Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

587

CACI NETWORK II.5 ©
A COMPUTER AND COMMUNICATIONS NETWORK SIMULATOR

William J. Garrison
CACI, Inc.
501 Office Center Drive
Fort Washington, PA 19034

ABSTRACT

NETWORK II.5 is a modelling tool that takes a user-
specified computer system description and provides
measures of hardware utilization, software execution
and conflicts. It allows a user to quickly look at
various computer system configurations and determine
which one can best handle the required workload. It
can model a wide variety of computer systems; from a
single CPU system to a vast network of computers. It
can model the portions of a design which are of spe-
cial interest at a very fine level of detail while the
rest of the system is modelled at a much higher level.
It runs on most major computer systems and can be used
after a short period of training.

INTRODUCTION

Many good general purpose simulation languages are
available to today's simulation practitionmer. How-
ever, even with these aids, it cam still be difficult
to convince some project managers of the importance of
simulation. Simulation should not be something that
you use only as a last resort or because there is a
contract requirement to do so. The reasons I most
often hear cited for not simulating are cost, timeli~
ness of results, and the design "never stays the same
as the one simulated." Notice that the recurring
theme is, either directly or indirectly, cost. Time-
liness concerns can mean the cost of putting enough of
the right people on the job is "too high." Outdated
design concerns often means that the cost of keeping
model updated is "too high." Few doubt that simula-—
tion will have a beneficial effect on the resulting
design. Therefore, the best way to get more projects
to use simulation would seem to be to find a way of
reducing the cost of simulation.

There are few things as popular with project managers
as reducing cost. The question is how? I propose that
the time has come to offer more of what I call "tar-
geted" simulation packages which allow a user to
quickly specify how their system compares to some
"average" and produces results. I call these packages
"targeted" because they are too specific to be called
general purpose and too general to be called custom.
As a rough guide, where a general purpose language
might include 90% of the simulation community as a
part of its intended audience, and a custom package
might aim for less than 1%, a targeted package might
aim for 5%. There still will be a need in this world
for custom simulations, because some situations are
too specialized to fall into any general category.
However, many general classes of problems do exist
that can be satisfied with appropriately targeted
packages. Few organizations would consider developing
"custom" software to do their accounting, so why
should they have to develop custom simulations?

An additional benefit of using a targeted simulation
package is that the simulator can be an engineer from
the regular product design team, instead of being a
simulation expert brought in from the outside. The
closer a simulation is to the people responsible for a
design, the easier it will be for them to "feel good"
about a simulation and therefore put their reputation
on the line by using simulation results as the basis
of important design decisions. Also, the accuracy of
the simulation results won't be hurt by having people
close to the design being close to the simulation.
The chance forf keeping a simulation updated to reflect
all design changes will also improve when someone £rom
the "outside" (even if "outside" means just down the
hall) does not have to be called every time there is a
design change.

Targeted packages reduce cost because the development
cost of the model is spread over many users. The
results are considerably more timely because the user
is filling in the blanks into an existing structure
instead of designing a new one. The design simulated
can stay current because the underlying structure of
the model is general enough to facilitate changes. It
is very difficult to explain to the user of a custom
simulation model why some seemingly trivial change to
the model's operating logic will require a major
restructuring of the model. This happens because
every model needs some underlying assumptions, and
whenever someone wants to change something relating to
these assumptions, watch out!

THE COMPUTER AND COMMUNICATIONS NETWORK CLASS

The 'Computer and Communications Network" class of
problems consists of problems in which devices are
requesting, manipulating and distributing information
and making decisions based on the system state.
NETWORK II.5 is designed to serve this class of
problems. Telephone networks fit into this class of
problem. Distributed database systems fit into this
class. Local networks of computers fit into this
class of problem. Many other real world applicatioms
fit into this class of problem.

SETTING PROJECT GOALS

Now that we have defined the class, how should we
determine what kind of capabilities a tool that serves
this class will need? The goal is to provide all of
the capabilities that are needed, but no extras.
Extra features can "clog up" a good design by adding
useless complexity and increasing run time costs.

The approach used to develop NETWORK IL.5 could prob-
ably best be described as the "MATH 10l Geometric
Proof" approach. In this approach, you start with the
answer and work back to the question. (At least
that's the way I did it back then.) In general, the

588

William J. Garrison

potential users of a targeted simulation package are
much more specific about the answers they want from
the package than about the information they can pro-
vide to the package. So, in NETWORK II.5, we started
the project by designing the reports. When we had a
set of reports that filled our user's needs, we worked
backwards and built a tool that produced those
reports. When we had the simulation tool, we wrote
another tool (which we called NETIN) to help the user
produce the inputs needed by the model.

Obviously, the above des¢ription of our approach is a
simplification. We learned more about the application
area as we went along and went back and expanded some
of the reports and added model features during NETWORK
11.5's development. However, we kept our focus on
answers and tried to define the minimum input data
rehuired to produce those answers accurately.

DON'T FORGET THE USER

No targeted simulation package can expect to find
widespread acceptance unless it is user friemdly. A
user friendly simulation should provide some kind of
interactive guidance when it comes time to build a
simulation description and should run the model inter—-
actively so that the user doesn't feel left out of the
action. Never underestimate the size of the under-
taking when you declare that you are going to make a
model "user friendly." The interactive front end to
NETWORK, called NETIN, is actually larger than the
model it supports (from a source code line count point
of view). Never underestimate the range of choices
that the user may wish to explore when interacting
with an unfamiliar program. Also, to murder a quote
from P. T. Barnum, no one ever went broke overesti-
mating the reluctance of a user to open any document
labeled "User's Manual." On-line documentation is a
must (and is built into NETWORK II.5).

IMPLEMENTATION

Making a targeted simulation package available for a
wide variety of host machines will greatly increase
its chances for use. Writing the package in an exist~
ing powerful general purpose high level simulation
language will reduce the cost of producing the package
and make package enhancement easier. - NETWORK II.5 was
written in its entirety in the high level simulation
"language SIMSCRIPT II.5 (2). This includes the inter-—
active front end, the modelling portion and the plot-
ting portion. Because SIMSCRIPT IIL.5 is available for
many different host machines and because the implemen-
tations for these machines is carefully controlled,
NEIWORK II.5 can be offered on many different main-
frames., It is currently offered on CDC, IBM and VAX
machines with implementations for other machines to be
added as required.

NETWORK II.5 DESIGN

A fundamental design decision made in NETWORK IIL.5 was
that because it would be impossible to build every
hardware device that a user might wish to model inmto
NETWORK II.5 we weren't even going to try. Instead,
we chose to provide the user with general purpose
building blocks which can be easily specified and com—
bined to form the desired system devices. Careful
examination of the problem area suggested that there
were three basic hardware functions that had to be
modelled; data was being processed, data was being
moved and data was being stored. These functions are
modelled by what we call the Processing Element, Data
Transfer Device and Data Storage Device building
blocks.

HARDWARE

Processing Elements are the only active hardware
devices in a NETWORK II.5 simulation. Only Processing
Elements can execute instructions. Each Processing
Element has its own instruction repertoire which con-—
tains the description of every instruction this Pro-
cessing Element can execute. Each instruction is
referenced by its name and instruction definitions are
local to a particular Processing Element. Therefore,
the same name instruction could execute differently on
different Processing Elements. Processing Elements
are used to represent bus controllers, sensors, human
operators at a terminal or any other devices that are
more than just a data source or link.

Data Transfer Devices are the links between Processing
Elements and Data Storage Devices. They also can
carry data between two Processing Elements. They can
be connected to as many Processing Elements and Data
Transfer Devices as needed. Because this is a simula—
tion, the actual physical implementation of the Data
Transfer Device is immaterial. The Data Transfer
Device could be modelling a bus, a satellite communi-
cations link, a microwave link, etc. The only charac—
teristic of the Data Transfer Device (other than con-
nectivity) that is significant to NETWORK II.5 is the
timing of the data transfer. Each Data Transfer
Device has a user~defined specification listing the
bus speed and the amount of overhead to add for each
transmission. Data Transfer Devices always break
transmissions into what are called words (groups of
bits) and blocks (groups of words). This allows the
user to model up to two levels of bus protocol by means
of a user specified word overhead time and block over-—
head time. Therefore, changes in bus protocol can be
easily modelled by simple changes to the Data Transfer
Device's definition instead of having to modify a
characteristic of each message and file sent. For
example, a packet type network could be modelled with
word overhead time modelling the parity bits and block
overhead time representing the packet header and
trailer., Every time a message was sent, NETWORK II.5
would automatically handle breaking the transfer into
proper size packets and adding the appropriate
overhead.

Data Storage Devices are simply places where data are
stored. Disk, drum, -core and semiconductor memory all
can be modelled by this building block. Data Storage
Devices contain user named files and have a capacity
measured in bits. The user specifies how many Proces-—
sing Elements may use this device simultaneously and
NETWORK II.5 will automatically handle the queuing of
additional requests. The Data Storage Device also
contains a realistic file structure where the user can
dynamically create, modify and destroy named £iles.
NETWORK II.5 automatically keeps track of the file
structure so that conditions such as attempting to
read a nonexistent file or overflowing the Data Stor-
age Device are caught and diagnosed. For simulations
where a file structure is either undetermined or not
significant, there is a special case of writing infor-
mation to the general storage area of a Data Storage
Device, where an aggregate bit count is kept instead
of a specific file structure. NETWORK II.5 doesn't
care about the way the Data Storage Device is imple-~
mented except for how it relates to timing and size.
Analagous to the Data Transfer Device, a Data Storage
Device breaks all reads and writes into words and
blocks. Different methods of storing data can be
modelled by careful definition of word and block over-—
head times. For example, to model a disk as a Data
Storage Device, you would add in any parity bits to

589

CACI Network IT.5: A Computer and Commmications Network Simulator

the word overhead time and add the seek time for a
sector in as a block overhead time.

SOFTWARE

The software of the simulated system is presented to
NETWORK II.5 in the form of software modules. Each
module contains a specification of what Processing
Elements are allowed to execute this module, when this
module may run, what the module is to do when running,
and what other modules (if any) to start upon comple-
tion. Modules also may be specified with a priority
which will be used for resolving contention and deter—
mining whether a module should interrupt another.

There are a number of ways that a module dynamically
chooses its host Processing Element. A module may be
defined to run on a specific Processing Element or be
provided with a list of potential host Processing
Elements. If a module can run on more than one Pro-
cessing Element, the module may be defined to allow
copies of the same module run simultaneously on dif-
ferent Processing Elements.

NEIWORK II.5 provides the user with the ability to
specify many different kinds of conditions that must
be met before a module can start execution. These
module preconditions include time, hardware, message
and semaphore based preconditions. Time based precon-
ditions include starting a module at a specific time
and/or iterating at a specific rate. Hardware based
preconditions cause a module to wait until a particu-
lar set of Processing Element(s), Data Transfer
Device(s) and/or Data Storage Device(s) are available
at the same time. Message and semaphore based precon-
ditions cause a module to wait until a given set of
messages are received and/or a list of semaphores have
the proper value. Semaphores can also be used to
cancel the execution of modules.

HARDWARE AND SOFTIWARE

Modules and Processing Elements interact through the
use of instruction names. A module knows the tasks it
will perform solely by the names of the instructions
required to accomplish that task. A processing Ele-
ment knows how to execute an instruction when given
its name by a module. When a Processing Element tells
a module that it is available for work, the module
gives the Processing Element the name of an instruc—
tion and the Processing Element executes the instruc—
tion. When the instruction completes, the module is
notified and will then either issue another instruc—
tion to the Processing Element or tell the Processing
Element that it is done. Modules contain the basic
operating logic of the simulation. Without a module,
a Processing Element will do nothing because it
doesn't know which instruction to execute. This
module — Processing Element independence allows the
same module to run differently on different Processing
Elements. For example, if a module were assigned to
special purpose hardware whenever it was available, it
will run faster when on that hardware instead of a
general purpose processor. Also, this independence
allows easy reconfiguration of a system in response to
a fault.

INSTRUCTIONS

Earlier, I claimed that NETWORK II.5 can model a
system at varying levels of detail. Here's how it's
done. An instruction in NETWORK ITI.5 is not meant to
literally be an instruction in the instruction set of
the machine being simulated (although it may be).
Instead, it is more likely to be a macro inmstruction.

Since NETWORK II.5 is designed to simulate the effect
of an imstruction on the system state, as opposed to
computing a numerical result, macro instructions can
be nestled in with assembler instructions. For
example, a wmodule could implement a Fast Fourier
Transform by actually going through the micro instruc—
tions needed to compute the FFT or a macro instruction
called FFT could be implemented which took the
required number of machine cycles in one gulp.

There are four kinds of instruction building blocks in
NEIWORK IX.5. These four building blocks perform four
different functions; processing, sending messages,
read/write files and set/reset semaphores. Processing
instructions simply tie up a Processing Element for a
given number of cycles. Message instructions send a
message to another Processing Element using a bus.
The receipt of that message may trigger a module at
the receiving Processing Element immediately or queue
up and trigger a module when other preconditions are
met. Read/write instructions simply move data to or
from a Data Storage Device and may dynamically change
the size or location of the file stored. Semaphores
are global bit flags that any module can check. Sema-
phore instructions may either set or reset semaphores.

GETTING ANSWERS

People simulate to get answers. The way they get
answers from NETWORK II.5 is from the many reports
provided. There are seven basic categories of reports
provided by NETWORK IL.5. They are Module Summary,
Processing Element Statistics, Data Transfer Device
Statistics, Data Storage Device Statistics, a Narra—
tive Trace, a Snapshot Report, and a Timeline Report.

The Module Summary, Processing Element Statistics,
Data Transfer Device Statistics and Data Storage
Device Statistics reports are tabular in format and
are produced at user specified times and at the end of
the simulation to summarize the simulation results.
The Narrative Trace report is produced interactively
upon demand and chronicles the progress of the simula-
tion event by event as they occur. This report is
interactive with the user to allow the user to stop a
simulation if things are going wrong and because a
narrative report will be very large by its very nature
and so the user should be allowed to select only those
pieces that will be of use. The Smapshot Report lists’
the current status of every hardware device, module
and semaphore in the simulation and is produced both
as a part of the tabular reports and interactively
during a simulation run in response to a user request.
The Timeline Report is a post processed report that
acts upon a database produced during a simulation run
to show the status of every hardware device and every
semaphore in the simulation along a time axis. The
time span plotted on this report is user specified so
that a user can go back and expand the time scale of a
period of interest several times until the needed
information is obtained.

EXAMPLE

For the purpose of illustration, an extremely simpli-
fied example of using NETWORK II.5 is presented here.
See reference 1 for an example of a more realistic
problem both presented and solved.

An office contains two computers on the same serial
bus. TFiles are sent from one computer to another.
Only one computer can be using the bus at a time.
Computer A requests a file called "Data"™ from Computer
B every 30 seconds. Computer B requests a file called
"More Data" from Computer A every 45 seconds. "Data"

590 William J. Garrison

is 700 bits long. ‘'More Data" is 770 bits long. The
serial bus moves data at 1200 baud. Assume the files
are stored in a 7 bit code and the hardware adds a
parity bit to each character transmitted. Run the
simulation of this system for 1000 seconds.

PROBLEM FORMULATION

Hardware - Each Processing Element will need two
instructions: A "Request file from other PE" instruc-—
tion and a "Send file to other PE" instruction. Mem~
ories need not be simulated (but they certainly could
be). Processor internal speed is not significant to
this simulation. Bus speed and width are significant
to the simulation.

Software — Each processing element will need a module
that sends a file upon the receipt of a request and a
module that requests a file every X seconds.

The user prepares the input file to NETWORK through
the use of the interactive program NETIN. NETIN
guides the user through building a description of the
system to be simulated and provides on-line documenta-
tion. A brief example of a NETIN session is presented
as Figure 1.

07.12.42 >netin

In general, when in NETIN a user can find out what to
do next or receive a further explanation of a prompt
by typing "?". Also, when the user becomes an
VYexpert," a BRIEF level of prompting may be chosen
which significantly shortens the dialog. The output
of NETIN is a file which becomes the input to NETWORK.
The file is easily readable and useful for documenting
the simulation performed. The sample portions of the
file produced by NETIN to solve this example problem
are given as Figure 2.

Running the simulation involves an interactive dialog
with NETWORK, an example of which is included as
Figure 3. As a reusult of running this data file, the
user gets the end of simulation reports included as
Figures 4, 5, 6 and 7. The user also could request a
timeline plot (included as Figure 8) and narrative
trace reports (included as Figure 9).

1. CACI, Inc., NETWORK II.5 USER'S MANUAL, Version
1.1, March 1984.

2. Russell, E. C., BUILDING SIMULATION MODELS WITH
SIMSCRIPT II.5, CACI, Inc., January 1983.

WELCOME TO THE COMPUTER NETWORK SIMULATION INPUT PROGRAM

NETIN

ENTER A NETIN TOP-LEVEL COMMAND

>?

NETIN TOP-LEVEL COMMANDS AND THEIR USAGE

tgn ("?") LISTS THE AVAILABLE TOP-LEVEL COMMANDS

YHELP" ("H") PROVIDES BRIEF EXPLANATION OF COMMANDS

"PROMPT" ("P'") ALLOWS YOU TO SET THE LEVEL OF PROMPTING

"LOAD" ("LO") ALLOWS YOU TO LOAD DATA FROM A FILE

"YERIFY" ("v") ALLOWS YOU TO CHECK CURRENT DATA

"SAVE" ("s") ALLOWS YOU TO WRITE TO A FILE

"DISPLAY" ("DI") ALLOWS YOU TO DISPLAY A LIST OF BASIC ENTITIES WHICH ARE IN CORE
YFIND" ("F") LOCATES A SPECIFIED BASIC ENTITY AND ENTERS THE MANIPULATION MODE

"CREATE" ("CR") ALLOWS YOU TO ENTER DATA WHICH DESCRIBES A NEW BASIC ENTITY
“"DELETE" ("DE") ALLOWS YOU TO DELETE AN ENTITY
"QUIT" ("Q") TERMINATES PROGRAM EXECUTION

ENTER A NETIN TOP-LEVEL COMMAND

>create ?

ENTER ONE OF THE BASIC ENTITY TYPES LISTED BELOW:
PROCESSING.ELEMENT OR PE

BUS OR B
STORAGE . DEVICE OR SD
MODULE OR M
INSTRUCTION.MIX OR IM
FILE OR F
>pe
YOU WILL BE ASKED FOR THE DATA TO MAKE A NEW PROCESSING.ELEMENT
NAME (TEXT)

>computer a

BASIC.CYCLE.TIME (REAL; MICROSEC)

>30

INPUT.CONTROLLER (TEXT; YES/NO)

>pd

THE DEFAULT VALUE IS "NO"

ENTER A "YES" OR A "NO" OR ENTER "D" FOR “DEFAULT".
>d

THE DEFAULT, "NO", HAS BEEN ASSUMED.

Figure 1

CACT Network II.5: A Computer and Communications Network Simulator

% THE 1984 WINTER SIMULATION CONFERENCE EXAMPLE
%di¥k% PROCESSING ELEMENTS - SYS.PE.SET
HARDWARE TYPE = PROCESSING
NAME = COMPUTER A
BASIC CYCLE TIME = 1.000 MICROSEC
INPUT CONTROLLER = NO
INSTRUCTION REPERTOIRE =
INSTRUCTION TYPE = MESSAGE
NAME ; ASK FOR "DATA" FILE
LENGTH ; 0 BITS
DESTINATION PROCESSOR ; COMPUTER B
NAME ; SEND '"MORE DATA" FILE
MESSAGE ; SEND "MORE DATA" FILE
LENGTH ; 770 BITS
DESTINATION PROCESSOR ; COMPUTER B
*k%¥%% BUSSES — SYS.BUS.SET
HARDWARE TYPE = DATA TRANSFER
NAME = BUS
CYCLE TIME = 833.00 MICROSEC
BITS PER CYCLE = 1
CYCLES PER WORD 7
WORDS PER BLOCK 1
WORD OVERHEAD TIME = 833.00 MICROSEC
BLOCK OVERHEAD TIME = 0.0 MICROSEC
FkdedexMODULES — SYS.MODULE.SET
SOFTWARE TYPE = MODULE
NAME = REQUEST “DATA" FILE
PRIORITY = 0
INTERRUPTABILITY FLAG = NO
CONCURRENT EXECUTION = NO
ITERATION PERIOD = 3.00E+07 MICROSEC
ALLOWED PROCESSORS =

nou

COMPUTER A
INSTRUCTION LIST =
EXECUTE A TOTAL OF ; 1 ASK FOR "DATA" FILE
Figure 2
>network
ENTER NAME OF INPUT FILE

>wsc84

SOURCE MODEL IS FROM WSC84 NETWORK P FILE.
OUTPUT WILL GO TO WSC84 LISTING P FILE.

PLOT INPUT DATA WILL GO TO WSC84 PLOTIN P FILE.

WELCOME TO CACI NETWORK IL.5.
YOU ARE USING VERSION 1,1, RELEASED ON 2/1/84.

DO YOU WANT A LISTING OF YOUR INPUT FILE (OFFLINE)? (Y/N)
>

y
DO YOU WANT A LISTING OF YOUR INPUT DATA
WITH DEFAULT VALUES FILLED IN? (Y/N)
>
y
NOTE: NO FATAL INPUT ERRORS HAVE BEEN DETECTED.

ENTER THE TIME UNIT WHICH YOU WISH TO EMPLOY FOR INPUT.

IT MUST BE SECONDS(S), MILLISECONDS(MIL), OR MICROSECONDS(MIC).
>s

ENTER LENGTH OF SIMULATION (IN SECONDS)

BéoggU WISH TO HAVE PERIODIC REPORTING? (¥/N)
E%TER TIME FOR FIRST REPORT (IN SECONDS)

EiggR THE PERIOD FOR REPORTING (IN SECONDS)

>100

BO YOU WISH TO TRACE THE EVENT FLOW? (Y/N)
S;MULATION TERMINATED AT 10.000000 SECONDS.

Figure 3

5N

592
William J. Garrison

-.CACI NETWORK II.S5 VERSION 1.1 2/1/84 07:52:17
THE 1984 WINTER SIMULATION CONFERENCE EXAMPLE

PROCESSOR ELEMENT UTILIZATION STATISTICS
TO SIMULATED TIME 1000.0000 SEGONDS

PROCESSOR NAME COMPUTER A COMPUTER B
NO. OF BUS REQUESTS 57 57
AVERAGE WAIT TIME 0. 0.
MAXIMUM WALT TIME 0. 0.
NO. INTERPROCESSOR REQUESTS 57 57
AVERAGE WAIT TIME FOR PE 0. 0.
MAXIMUM WAIT TIME FOR PE 0. 0.

NO. OF PE INTERRUPTS 0
AVERAGE TIME PER INTERRUPT 0. 0.
MAXIMUM TIME PER INTERRUPT 0. 0.
MODULE CURRENTLY

BEING PROCESSED
PER CENT UTILIZATION

OF PE 3.95 3.95

Figure 4

CACT NEIWORK IT.5 VERSION 1.1 2/1/84 07:52:17
THE 1984 WINTER SIMULATION CONFERENCE EXAMPLE

BUS UTILIZATION STATISTIGCS
TO SIMULATED TIME 1000.0000 SECONDS

BUS NAME BUS

NO. OF BUS REQUESTS GRANTED 114
AVG. TIME PER REQUEST (USEC) 346644.912
PER CENT OF TIME BUSY 3.952

PE CURRENTLY
BEING SERVICED

Figure 5

CACI NETWORK II.5 VERSION 1.1 2/1/84 07:52:17
THE 1984 WINTER SIMULATION CONFERENCE EXAMPLE

COMPLETED MODULE SUMMARY
TO SIMULATED TIME 1000.0000 SECONDS

MODULE NO. OF TIMES AVERAGE TIME
EXECUTED THIS ON PE (IN USECS)

REQUEST "DATA" FILE
COMPUTER A 34 237160.000

REQUEST "MORE DATAMFILE
COMPUTER B 23 28973.913

TRANSMIT "DATA" FILE
COMPUTER B 34 666400.000

TRANSMIT "MORE DATA" FILE
COMPUTER A 23 733040.000

Figure 6

CACT Network II.5: A Computer and Commmnications Network Simulator

SNAP SHOT OUTPUT AT
TIME = 1000.0000 SECONDS

PE " COMPUTER A" 1S IDLE
“SEND "DATA" FILE" IS IN THE RECEIVED.MESSAGE.LIST

PE "COMPUTER B" 1S IDLE
"SEND "MORE DATA" FILE" IS IN THE RECEIVED.MESSAGE.LIST

BUS “BUS" IS IDLE

Figure 7
TIME LINE STATUS PLOT —— NETWORK
CPU 1 - XXXXXXXXXXXKX XXX X
CPU 2 mermmmmmmm e REKXKXEKKEEKKKKK KKK m e e

BUS 1 0:00:0:0:0.0.0.6. CEE NSRS

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

TIME IN SECONDS

Figure 8

DO YOU WISH TO TRACE THE EVENT FLOW ? (Y / N)

>y

ENTER TIME TO START TRACE (IN MICROSECONDS)

>0

AT 0.0 : MODULEL IS BEING ACTIVATED FOR EXECUTION

AT 0.0 : PE "COMPUTER A" WILL ATTEMPT TO INITIATE THE EXECUTION OF A MODULE.

AT 0.0 : ASK FOR "DATA FILE HAS BEEN ASSIGNED TO PE “COMPUTER A" WHICH IS AVATLABLE.

AT 0.0 : PE "COMPUTER A" WILL ATTEMPT TO EXECUTE INSTRUCTION "REQUEST "DATA" FILE" FROM

MODULE ASK FOR "DATA" FILE

AT 0.0 : MESSAGE INSTRUCTION "REQUEST "DATA" FILE FROM MODULE ASK FOR “DATA" FILE

15 BEGINNING TO EXECUTE ON PE "'COMPUTER A"

AT 15.71 = .

Figure 9

593

