Ehasﬁaran, Y. V. Reddy

denote this diagrammatically by ' Work-pieces enter the system (workshop) at
some intervals (may be random). They are
© put into the gueue for 'cutting’ (referred
" to as "saw-q") to get cut in one of the
A -- : > B 'two 'saw's. After cutting is done, then
the work-piece is moved to the gqueue for
drilling (refer to as "drill-qgq"). With
that the work-piece 1is done. Before we
give a KBS representation of the system we
have just described, let wus briefly
describe some important concepts and
terminology of KBS.

The events of the model together with the
"causes" relation form an event-network.
Also in an inventory model, whenever an
event, say "sell-goods” causes the
attribute ‘"inventory" to decrease, we say
"sell-goods" is related to "inventory" by

A 'schema' 1is a data object that is used

"causes" (more appropriately "affects") ' to describe various congepts or entities
relation., We denote this diagrammatically } that exist in a medel, Each schema
by ; contains slots. The slots can be of

. following types:

1, relation: The slots which describe how

- the entity to which they belong to is

sell-goods —mem—me——ma—— > inventory . related to the other entities of the
model, come under this type. For example,
if the value of the slot "instance" in the
schema "drilll" is "machine", and if

the Pt sign is to indicate that | "machine" is a schema, then "drilll" is
"sell-goods" causes a decrease in ' said to be related to "machine" by the
inventory. ' relation "instance". Some of the
relations, like "instance", are defined to

We shall illustrate these ideas wusing a pass all slots and values from the schema
simple factory model described in the next - which is the value of the "instance" slot
section. . to the schema containing the "instance"
, slot. i.e., here, since "drilll" 1is an

instance of "machine", it can inherit all
the properties of "machine".

3. An example - a factory model
2. behaviour: Those slots of an entity

Let us model a simple 'workshop problem' whose values describe the different

[8] in XBS. There 1is a workshop. It functions of that entity are called
transforms a work-piece into a finished i behaviour-slots or event-slots or events
part by performing two operations: - of that entity. For example, the value of
'drilling' and ‘cutting’. There are two . "arrives” slot in the entity "saw~-q"

machines (referred to as "sawl" and (inherited from "queue") describes how the
"saw2") that can perform ‘cutting’, and work-pieces arriving at "saw-q" is to be
one machine (referred to as "drilll") that - handled.

does drilling (figure 3-1). '

Workpieces are loaded Workpieces are unloaded
into saw-machines from saw-machines
SAW1

Workpieces are loaded
into drilling-machine

WORKPIECES DRILL1

o O OO

—]\f>—

Queue for g Queue for unloaded
sawing] Drilling from drilling
' machine

SAW2

Figure 3-1: Workshop Model

i

An Introspective Enviromment for Knowledge Based Simulation

3. attribute: Those slots of a schema
which contain the data values related to
the schema are in general called
'attributes'. The values of these

attributes are affected or accessed by the
different events of the model. For
example, the event "release-order" in the
entity "workshop" increases the value of
the attribute "work-num" in "workshop" by
1 whenever it releases a work-piece for
processing. So, the value of the attribute
"work-num" in "workshop" at any time gives
the number of work-pieces that have
entered the system.

Entities or objects, events and attributes
are collectively called model elements.
The entities or objects of the model are
represented in SRL. The objects of the
'workshop-model' and the functions of the
different events and some attributes are
explained in the next subsection.

3.1. Model Objects and Behaviour

f{ workshop
instance: "KBS-model"
restore:
initialize: (init-sim)
work-num: 0
release-order: (release-order)l}

here is an
any model,

Note: The entity "workshop"
instance of "KBS-model"., For

there is always only one entity of that
model which is the "instance" of
"KBS—-model". This allows the 'KBS
simulator’ to inherit the information

about initialization etc.

‘event' in the
"workshop'. We shall denote this
event by [workshop : release-order]. The
basic functions of this event
[workshop : release-order] are:

"release-order" 1is an
'entity’

- Releases a work-piece for
further processing

- Schedules itself to release
work-pieces in the future.

- Schedules the event
[saw~q : arrives] to handle the
work-piece just arriving at
Saw~Queue.,

"work-num"” is an attribute in the entity
"workshop" . Whenever the event
[workshop : release-order] releases a

‘work-piece’' it increases the value of the
attribute [workshop : work-num] by 1.

Note:
entity

- Removes

[drilll : load}
similar
"sawl".

i{ sawl
instance: "machine"

operation: "cutting"
input-q: “"saw-q"11}

"sawl” is not

"unload"

a 'work-piece'’ from the
"saw-g" and loads it in the
machine "sawl"

Schedules [sawl : unload] to
unload the 'work-piece' once it
is done with the machine "sawl".

i{ machine

is—-a: "d-p-fac"

The event "load" or "unload" in the
explicitly stated
here. But since "sawl" is an "instance"
"machine" and "machine" is an
of "d-p-fac", the value of the slot "load"
is inherited from the object
"d-p-fac". The event [sawl : load]

of

"instance"

event [sawl : unload] does the
following:
- Unloads the work-piece that is
just finished with the machine
"sawl".
Schedules [drill-q : arrives] to
handle the work-piece which is
just finished with sawing and
waiting to get into "drill-q".
Schedules [sawl : load]
indicating that machine "sawl"
is free and it can load a
work-piece from the “"saw-q".
i1 saw2
instance: "machine"
operation: "cutting"
input-q: "saw-g"11}
Note: The purpose of the events
[saw2 : load) and [saw2 : unload] are
similar to that of "load" and "unload" in
"sawl",
[f drilll
instance: "machine"
operation: "drilling"
input-g: "drill-g"11
Note: The purpose of the events

and [drilll : unload] are
to that of "load"” and "unload"

in

647

648 Venkataseshan Bhaskaran, Y. V. Reddy

instance+inv: "drilll"™ "saw2" “"sawl" instance+inv: "drilling" "cutting"
capacity: 111 machine:
next—operation:
{{ d-p-fac , operation-time:
is-a: "p-fac") total-time:}}
is-at+inv: "machine"
state: free {1 lineupl
load: "d-load-rule" instance: "line-up"
unload: "d-unload-rule" 1 operation-sequence: "cutting"
units-processed: 0 "drilling" stopi}
total-busy~time: 0.0
input-rule: loader i{ work-piece
output-rule: expt-sched ‘ line-up: "lineupl”}}
service-time: service-timel} ’
{{ line-up
{{ saw-g : instance+inv: "lineupl"
instance: "queue" i operation-sequence:}}

f-dest: "sawl" "saw2"11} i

One of the key elements in modelling a

Note: The event "arrives" in the entity isystem is to identify closed, causal
"saw-q" is not explicitly stated here. But feedback loops. Within a causal loop, an
since "saw-q" is an "instance" of "queue", initial cause ripples through the entire
the value of the slot "arrives" is chain of causes and effects until the
inherited from the object "queue". The initial cause eventually becomes an
purpose of the event [saw-q : arrives] is indirect effect of itself. This cause-

effect loop is called feedback loop. The
reasons for looking for closed—~loop

- To put the newly arrived feedback effects go much deeper than just
'work-piece’ in the "saw-qg". simplicity in including or excluding
'factors from analysis. If one is

~ To schedule the event interested in problems of control
[sawl : load] or [saw2 : load] (controlling room temperature, controlling
to remove a ‘'work-piece' from inflation, controlling insects,
the "saw-g" and to load it in controlling worker productivity), "“the
the corresponding sawing machine most important causal influences will be

exactly those that are enclosed within
feedback loops" [7].

ff drill-g
instance: "queue" I-KBS from its "learning", can produce the
f-dest: "drilll"1l1l causal links of events and attributes.
Note that when an event affects an
attribute it can increase or decrease the
Note: The purpose of the event values of it and that forms a part of
[drill-g : arrives] is similar to that of cause~effect-chain. From that we can let
[saw-q : arrives]. the system determine the closed causal
feedback loops. There is an important
limitation in automatic detection of
{{ queue cause~effect-chain when the attributes are
instance+inv: "drill-q" "saw-q" included. That is; at present the system
count: 0 can only detect how an event affect an
discipline: fifo attribute and not vice-versa. For example,
arrives: “"arrival-rule" the system is capable of detecting the
contents: fact that the "inventory" is reduced, when
max-size: the event "sell-goods" is executed. But
f-dest:11 another fact that the reduction in
"inventory" has an effect on causing the
{{ cutting event ‘"order-for-goods" goes unnoticed.
instance: "operation" ' Though it may be possible, by employing
machine: "sawl” "saw2" some heuristics, to find few links in the
operation-~time: 1013} Tattribute to event" direction, it is
certainly not possible at the present
{f{ drilling status of KBS, to find all of them.
instance: "operation" ,
machine: "drilll" Still more insight into the simulation
operation~-time: 63113 models can be achieved by running the

model and observing every step of what is
happening during simulation, and then
{i operation gltering some critical parameters during

An Introspective Enviromment for Knowledge Based Similation

execution to see how the change affects
the event~behaviour and other attributes
of the model. Step by step tracing of
every aspect of the complete model
together with selective display of event
and attributes will be provided by I-KBS
to aid the user in observing the running
of the model.

model
like

To get a good grasp of a complete
(and due to few other considerations

speed, memory, etc..), it is many a time
useful and sometimes necessary to
partition the model into different

sub-models and treat them independently.
Using the knowledge I-KBS has gained about
the event-behaviour of the model and the
causal~relationships between events and
attributes, it 1is possible to partition
the model into sub-models. An algorithm
for partitioning a KBS-model into sub-
models is proposed in [9].

4, Validation of Simulation Models

The objective of the validation stage is
to ensure that the simulation program (in
our case, the KBS model + associated LISP
functions) is a proper representation of

the system being studied, so that the
results to be obtained from the
experiments will be the results which
would be obtained from the real system.
This 1is a very important part of
simulation studies and should be a major

part of this type of project. However, it
must be recognized that this objective of
proving the simulation correct can only be
approached, not achieved [10].

The primary 1limitation in validating a
simulation is the problem of relating the
model to the real system. The model is
never a complete representation of the
real system, and the real system is never
completely known. Because of this, there
are difficult questions even as to what is
meant by the validation of the model [10].
I-KBS's contribution to the validation of
simulation models is limited to
verification,

5. Verification of Simulation Models

The purpose of verifying the program is to
determine whether or not the model is
properly programmed; that is, does the
program behave as the model is intended to
behave? Thus verification of a simulation
model is similar to what is commonly known
as the program-~debugging process. There
are aspects of simulations which afford
somewhat different techniques for this
purpose than those available for general
computer programs [10].

I-KBS is capable of learning, either by
itself or from the wuser, the event-
behaviour of the model, and also how the
events affect the attributes of the model.
Every time it learns new things about the
model it asks the model builder to certify
the correctness of what it has learnt.
After the completion of learning (strictly
speaking there is no end to learning!),
and also during learning, the system
monitors the model and reports to the user
whenever the behaviour of the model is
contradictory to what it has learnt. This
automatic verification is surely a
powerful tool for the model builder, for
the user can delegate the major portion of

the cumbersome and time consuming job of
debugging the model to the system itself.
I-KBS also provides many other debugging

aids 1like selective tracing of
collection of attributes, or tracing of
event-behaviour of selective events, or
monitoring of how an event affects certain
attributes, etc. All these tracings are
displayed on a graphics screen. I-KBS also
allows the user to specify certain
conditions under which the simulation is
to be interrupted and the control be given
to the user. The position under which the
interruption has occurred is being traced
on the graphics screen and the control is
given to the user.

any

6. Examples of Commands

The system is 1likely to respond to
commands/queries similar to the ones given
below. Though the example-queries are
given in 'English Language', we have not
provided a 'Natural Language User
Interface'. 1Instead, the commands/queries
are implemented using Knowledge Based
Command Interpreter(KBCI). The result of
the following commands are displayed on a
graphics screen or stored in a file for
later analysis.

6.1. Queries related to causal-
relationship

1. Show the entire event-network
for (current run | collection
of all the previous runs)

This will show the cause-
effect-chain of events. The
system lets the user peruse the
network node by node.

2. Show the entire event—
attribute-network (or entire-
network) for (current run |
collection of all the previous
runs)

649

650

Venkataseshan Bnaskaran, Y. V. Reddy

It is similar to the above
query, but includes
'attributes’ (affected and
accessed) also in the network.

6.2. Queries related to 'Post

Analysis’

Show all the events in "drilll"

up to this point in the current
simulation run

This shows how every event in
"drilll" has behaved during
that simulation run. (viz, the
events scheduling it, events
scheduled by it, the values of
attributes increased/decreased
by it, how many times it has
accessed different attributes,
etc.)

Show what happened at "drill-q"

during the current simulation
run

This shows for every attribute
in "drill-q", which events
affected or accessed that
attribute and the related
information. Similarly, all the
related information for every
event in "drill-q" is also
shown,

5. What are the events which

affected the value of a
particular attribute

Show those attributes of "saw-q"

which were accessed by the
events of "saw2" during the
collection of all the previous
runs.

6.3. Queries related,to 'tracing’

Trace the event

["drill-q" : "arrives"] when
scheduled by any event {under
all conditions}

Whenever

{"drill-q" : "arrives"] is
scheduled by any event, it is
being traced. Here "under all

conditions" implies trace
always. Instead of "under all
conditions", any arbitrary

"LISP predicate" «can also be
given.

Trace the event
["saw2" : "unload"] when
executed

Monitor "drilll"

All the events and attributes

of the entity "drilll" is
traced.

110, Trace the event
["sawl" : "unload"] when

scheduling ["sawl" : "load"]

"11. Trace all the attributes when
affected by ["sawl" : "load"]

e
N
-
.

Queries related to
'interrupting'
12. Interrupt when the event
‘ ["saw2" : "unload"l schedules
) ["saw2" : "load"] funder all

conditions}

Whenever the event
["saw2" : "unload"} schedules
["saw2" : "load"l, the

simulation will be interrupted
and the control is given to the
i user. Instead of "under all

‘ conditionsg”, any arbitrary
‘ "LISP predicate" can also be
given.

313. Interrupt when any attribute in
"drill-q" is accessed by any
event in "drilll"

i

{14, Interrupt when
: ["workshop" : "release-order"]

is executed under the condition
! (= (mod (valuecl ™“workshop"
! "work-num") 20) 0)

Whenever the event
["workshop" : "release-order"]

is executed and if the value of
the attribute
["workshop" : "work-num"] is
divisible by 20 then interrupt
the simulation and give the

control to user (i.e.,
simulation is interrupted afteér
every 20th work-piece is

released).
1
7. Conclusions

In this paper, we have demonstrated that
the dynamics and the underlying causality
of the system that is being modelled can
be learned/understood by I-KBS, and what
is 1learnt about the system can be
profitably used in automatic verification
and post analysis. Though I-KBS can learn
most of the causal-relationships, at the
present status of KBS, it can not
understand if a change in the value of an
attribute has caused an event to occur.
KBS may be modified, so that the user can
represent this type of causal-relationship

i
7
i

i
{

An Introspective Environment for Knowledge Based Simulation 651

as a property of the attribute that is
causing it. For the purpose of post
analysis, we have transformed the
Discrete~Event-Model representation to
Causal-Chain representation. This idea can
be further extended to transform the
Causal-Chain representation to Flow-Model
representation and from there to
Difference Equations [7].

References

1. R. W. Hamming, Numerical Methods for

Scientists and Engineers, McGraw-
Hill, New York, 1962.

2. Mark S. Fox and Y.V.Reddy,
““Knowledge Representation in
Organization Modeling and
Simulation: Definition and
Interpretation,'’ Proceedings of the
Thirteenth Annual Pittsburgh

Conference, April 1982, Held at
School of Engineering University of

Pittsburgh

3. Y.V .Reddy and Mark S. Fox,
~“Knowledge Representation in
Organization Modeling and

Simulation: A detailed Example,'’
Proceedings of the Thirteenth Annual
Pittsburgh Conference, April 1982,
Held at School of Engineering
University of Pittsburgh

4, Y. V. Reddy and Mark S. Fox, ~“KBS:
A Knowledge Based Simulator - User's
Manual,'' CMU Robotics Institute,
Internal Working Document, June 1983

5. Y. V. Reddy, Alan Butcher and Philip
McBride, ~TKBS Tutorial - Factory
Simulation Environment,'' WvuU
Artificial Intelligence Lab,
Internal Working Document, June 1983

6. Mark 8. Fox, ~"SRL - A Knowledge
Representation Language, '’ CMU
Robotics Institute, Internal Working
Document

7. Nancy Roberts, David Anderson, Ralph
Deal, Michael Garet, William
Shaffer, 1Introduction to Computer
Simulation: The Systems Dynamics
Approach, Addison-Wesley, 1983.

8. Nizwer Husain, ~~A Workshop Model,''
Wvu Al Lab, Internal Working
Document

9. Venkataseshan Baskaran, “TSelf-
Understanding and Automatic-

Verification of Simulation Models,'’
Master's thesis, West Virginia
University, 1984.

10.

James A Payne, Introduction to
Simulation: Programming Technigques
and Methods of Analysis, McGraw-
Hill, 1982. -

