Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

627

EMULATION AS A DESIGN TOOL IN THE
DEVELOPMENT OF REAL-TIME CONTROL SYSTEMS

Howard M. Bloom, Cita M. Furlani, and Anthony J. Barbera
Industrial Systems Division, Center for Manufacturing Engineering
National Bureau of Standards, Gaithersburg, MD 26899

ABSTRACT

A major facility for manufacturing research
is being established at the National Bureau
of Standards. The Automated Manufacturing
Research Facility (AMRF) will provide a
testbed where measurement research of

computer integrated manufacturing systems
can be performed. The control architecture
of the facility is based on a

sensory-interactive, modular, hierarchical,
feedback system. Each module is represented
as a finite state machine that interacts
through a shared time-sliced common-memory

where command, feedback and database
information is stored.
A hierarchical control system emulator

(HCSE) has been developed that allows the
system to be designed and tested before
implementation on the actual hardware. The
HCSE has been successfully used in the AMRF
project as a design management tool,
providing a complete specification of the
control software. It is also used as a
testing aid that allows a given module
(i.e., a robot control system) to interact
with emulated control modules substituting
for unavailable AMRF hardware.

INTRODUCTION

A research project, the Automated
Manufacturing Research Facility (AMRF), is
underway at the National Bureau of Standards
(NBS) . One goal of the effort is to
identify potential standard interfaces
between components of automated small batch
manufacturing systems. A second goal is to
develop measurement techniques and standard
reference materials that will provide users
of the new manufacturing technologies with a
means for ensuring, where applicable, the
traceability of their processes and products
to national standards [1,2,3].

A portion of the NBS machine shop has been
set aside for the construction of an testbed
automated manufacturing system to support
experimentation. The testbed will be made
available for selected research projects by
academia, industry, research institutions,
and other government agencies. The AMRF is
being designed to handle the bulk of the
part mix manufactured in the NBS instrument
shop. The research supported by the AMRF
will address only chip forming metal removal
manufacturing. Within this constraint, the
intent is to completely automate the

production process from the transfer of near
net-shape-blanks from inventory through the
delivery of finished, cleaned, and inspected
parts. The machine tools in the AMRF were
chosen to be representative of the general
purpose machine tools in common use
throughout the United States. Each of the
machines, along with a single industrial
robot, will be configured into a work
station. The AMRF will have six
self-contained work stations, each with a
well defined function. The functions are:

1. Horizontal machining
2, Vertical machining

3. Turning

4. Cleaning and deburring
5. Inspection

6. Materials handling

A major portion of the research effort
addresses the development of methods for
effectively controlling the operation of all
the work stations. A control system is
required that takes orders for a part to be
made, describes the part using a CAD system,
uses a process planning system to define how
to make the part, and then schedules and
monitors the actual production process.

DESCRIPTION OF THE HIERARCHICAL CONTROL
IECHNIOUE

The control architecture design for the AMRF
is based on the the NBS robot control system
which consists of a collection of control
modul es arranged in an hierarchical
multi-level system and interacting through a
communication network [4]. A control module
can be represented by a generic control
structure. At each instant, the particular
output will be determined by the input
command and the feedback data processed
(Figure 1). Each controller takes commands
from the next higher level system, but may
direct several others at the next lower
level. Long range goals or tasks enter the
system at the highest level and are
decomposed into sequences of subtasks to be
executed as procedures at that level or
output as commands to the next lower level.

The hierarchical control architecture
concept has been extended to apply to the
entire research facility. The control
structure of the AMRF is composed of five
major hierarchical levels: Facility, Shop,
Cell, Workstation, and Equipment [5]. Each
level has one or more instances of

628

Howard M. Bloom, Cita M. Furlani, Inthony J. Barbera

PROCESSED \ INPUT COMMAND FROM
; NEXT HIG
SENSORY HER LEVEL

FEEDBACK ——————3» CONTROL
SENSORY +———5j DECISION

REQUEST LEVEL
OUTPUT COMMAND
STATUS REPORT \
FROM LOWER STATUS TO NEXT LOWER'LEVEL
CONTROL LEVEL REPORT TO
NEXT HIGHER
LEVEL
Figure 1l: Generic Control Level
controllers which are further decomposed

into sublevels or modules (Figure 2). The
functions of each level are as follows:

(a) Facility - This highest level of control

compr ises three major subsystems:
Manufacturing Engineering, Information
Management, and Production Management.

Manufacturing Engineering provides user
interfaces for the computer-aided-design of
parts, tools, and fixtures; and for the

planning of production processes.
Information Management provides interfaces
to and support for the administrative
functions. Production Management generates
long range schedules based on production
resource requirements and available

production capacity.

(b} Shop -~ This level is ‘responsible for the
real~time manadgement of resources and jobs
on the shop floor through two major modules:
Task Management and Resource Management..

The Task Manager schedules Jjob orders,
equipment maintenance, and .shop support
services, such as housekeeping. Job orders

are grouped into part batches according to a
group technology (GT) classification scheme.
Virtual manufacturing cells are created
(through software) to manage the part
production and are removed when assigned
tasks are completed [6]. The Resource
Manager allocates workstations, storage
buffers, tools, and materials to cell 1level

The AMRF Control Hierarchy

Facllity
Information Management
Manufaciuting Englnesring
Production Management

Task Management
Resource Allocatlon

call Task Analysis
. Batch Management
hedullng

Equipmant g T
e M e Lo
Measutement Aehot |} Miseg Jan Rosar |[tnepectioni| Part |} gy || Mebot | poneeyer 0 Other
Hardling Bectie JL 2t Mook [} Sutiar 2] ‘Modules

Transport
Storsge

Figure 2

control systems and to particular production
jobs. The scheduling of resources is
updated as status information about task
completion is reported from the cells.

(c) Cell - This level controls the
sequencing of batch Jjobs of similar parts
through workstations and the supervision of

various other support services, such as
material handling. The virtual cell permits
the time sharing of workstation 1level

processing systems [7].

(d) Workstation - This level coordinates the

activities of the shop floor equipmgnt
typically consisting of a robot, a machine
tool, a material storage buffer and a

control computer, Its task is to process a
tray of parts that has been delivered by the
material transport system. The workstation

controller sequences equipment through job
setup, part fixturing, cutting, cnip
removal, in-process inspection, job

takedown, and cleanup operations.

(e} Equipment - This level is identified
with particular pieces of equipment on the
shop floor, such as rfobots, NC machine

tools, and delivery systems. These systems
perform the functions of material storage,
transportation, handling, material

processing, cleaning, and inspection.

In addition to hierarchical control
architecture, the AMRF control systems
utilize several other ideas derived from the

development of the NBS Real-Time Control
System [8]. These are: state~machine
implementation, control cycles, and common
memory .

Within the hierarchical control structure
each control module operates as an
independent finite state machine and may
reside on one Or mOre processors. All
inputs, outputs, states, and state

transitions of each subsystem are identified
in state tables that offer a convenient form

for user interaction and modification
(Figure 3).
A C D d to State-Trans|tion Tables
Com:nmd State _ Fesdback Previous Command
Fesdback : 4 [
T Next
| _Command Stalte Feedback _ \State Oulput Ruport
1
1
1
i .
L] 3 {_Procedurs |

Subcommand

Figure 3

Hnulation as a Design Tool in the Development of Real-Time Control Systems

A time interval (called a control cycle)
that determines how often its table. is
processed is defined for each control
subsystem. Processing a state table
involves examining all inputs and state
variables, locating the current state in the
table, and then executing the procedures and
generating the outputs associated with the
current state. The control c¢ycle at each
level must be short enough to maintain
system stability. That is, each processor
must be able to identify the current state
and generate appropriate outputs before the
behavior of the system deviates from
acceptable ranges.

between the various

accomplished by writing
messages in a database designated as
"common-memory " which 1is common to all
modules which either compute or make use of
those messages. Each message area (or
mailbox) within the database is restricted
so that only one system may write to it,
although many can read its contents. If the
cycles of the state-clock at all levels are
synchronized, information transfer into and
out of the common memory occurs at
predictable time increments and each message
carries a time tag to allow for proper
identification.

Communications
controllers is

EMULATION AS A SQFTWARE DEVELOPMENT TOOL

The AMRF is being designed cooperatively by
several divisions of NBS working in various
areas of automation technology.
Approximately 5f major control systems are
being simultaneously implemented. The NBS
researchers come from a variety of

disciplines~-computer science, electrical
engineering, mechanical engineering,
industrial engineering, etc. -- and are

applying technology to a wide range of
manufacturing areas.

These efforts must be integrated together as
a well-structured facility implementation,
Interfaces between different modules must be
worked out through intensive negotiation.
It is important to have an up-to-date design
specification of all the interfaces and
control modules in order to perform the
integration function. Emulation, through
the use of state-table construction, can be
an effective management tool to accomplish
this purpose. As the system is developed,
more detailed state~tables can be created
that define modules by "step-wise
refinement"”. These state-tables are then
available to other project members for
obtaining an understanding of the system
functions. Structured walk-throughs that
are used as a management review process can
be acccomplished by simply testing the
control logic of the state-tables even
before the output procedures are developed.

The basic principle that makes the
state-table structure an effective software
engineering tool is the rigid adherence to
the definition of each variable (including

629

command and state information) +that might
affect which 1line in the table is to be
executed. A column is defined for
specifying the condition of the variable
value (e.g. COUNT < 18). Each column
relationship is then processed in an AND
operation with the other input columns.
This corresponds to using only IF-THEN
logic. The designer is thus forced to
consider every variable even if the result
is a "don't care" condition. If
IF-THEN-ELSE structure was used, it would be
difficult to follow the control 1logic when
the nesting reached beyond the second level.
Using the state~table approach leads to the
following benefits:

(a) Problem partitioning ~ The system is
decomposed into simple, well-defined modules
with clearly specified inputs, outputs,
internal states, and rules for
state-transitions.

(b) Extensibility - State-tables are first
developed with few or no error conditions,
As new problems or cases are identified, new
states can be added to the module.

(c) Structured code - Each 1line in the
state-transition table for any module is an
IF/THEN production rule.

(d) Conditional testing - As new feedback
data is added, it can be added as new
columns to the state-table to test the new
variable values.

(e) Debugging - Diagnostic routines can be
used to read state conditions from common
memory which makes it easy to perform
traces, and to reason back from error
states.

The development effort £for the real-time
control system has identified the principal
software tools necessary to create such an
environment for design and programming.
This programming environment includes a
state-table editor that allows convenient
user interaction; a state~table interpreter
or compiler; a data dictionary to manage
the state-tables, variables, routines,
including the relationships between them;
and diagnostics which allow for monitoring
control cycles and examination of data.

EMULATION DEVELOPMENT

The robot control system serves as the basis
for the implementation of an emulator
environment that can effectively handle the
system development requirements for the
entire AMRF. Although the major thrust of
the development effort is in system
integration through interface
specifications, the research nature of the
laboratory causes the facility to be in a
constant state of change as equipment is
added or modified. For this reason it was
decided to develop a system that, by
accurately reflecting the structure of the

630

AMRF, could be used as a real~time interface
to individual modules to allow them to be
tested as desired. The Hierarchical Control
System Emulator (HCSE) was designed to
satisfy these goals.

The HCSE 1is a collection® of computer
programs written for NBS in the high-level
PRAXIS [9] language developed at Bolt,
Beranek, and Newman, Inc., to run under the
DEC VAX-11* VMS Operating System [18]. The
software provided allows the emulation to
follow the structure of the AMRF modular
hierarchical feedback control system, with

the modules conceptualized as finite state
machines (FSM) that interact through a
shared time~sliced synchronized common
memory (Figure 4). The features of the
emulator can Dbe used to establish the
feasibility of the overall AMRF control
structure, as well as to assess the
computational and communications
requirements,
Emulation Structure
Emulation
Runtime
Monitor
Dls;lay {npat, Current State,
:___—_::‘_:::: | Typical Moduie i
Outputs, Next State, " Ak Tad
0 p . Ci * ’
| e e >| Job Cell Module [
Common []] [
Memory et s e o e v o e e >{ Work Station Module l
)
-« ‘i Device C Module]
¥] [}
et e o e s et e >| Device Timing Module I
¥ H
Off-Line Data L]
Loggling Shop
Statistics (Not Floor
and Cun‘enﬂ‘y‘ Display
Reporting p)

Figure 4

The emulator can serve as a prototype for
the real system to allow design development

before the actual system hardware is
available. When the -emulation speed is
equal to actual clock speed, the emulator

can function as a mock-up of the actual
shop-floor control software, and any subset
of the simulated machine functions could be
substituted for physical devices. In
bringing the job shop on-line, new
components {including man-machine

*Certain commercial egquipment and software
is identified in this paper in order to
adequately specify the experimental
facility. Such identification does not
imply recommendation or endorsement by the
National Bureau of Standards.

Howard M. Bloom, Cita M. Furlani, Anthony J. Barbera

existing
components

interfaces) may be tested with
components and simulations of
which are not yet installed.

The features of the HCSE were developed to
allow for effective emulation of the entire
AMRF control structure. Each module (e.g.
workstation) at each control 1level is
distinctly identifiable which facilitates
functional interchangeabil ity with the
actual hardware. The database structure
reflects the common-memory approach to data
transfer. The ability to perform local
computational processing is available.
Communication and ‘computing delays are
represented by using the mail-box technique
[11]. Modules are allocated to different
physical processes to simulate putting them
in different computers. Finally, the
control structure of each emulation module
reflects the state-~table design.

The basic unit of the emulator is the finite
state machine (FSM) transition table which
is used to describe each module. A standard
format is used based on a generalized
state-machine description with named
variables (Figure 5). The first part
consists of 1lines with declared input,
output; and internal variable names and
types. This is followed by a sequence of
condition-action pairs that implement the
rbws of a state table. Procedures that are
used in the action statements appear in the
last part of the FSM, The FSM module is
translated into a PRAXIS program module
wPich is then compiled.

Communication between modules, which is
transparent to the user, is achieved through

f?inite State Machine (FSM) Format

I;l Name Modulename

I

! I Input Inputvariable Type
/. I Internal Internalvariable Type
I'l State Statevariable Type
!/ | Output Outputvariable Type

... . (Other Variable Declarations)
/'l Conditions Condition; Condition; . . .
! | Actions Statement; Statement; . . .
. . . (Other Condition-Action Pairs)
1'l Multimatch Statement; Statement; . . .
I | Nomatch Statement; Statement; . . .
| | Procedures
.. . (Procedure Declarations)
/'l Doc
/'l Documentation of this FSM
! 1 Enddoc

- [End of File]

Figure 5

Emilation as a Design Tool in the Development of Real-Time Control Systems 631

Sequential List of Logging File

0: 0: 0.00 COUNT1_CURS NOMATCH
0: 0: 0.00 COUNT2__CURS RUNNING
0: 0: 0.10 COMMAND up
0: 0: 0.20 COUNT 1
0: 0: 0.30 COUNT 2
0: 0: 0.40 COUNT 3
0: 0: 0.50 COUNT 4
0: 0: 0.60 COUNT 5
0:0: 0.70 COUNT 6
0: 0: 0.80 COUNT 7
0: 0: 0.90 COUNT 8
0: 0: 1.00 COUNT 9
0:0:1.10 COUNT 10
0: 0: 1.20 COUNT 11
0: 0: 1.20 COMMAND RESET
0: 0: 1.30 COUNT -~10
0: 0: 1.40 COMMAND up
0: 0: 1.50 COUNT -9
0: 0: 1.60 COUNT -8
0: 0: 1.70 COUNT -7
0: 0: 1.80 COUNT -6
0: 0: 1.90 COUNT -5
0: 0: 2.00 COUNT -4
0: 0: 2.10 COUNT -3
0: 0: 2.20 COUNT -2
0: 0: 2.30 COUNT -1
0: 0: 2.40 COUNT 0
0: 0: 2.50 COUNT 1
Figure 8

Data Attribute Listing of
Variable Names

Command Strihg

Written by: Count2

Read by: Count1

Comments:

Count1 -~ Command from Count2

Count2 — Command to Count1
Count Integer

Written by: Count1

Read by: Count2

Comments:

Count1 — Counting Variable

Count2 — Counting Variable

Figure 9

the variable value (only one module is
allowed to write into the variable value).
Comments in the FSM module relating to the
variable are also presented.

Another feature of the emulator is a special
documentation format that allows for
commenting in the FSM module. Statements
inclosed in "//DOC" and "//ENDDOC" can be
stripped out of the FSM and used in a formal
design specification document.

USE OF EMULATION IN THE AMRF

The first emulation version of the AMRF was
designed to study the concept of the Virtual
Cell. A virtwal job cell is created each
time that the production of a new part is
scheduled to begin, The job cell acquires
the necessary resources for each stage in
the production of the part, assures that the
correct sequence of subtasks is performed to
machine the part, and then disappears once

the part has been returned to inventory. A
simple graphics interface to the
common-memory was developed to allow the
user to view the operation of the <facility
(Figure 18). Three workstations are
available in this example: an inventory
workstation, a transportation workstation,
and a milling workstation. The inventory
workstation controls a carousel, the
transport workstation controls a cart, and
the milling workstation controls the
transfer of trays, a robot, and a vertical
milling station.

Bach job cell in this example first
retrieves a specified blank from inventory
and transports it to the milling
workstation. It then takes control of the
milling workstation which activates the tray
transfer, The robot picks up the part and
places it on the milling machine. The piece
is then machined into a part, and these
steps are repeated in reverse order to
return the finished part to inventory. Each
control module is enclosed in a box with the
command being executed and the current
status displayed. The 1lines reflect the
chain of control with the connections
between cells and workstations dynamically
changing with the reallocation of resources.
In the example, four instances of emulated
time are shown and two virtual cells appear
and control different workstations. All
levels of the facility are emulated with
state tables except the equipment level
which is simulated with simple timing
functions. The actual hardware could be
substituted for the simulated systems with
the emulator running in real time.

The emulator is also being used as a design
tool for computer-aided-design (CAD)
directed inspection [12]. This project
involves integrating the -emulator with a
constructive solid geometry modeling system,
and with a coordinate measuring machine and
with a program development environment.
This emulation includes a front end through
which commmands can be entered, a machine
simulation module, and a dynamic graphic
display of the emulated inspection machine.

The robot vision system developed at NBS has
also been implemented on the HCSE. The
basic control structure was developed within
the emulator methodology. A link to VAX 'C!'
compiled code was developed to allow the
vision application routines to be used
without any modification.

In the fall of 1983, and again in June,
1984, there was a major test of the
integration of robots, machine tools, robot
carts and workstations. This test
demonstrated the implementation of the
control hierarchy from the equipment level
through the cell control level. The
emulator played the roles of the cell
control system and the Material Handling
Workstation (MBW) because the actual
hardware was not yet available. The
emulated cell control system interfaced with
the actual workstations, while the emulated

632

storage (by name) of common input and output
variables in a shared (common) memory.
Access to the memory is time-sliced
synchronized. The pattern and sequencing of
input/output transactions between modules
may be specified by the user to define a
hierarchical relationship of the control
system modules,

In order to run the emulation, the compiled
modules are combined using the BUILD feature
of the HCSE that permits one or more modules
to be processed together (as if they were on
the same computer). Each BUILD module runs
as an independent process. These processes
are synchronized through common memory. A
run-time display runs as another process,
allowing the user to monitor the real-time
progress of the various processes of the
emulation. The user can control the actual
rate of progress of the emulation through
the run-time display to achieve single-cycle
operation, wall-clock synchronization with
variable time-scaling, or free~running
(maximum~speed) simulation. The user can
select variables from common memory to be

displayed, and may stop the emulation or
record "snapshots" of common memory at any
time.

The use of the emulator can be illustrated

through a simple example (Figure 6a, 6b).
Module COUNT1.FSM resets the names common
variable COUNT to ~18 and thereafter
increments it on each tick until it is reset
again. Module COUNT2.FSM observes the
output of COUNT1l through common memory and

issues a "RESET" command to COUNT1 when its
count reaches +10, These two modules are
combined into a single emulation process

which will only work correctly if the two
modules successfully communicate via common
memory.

Bach time the value of a variable changes in
common memory, it is recorded in the logging
file. Upon completion of a run, these
logging files are processed to produce
summary statistics that show the values
taken by each logged variable and the amount

Two Module Example Using the HCSE: Count 1

{ IName Counti | Rests to -10 and Then Increments on Each
11 | Tick Until Reset

1

| I'nput Command String | Command From Couni2

11

1 /{Output Count Integer | Counting Variable

11

| {Conditions Command = “UP”

I 1 Actions Count: = Count +1

i

! IConditions Command = “RESET”
11 Actions Count: =.-10

I

I Muitimatch Nexts: = “MULTI”

I INomatch Nexts: = “NOMATCH”

| Do the Counting

Figure 6a

Howard M. Bloom, Cita M. Furlhni, Anthony J. Barbera

Two Module Example Using the HCSE: Count2

Observes Counti . fsm Output Through
Common Memory and Issues a Reset
Command to Count1 When the Variable

Name Count2

Count > =10
Input Count Integer | Counting Variable
Output Command String | Command to Counti

[Conditions First__Ent

! Actions Nexts: = “RUNNING”
1

{1 Conditions Curs = “RUNNING"”; Count< 10
I:IAcIions Command: = “UP”

{IConditions Curs = “RUNNING" Count >= 10
”Actlons Command: = “RESET

/1 Multimatch Nexts: = “MULTI”
I/ Nomatch Nexts: = “NOMATCH”

I
1
1
1
1
1
11
I
i1
il
]

Figure 6b

ok time spent at each value (Figqure 7).,
along with a sequential logging file (Figure
8).

AE particularly useful feature of the
emulator is the generation of a rudimentary
data dictionary containing a list of all the
data elements in the control modules. An
illustration of this is given for the simple
two-module example described above (Figure
9) The current state of each module (CURS)
1s always available from common memoxry, even
if it has not been explicitly mentioned.
The data dictionary allows the user to
rapidly check that modules are consistent in
their naming conventions and that minor
typographlcal errors have not occurred in
variable names. The system pulls together
the occurrence of each variable into one
representation that gives both a list of the
modules that read and the module that writes

Summary Statistics

| There Were a Total of 636 Transitions.
. Page Faults Last Value = 95
| Direct 1/0 Last Value = 6
 Buffered 1/O Last Value = 6
, CPU Time (10 msec units) Last Value = 1058
- Elapsed Time Last Value = 00:00:22.74
; Total Common Memory Writes Last Value
' Total Common Memory Reads Last Value
| COUNT Last Value = 9
Number of Transitions = 581
Minimum. -10 Maximum 11
iCOMMAND Last Value = Up
‘ Number of Transitions = 53
Other Values
i ‘Duration %
0:00:05.2 8
0:00:55.6 91 Up

2436
2440

Value

/COUNT2__CURS Last Value = RUNNING
'COUNT1_CURS Last Value = NOMATCH
I

Figure 7

Emlation as a Design Tool in the Development of Real-Time Control Systems

AMRF Emulation

Facility
C-Run Facility
S-Running

Shop

Resource
C-Run Shop
S-Planning

Mgr. Task Mgr.

C-Initlalize
S-dle

Material Supp. Pool Cell
C+Run Support C-Run Pool
S-dle S-dle
Inventory WS Transport WS Vertical WS
c.NoP C.NOP C-NOP
S-ldle S-idle S-tdtle
Carousel Cart Tray Transfer Robot Vertical Miti
C-NoP C-NoP C-NOP C-NOP C.Nop
S-idie Sidle S-idle Sidle S4dte

Snapshot at Emulated Time of 38 Clock Ticks

Initialization of the Facility

AMRF Emulation

Facility
C-Run Facility
S-Running
Shop
Resource Mgr. Task Mgr.
C-Run Shop C-Run Shop
S-Waitreply S-Update
Material Supp. Job Ceil 1 Pool Celt
C-Run Support C-Makepart C-Run Pool
S-ldle S-Deliverpart Sidle
Inventory WS Transport WS Vertical WS
C-NOP C-Transpart C:-Nop
Sidle S-Paihfind S-ldle
Carousel Cart Tray Transter Robot Verticai Miil
C:NOP C-GOTO CNOP C:NOP C-NOP
Sddle S-Moving Sidle S-ldle S-ldle
Ticks

Snapshot at Emulated Time of 152 Clock

First Job Cell Controlling Transportation Work Station

Figure 10: Emulation of AMRF Control Structure

633

634

Howard M. Bloom, Cita M. Furlani, Anthony J. Barbera
|

AMRF Emulation

Facility
C-Run Facility
S-Running
Shop |,
Resource Mgr. I Task Mgr.
C-Run Shop C-Run Shop
S-Waitreply S-Monitor
:
| il
Material Supp. Job Cell 1 _Job Cell 2 Pool Cell
C-Run Support C-Makepart C:Makepart C-Run Pool
Sidle S-Millpart S-Detiverpart S-Busy
/)&
;
Inventory WS Transport WS ' Vertical WS
C.NOP C-Transpart , C-Milipart
Sldle S-Pathlind ! S-Mill
l] [
[| = I .
Carousel Cart Tray Transfer Robot Vertical Mill
C-NOP C-.GOTO C-NQP ! C-NOP C-Mill
Sidle . S-Moving S-idle | S-dle S-Milling

i
Snapshot at Emulated Time of 358 Clock Ticks

1
First Job Cell Controlling Vertical Mill Work Station
Second Job Cell Controlling Transportation Work Station

AMRF Emplation

Facility
C-Run Facility
S-Running
Shop
Resource Mgr. Task Mgr.
C-Run Shop C-Run Shop
S-Waitreply S-Monitor
T :
| |
: i I i
Material Supp. | Job Cell1 Job Cell 2 Pool Cell
C-Run Support C-Exit C-Makepart C-Run Pool
Seidle S.Goodbye S-Transpart Sidle
Inventory WS Transport WS Vertical WS
C-NOP C-Transpart ! C-NoP
S:idle S-Pathfind i S-ldle
[I i] I 1
| I 1
Carousel Cart Tray Transfer Robot . Vertical Mill
C:NOP i C-GOTO C.NOP i C-NOP C:NOP
S-ldle | S-Moving Sidle S-ldle S-idle

|
Snapshot at Emulated Time of 769 Clock Ticks
|

First Job Cell Has Exited
Second Job Cell Controlling Transportation Work Station

i

:
Figure 18 (Continued): Emulation of AMRF Control Structure

Emulation as a Design Tool in the Development of Real-Time Control Systems 635

material handling system interfaced with the
robot cart. The «cell control system was
greatly expanded beyond the capabilities
described in the above example. With the
use of dqueue managers within the cell it
handled the scheduling of many part’ types
(designated as orders by the visitor) and
the distribution of orders to the various
workstations. The Material Handling
Workstation directly controlled the robot
cart through the use of an RF communication
link. It also interfaced to an inventory
system operated by a tray tender who
manually loaded blanks (into a tray based on
tray configuration instructions from the
MHW) and unloaded finished parts.

During the June test run, the graphic
display shown in Figure 11 was used. It was
run as a separate process to read common
memory and display information as that
information changed. Each module is
represented with its input command (C:) and
its current status (S:). In addition, as a
mailgram was sent across the network, an
arrow appeared to indicate that occurrence,
with the direction indicated. In Figure 11l
an arrow can be seen indicating that a
status mailgram has just been sent from the
Horizontal Workstation Controller to the
Cell, If the Data Base Manager was active,
that information was also displayed by
having its module appear, with an arrow
indicating which module in the hierarchy it
is servicing. 1In Figure 11, it is servicing
the Material Handling System.

Several new features have been added to the
AMRF emulator model. These include the
following:

(a) Database Management System Interface -

An interface was developed between the HCSE

and RIM [13] to handle the transferring of

?iia between the different control modules
1.

ACTIVITY OF AMRF CONTROL SYSTEM

OPERRTOR

C:R

S:RUNNING
CELL

C:RN

SIRUNNING

i I i
{]

HHS S 1S
C:REPLENISH C:STRRTUP C:MAKE BATCH
S:CART DELIVER S:REMOTE READY S:PRODUCTION

| l R:RERDY |
INVENTORY CART ROBOT MILL
C3RESET C:ST1-UNLOARD C:TRANSFER C:LOAD PROGRAM
S:RERDY SIEXECUTING S:EXECUTING S:FINISHED
DATA BASE MANAGER
R:MHS C:UPDATE TRAYLOC CART USE WHERE TRAYIO €G
SsSUCCESS D2

Figure 11

(b) Mailbox communication - An interface was
established between the emulator and the
AMRF network using the mailbox communication
feature [14].

(¢c) Operator/visitor interface -~ A full
screen display capability using the features
of FMS (Forms Management System - a product
of DEC) has been interfaced to the emulator
to allow for easy viewing and communication
to the emulated modules.

FUTURE EMULATOR DEVELOPMENT

Future efforts will be primarily in the area
of developing more detailed design
descriptions of the AMRF control modules.
To accomplish this goal, many new features
and capabilities need to be added to the
emulator enviroment. An interactive
state-table editor will be the user
interface to the emulator. This full-screen
editor will display state-tables in tabular
form and will allow the user to input and
modify state-tables 1in text format. The
editor will output the state-transition
matrix to an interpretor that implements the
Common—memory , database interface, and
network functions that are necessary for the
AMRF control system.

The interpreter will permit the user to
dynamically build and interchange
state—-tables. It will be possible to
"collect" state~table programs to implement
a model. A library of predefined modules or
routines will be implemented. These
routines will permit the simulation of

processes in any Jlanguage that wuses a
standard calling routine. After
compilation, these link-edited 1libraries

will be installed in a "shareable 1library"
which will permit the interpreter to
dynamically invoke the action routines on
demand from a finite state machine. This
state-table interpreter is being designed to
be transportable, but speed for real-time
control is not necessary as the state~tables
that are created with this design tool will
be translated into the HCSE FSM module
format to meet real-time response
requirements.

CONCLUSION

The emulator has proven to be an extremely
useful tool in the design and implementation
of control systems for the AMRF. It has
allowed control structures to be tested
without concern for the possible destruction
of equipment. It has also resulted in the
early development of a design specification
for the AMRF, a project that involves
interfacing control systems being developed
by many different groups.

ACKNOWLEDG EMENT

The emulation project is supported primarily
by funding £from the Air Force/DARPA ITAS
program.

636

|
}
|

Howard M. Bloom, Cita M. Furlani, Anthony J. Barbera

REFERENCES
{1} Simpson, J.A,, Hocken, R.J., Albus,
J.5., The Automated i

Standards, Journal of Manufacturlng Systems,

Vol. 1, No. 1, 1982.

[2] Nanzetta, P., Update: NBS Research
Facility Addresses Problems in Set-Ups for
Small Bakch Manufacturing, Industrial

Engineering, June, 1984.

[3] Albus, J.S., et.al.,
for an Automated Research
Facility, Proc. Robots 8 Conference and
Exposition, Detroit, MI, June 1984.

A Contro]l System

[4] Barbera, A.J., Fitzgerald, M.L.,
J.S.,

Albus,
Concepts for a Real-Time Sensory
Control Architecture,
Proc. of the Fourteenth Southeastern
Symposium on System Theory, April 1982.

[5]
A.J.,

Albus, J.S., McLean,
Pitzgerald, M.L., An
= i Control

C.R., Barbera,

' Proc.
Information Control
Manufacturing Technology,

Manufacfuring
IFAC/IFIP Symposium on
Problems in
October 1982.
[6] McLean, C.R., Bloom, H.M., Hopp, T.H.,
i i Cell, Proc.
Information

Manufacturing

The Virtual :
Fourth IFAC/IFIP Symposium
Control Problems in
Technology, October 1982.

[71

on

Jones, A.T., McLean, C.R., A Cell
for the AMRF, Proc. ASME
Computers in Engineering

and Exhibit, Las Vegas, N,

International
Conference
August 1984.

[8] Barbera, A.J., Albus, J.S.,
M.L.,

Fitzgerald,
Haynes, L.S., RCS: The NBS Real-Time

System, Proc. Robots 8 Conference
and Exposition, Detroit, MI, June 1984.

[9] (no author), PRAXIS

Language Reference
* Manual, Bolt Beranek and Newman Report 4582,

© April 1982.

{101
| Fortmann,

' Bureau of Standards,

‘VA;

Johnson, T.L.,
T.BE., HCSE

Milligan, s.D.,
User's Guide, National
NBS-GCR~82-413, October
from: NTIS, Springfield,

1982, Available

PB83-141952,

[11] McLean, C.R., Mltchell M., Barkmeyer,

' Spectrum, May 1983.

{

[12] Hopp, T.H., CAD-Directed Inspection,
CIRP Annals, Vol. 33, Madison, WI, August
1984.

[13] (no author), BCS RIM = Relational
‘Information System Version 6.9,
TR 76161-03-$17, The Boeing Company, May
1983

[14] M1tche11 M.J., Barkmeyer, E.J., Datg

'This is to certify that this

|

the NBS Automated
‘Manufacturing Research Facility, Proc.
IPAD2 Conference, Denver, CO, April 1984.

in

article was
Government
official duties

iprepared by United States
employees as part of their

tand is not subject to copyright.

