Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

577

*
EVALUATION OF THE UNIX' HOST FOR A MODEL DEVELOPMENT ENVIRONMENT

Richard E. Nance
Osman Balci
Robert L. Moose, Jr.

Systems Research Center

Department of Computer Science
Virginia Polytechnic institute and State University
Blacksburg, Virginia 24061

ABSTRACT

The needs for model development and the functionality
of UNIX are reviewed in order to evaluate the capabil-
ity of UNIX for either hosting an environment or sup-
porting the development of an environment. Based on
an ideal system comparison, the deficiencies of UNIX
serve to define the second iteration in a rapid proto-
typing effort.

THE NEED FOR IMPROVED MODEL MANAGEMENT

Almost ten years have past since the General Account-
ing Office indictment of management and modeling tech-
niques based on a sample of Federally funded computer
models [28]. The response from the simulation model-
ing community, expectably diverse, has been generally
supportive of critical examination of modeling practices.

The diversity of responses to the shortcomings in
simulation modeling technology is indicative of a broad
range of activities and, in truth, a recognition of the
need for improvements prior to the appearance of the
report. The subject of this paper is a response based
on the generalization of critical needs assessments for
large simulation projects involving multiple users, a
modeling team, and a relatively long development per-
iod (one to five years or more). These are considered
to be modeling tasks where the challenge mandates the
proper use of "model management" [20].

Model Development within Model Management

An earlier paper [21, p. 175] defines a Model Manage-
ment System (MMS) as "... a set of tools that assist in
the efficient creation and use of an effective model
whose application is expected to extend in scope and
time beyond the original study objectives." The MMS
requirements are based on the needs of users who are
managers as well as those who are analysts and pro-

grammers. The support provided by a MMS extends
over the entire model life cycle, which is shown in
Figure 1.

Within the mode! life cycle, the category of activities
grouped as the Model Development Phases constitute
the most human-intensive efforts. The formulation of a
conceptual model of a system, the expression of com-
municative models, and the resolution of variations
among communicative models that are inevitable in a
team effort represent intensively creative activities.

.
. UNIX is a trademark of Bell Laboratories.

i Research contributing to this paper was supported
in part by the U.S. Navy under Contract No.
N60921-83-G-A165 through the Systems Research Cen-
ter, Virginia Tech.

By separating the processes of model formulation and
representation from the programming process, the dis-
tinctive characteristics of a new modeling paradigm are
given visibility:

(1) separation of model development from model
execution,

(2) assistance to the modeler in the formation
and expression of concepts unfettered by
syntactic and semantic requirements for
program execution, and

(3) employment of automated diagnostic techni-
ques in the attempt to identify and correct
errors well before they are submerged in

DEFINITION ~._ Hodel Formulation

code.
PROBLEM
COMWNICATED pErLATION
PROBLEN
Problem
Formulation
FORMULATED
PROBLEM
Investigation
DECISION SUPPORT of Solution
PHASES Techniques
DECISION PROPOSED SOLUTION
MAKERS TECHRIQUE
{Modeling)
INTEGRATED ?ystm:i u |
DECISION nvestigatian & MODEL DEVELOPMENT
SUPPORT PIASES
SYSTEM AND OBJECTIVES

Presentation 4

of
Hadel Results

~

CONCEPTUAL
MODEL
\ todel

3 Representation)

COMAUNICATIVE
MODEL(S)

/ Programming
AY

PROGRAMMED
o MODEL
EXP%})E\{NTAL ,/"Experimental
—— Design

Phases in the Chronological Periods of the
Model Life Cycle.

\\\Experimenta tion

Figure 1.

578 Richard E. Nance, Osman Balei, Robert L. Moose, Jr.

The Model Development Phases

The arrows of Figure 1 represent processes, wherein
computer assistance to the modeler can make the crea-
tive task more productive, i.e. completed in less time
with fewer errors and greater model! credibility. Model
development encompasses the activities of producing an
initial model, with verification and validation, prior to
the generation of results. However, model development
also includes the activities stemming from the redefini-
tion of a model based on the desire to extend its
applicability or to address additional objectives. In
meeting the requirements of the MMS, data reflecting
the efforts .expended in the development processes and
the evolving status of model components must be cap-
tured and organized for subsequent access.

The model development processes portrayed in Figure 1
emphasize the role of the analyst or simulation software
development manager [21] and deemphasize that of the
programmer. Assistance is rendered in the expression
of concepts and the production of diagnosable commu-
nicative model specifications, from which executable
model implementations can ultimately be algorithmically
generated.

Related Work

Recognition of the need for improved simulation model-
ing technology began with a study supported by the
National Bureau of Standards [17]. A companion
study, encompassing techniques other than simulatior,
led to a series of papers on model validation and eval-
uation by Gass, see [9] for a cuilminating description.
The concept of a Simulation Model Specification and
Documentation Language (SMSDL), advanced in [17], is
described in the context of a review of simulation
mode| representation techniques in [18]. More recent
indepth treatments of simulation model representation
are to be found in [16] and [30].

The relationship of a model development environment to
a software development environment (software engi-
neering environment, programming support environ-
ment) is readily acknowledged. From this perspective
the ideas of Lehman [13, 14, 15] have been influential.
The importance of a methodological framework for soft-
ware development, cited by Henriksen [10, p. 1061],
is emphasized by the use of the Conical Methodology
[19] in the implementation described in the subsequent
paragraphs.

In terms of research in simulation modeling, the paper
by Frankowski and Franta [8] has helped to solidify
certain concepts. The works of Zeigler [29], Oren
and Zeigler [23], and Oren [22] have been influential,
and the current research shares some common objec-
tives with the efforts of Unger, Birtwistle, et. al.
involved in Project JADE at Calgary [24]. Adelsberger
[1] is pursuing a related path confined to the investi-~
gation of an Ada Simulation Support Environment.

Finally, the framework provided by the Conical Metho~
dology and the objectives set forth in the MDE
requirements [3] promote a paradigm for model devel-
opment that conforms with the software development
paradigm enunciated by Balzer, Cheatham and Green
[4]. As a result, tools created for support of the
"redefined" programming task are likely to find use in
the programming-related processes of the model devel-
opment activities.

Objective

The objective of this paper is to report the conclusions
of an evaluation of UNIX as the host operating system
for a Model Development Environment. This evaluation
was based on a comparison of the functionality pro-
vided by UNIX with the stated needs and requirements
for a MDE [3]. In essence, this work used rapid pro-
totyping to answer the following question: to what
extent could the MDE requirements be met strictly by
the UNIX Programming Environment {12]. The answer
to this question serves to provide the groundwork for
the design of a MDE hosted by UNIX, which is now in
progress.

COMPOSITION OF THE MODEL DEVELOPMENT
ENVIRONMENT

*
Similar to the ADA Programming Support Environ-
ments [2], the MDE is composed of four layers as dep-
icted in Figure 2 (taken from [3]) and briefly
described below.

The MDE Components

Computer hardware and the host UNIX operating sys-
tem at ldyer O constitute the core upon which the MDE
is built. The Kernel MDE (KMDE) at layer 1 inte-
grates all MDE tools into the UNIX programming envi-
ronment. It provides communication and run-time sup-
port functions, a Kernel Interface, and Project,
Premodels, and Assistance Databases.

The minimal MDE (MMDE) at layer 3 provides a "com-
prehensive” set of tools which are "minimal” for the
development and execution of a simulation model.
There are two categories of MMDE tools. The first
contains the Project Manager, Premodels Manager,
Assistance Manager, Command Language Interpreter,
Model Generator, Mode!l Analyzer, Model Translator,
and Model Verifier. Source Code Manager, Electronic
Mail System, and Text Editor form the second category
MMDE tools and are provided by the UNIX programming
environment. The MDE at layer 3 incorporates tools
that support specific applications and are of special
interest only within a particular project or of interest
only to an individual modeler. The functionality of
each MMDE tool is explained briefly.

The Project Manager supervises all activities performed
on the project database which acts as the central repo-
sitory of the MDE. The Premodels Manager, employing
a query language, assists the user in retrieving a
prefabricated "certified" model (component) stored in
the premodels database. The Assistance Manager,
using the information stored in the assistance data-
base, processes all "help" requests issued by any MDE
tool. The Command Language Interpreter (CLI) is the
means by which the user invokes a tool in the envi-
ronment. The Model Generator is an interactive tool

*
ADA is a registered trademark of the U.S. Depart-~
ment of Defense Ada Joint Program Office.

Evaluatio
M OF the UNIX Host for g Model Development Environment 579

which, employing the Conical Methodology [19], aids
the modeler in creating simulation model specification
and documentation in a non-executable but analyzable
language. The Model Analyzer diagnoses the specifica-
tion created by the model generator to detect errors as
early as possible in the model development life cycle.
The Model Translator transforms the model specification
into the syntax of a (simulation) programming language
following the correction of errors detected in the model
specification by the model analyzer. The Model Veri-
fier aids the modeler in substantiating that the trans-
lation of the earlier representations of the model into
the programmed mode!l has been done accurately. The
Source Code Manager supervises the translation of the
(simulation) programming language representation of
the model into the machine language and performs its
execution. The Electronic Mail System facilitates the
necessary communication among people involved in the
project. The Text Editor is used for all text process-
ing needs, including the preparation of user manuals,

system documentation, correspondence, and personal
documents.
Other tools may be required for meeting special

requirements of a simulation project. The open-ended-
ness feature of the MDE provides for easy integration
of added tools into the environment.

Hodel

Model Analyzer

Generator

Command V’:‘r’-ﬁ} er
Language KMDE
Interpreter Functfons

Hardware and
UREX
Operating System

Assistance
HManager

4
/ Electronic
4 Hail

Premodels
Manager

Kernel Intarface

Project
Manager

Hinimal HOE

Layered illustration of the components of
a Model Development Environment.

Figure 2.

Relationships Among the MDE Components

Using a UNIX Shell command, the user activates the
CLI to enter the MDE mode. The CL! provides the
capability to escape to the UNIX programming environ-
ment enabling the user to make a switch and use a tool
within a {(possibly restricted) UNIX programming envi-
ronment. The CLI interfaces with all the MMDE tools
and any other tool added at the MDE layer which can
be invoked directly by the user.

The menu driven Model Generator interacts with the
Project Manager during the creation of the model spe-
cification and documentation which are stored in the
project database. Some of the menus of the Generator
contain the "help" option providing local and global
assistance to the user. For example, in classifying an
attribute as "indicative" or "relational”, the user may
choose the local "help" option to see the definitions of
these classes. In this case, the Model Generator
passes the request to the Assistance Manager which in
turn displays the definitions and passes the control
back to the Generator. By choosing the global "help"
option during the use of a tool or by using the CLI,
the user can activate the Assistance Manager to get
tutorial information about, for example, the Conical
Methodology or concerning the use of a MDE tool.

The Model Analyzer interacts with the Project Manager
to act upon a representational form of model specifica-
tion in the project database for the purpose of diag-
nostic analysis. The Model Translator transforms the
specification in the project database by interacting with
the Project Manager. The transformed specification
which is also stored in the project database can be
completed by using the Text Editor if not already com-
plete. The Model Verifier also interacts with the Pro-
ject Manager to act upon the source code and earlier
model representations. The Source Code Manager
interacts with the Project Manager in configuring the
run-time system.

Relation to the Kerne! functions and the Operating
System

Basic run-time support functions are provided by the
KMDE for all tools that execute within the MDE. The
KMDE provides the necessary functions for accessing
the Project, Premodels, and Assistance Databases.
The communication capability between the MDE tools
and a fixed set of terminal interface control functions
are also provided by the KMDE.

The interface between the MDE tools and the KMDE is
called the Kernel Interface. All MDE tools communicate
with or invoke each other only through this interface.
An added tool at the MDE layer is integrated into the
environment through the Kernel Interface, indicated by
the opening between the Project Manager and Text
Editor in Figure 2. The Kernel Interface allows the
user to interact with the invoked tool and to exercise
control over the tool. Protection is imposed within the
Kernel Interface to prevent any unauthorized use of a
tool or data.

Although the Kernel interface can be made machine-in-
dependent, the MDE is dependent upon the UNIX oper-
ating system. Thus, the MDE is as portable as the
UNIX system.

THE UNIX OPERATING SYSTEM
Brief Overview of UNIX

Since the UNIX operating system became generally
available (around 1974 or 1975 [7, 12]), the number of
UNIX installations has experienced a remarkable
increase. With vendor supported versions, as well as
numerous microcomputer implementations of UNIX and
UNIX look-alikes now available, the rate of this
increase has reached an explosive level. Kernighan
and Pike have estimated that there exist "tens of thou-
sands" of UNIX installations world-wide [12, p. viil.
This section provides a brief introduction to some
important aspects of UNIX and its development which
contribute to this widespread popularity.

580

UNIX consists of (1) a kernel which supports "a hier-
archical file system ..., compatible file, device, and
interprocess 1/0, (and) the ability to initiate asynch-
ronous processes” [26, p. 1905], and (2) "over 100
subsystems including a dozen languages” [26, p. 1905]
(see also [12, p. 1, p. 201]). The command inter-

preter, known as the shell+, is sometimes regarded
by users as a distinct and special component of the
operating system. As noted by Bourne, the shell "is
the most important communication channel between the
system and its users." [6, p. 1955] However, it is
treated by the kernel as an ordinary system program
and thus belongs to the set of UNIX subsystems.

An additional, significant characteristic of UNIX is that
most of its kernel and software is written in the high
level language C, which has produced the benefits of
easier system modification and portability. (Only "a
few modules” must be rewritten to transport UNIX to a
different machine [25, p. 1964].) The disadvantages
of increased size, slower execution, and system compi-
lation and linking overhead were considered acceptable
by the UNIX developers [25, pp. 1964-1965].

UNIX has evolved through several versions before
reaching its current state (or states). The following
milestones, extracted from [7, pp. 2-3], trace this
evolution through Bell's Seventh Edition and the VAX
11/780 based versions:

1968-1970: A preliminary kernel was implemented
on a PDP-7 by Thompson and then improved,
with some utilities added, by Thompson and
Kernighah.

1870-1971: UNIX was transported to a PDP-11/20.
The First Edition was subsequently documented
by Thompson and Ritchie.

1972-1873: The C language was developed and
added to UNIX, which was then rewritten in C.

1975: The Sixth Edition became generally availa-
ble.

1979: Bell's Seventh edition, which resulted from
the transportation of UNIX to a Interdata 8/32,
became generally available.

1979-1983: The transportation of UNIX to a VAX
11/780 by Reiser and London produced 32V.
Further development of 32V was done by the
University of California at Berkeley. Bell
eventually released its current version, System
V.

Philosophy

A number of features in UNIX are motivated by similar
features in previously developed operating systems
[26, p. 19281, including GENIE, Multics, TENEX, the
Cambridge Multiple Access Systems, and CTSS [6, p.
1972]. The development of UNIX is marked by two
significant characteristics: (1) designed by program-
mers for interactive use by programmers, and (2)
developed under size constraints, which "encouraged
not only economy, but also a certain elegancg .of
design” [26, pp. 1926-1927]. These charactistics

¥ The shell commonly used in most of the Bell ver-
sions of UNIX has become known as the Bourne Shell,
after its creator, S.R. Bourne, to distinguish it from
other shells.

Richard E. Nance, Osman Balei, Robert L. Moose, Jp.

influence a philosophy of design and use which
stresses consistency (uniformity), modularity, and
simplicity.

Files, devices, pipes, and input/output.

Consistency and simplicity in UNIX is evident in the
implementation and use of files, devices, and pipes
(interprocess communication channels) and the associ-
ated input/output mechanisms. The hierarchical (not
quite tree structured) file system contains ordinary
files, directories, and special files. An ordinary file
consists of a sequence of bytes with no structure or
size constraints imposed on it by the system. The
structural interpretation of the contents of a file
depends on the programs which use it. Use of the
“read" and "write" 1/0 calls, which access the bytes of
a file sequentially, is straightforward. Additionally, a
byte~wise random access capability exists [26, p. 1907,
pp. 1911-1913; 25, pp. 1950-1951].

Directories and. devices are accessed through the same
mechanisms used with ordinary files. Directories are
readable but not writable by nonprivileged programs,
and the contents of a directory have a highly specific
meaning. At least one special file exists for each dev-
ice. To perform device 1/0, the appropriate special
file is opened, read, and written as if it were an ordi-
nary file. Accessing a special file causes the activa-
tion of the associated device [26, pp. 1908-1910; 25,
pp. 1954-1955].

A communication channel between two processes is
established through the "pipe" system call. Processes
thus connected communicate by treating pipes as open
files. and using the file system read and write calls
[26, pp. 1917-1918].

The Shell.

The UNIX shell is a command language but also pro-
vides constructs normally found in high level program-
ming languages. Facilities provided by the shell
encourage the use of a certain philosophy of program
and system development. Under this philosophy, sin-
gle purpose tools are created and then combined, using
capabilities of the shell, to accomplish more complex
tasks. To enhance the utility of this composition tech-
nique, basic tools generally do not impose complex for-
mat requirements on their input and often produce
unstructured output. Then the output of one tool can
be used as input for another without intermediate pro-
cessing.

Standard input and output, input/output redirection,
and pipes are central in supporting this philosophy.
Each "simple command” to the shell executes in a sepa-
rate process, which begins with a number of open
files. The files with "descriptor" numbers 0 and 1 are
known as standard input and standard output respec-
tively, and by default are associated with the user's
terminal. These files are available to the command for
general 1/0. Input/Output redirection is used to
associate standard input or output with (disk or dev-
ice) files other than the terminal. The pipe operation,
an extension of the redirection mechanism, causes "the

standard output of one command (to be) connected to

the standard input of another” [6, p. 1973]. Pipes
provide a general composition method in which groups
of simple commands are combined to perform high level
transformations on the initial input [6, pp. 1973-1974;
25, p. 1957]. :

Composition of tools into shell scripts (as these compo-
sites are known) is facilitated further by the following
features of the shell:

Evaluation of the UNIX Host for

o Input of scripts from disk files.

o Control constructs including the while loop and
the conditional branch.

o String-valued variables.
o Parameter passing mechanisms.

Additional features of the shell include asynchronous
process initiation and error and fault handling [6, pp.
1973-1986] .

Other Subsystems

The remaining subsystems can be divided into a var-
iety of functional categories. Briefly, the following

constitute several of the major categories+ [5, p.
1979]:

o The C programming language and related utili-
ties, library routines, and system calls.

o lLanguage implementation subsystems.
o File manipulation utilities.

o Text editors.

o Document formatting subsystems.

o Status inquiry commands.

HOSTING THE MODEL DEVELOPMENT ENVIRONMENT
WITH UNIX

Having established the need for improved model man-
agement, characterized the requirements for effective
model development, and explained the functionality
provided by UNIX, the background exists for assess-
ing the capabilities of UNIX as a MDE host. This
evaluation begins with the definition of an ideal MDE
host and proceeds with an assessment of UNIX func-
tionality in support of the MDE tool and Kernel
requirements.
this paper, two related evaluation tasks emerged: (1)
UNIX as a MDE host and (2) UN!X as a too! for devel-
oping model development environments. The capabili-
ties of UNIX for supporting both tasks must be
addressed, and the underlying reasons are made appa-
rent in the following discussion.

The ldeal MDE Host

Based on the earlier description, the functions of a
host operating system can be viewed on three levels:
(1) the operating system support for the opeta-
tional environment, i.e. task scheduling,
resource allocation, file handling, protection
for an interactive multi-user application
(layer 0);
(2) the support given to the Kernel to enable
tool interaction and user flexibility in the
employment of MDE tools and operating sys-
tem utilities (layer 1); and

The omission of any subsystem or qategory from
this list is not meant to imply a lack of importance.

During the research effort leading to-

581
a Model Development Envirorment

(3) the support provided to the MDE tools
through needed utilities and functions sup-

plied by the host.

Each level can be idealized in terms of the MDE sup-
port.

The interactive setting for model development is an
absolute requirement, and the ideal host would maintain
the quick response time, unaffected by load variations,
so essential to support the creative development task.
Task scheduling and resource allocation should contri-
bute to maintaining the interactive setting and to the
preservation of data and computational integrity. File
handling should support a simple, consistent set of
options, protecting the MDE user from catastrophic
errors of commission or omission.

The ideal host would subsume much of the functionality
required of the MDE tools. Not only the text editing,
source code management, and electronic mail functions,
but also the functionality required for model genera-
tion, analysis, translation, and verification would be
offered by the host. Furthermore, the host services
would extend beyond file handling to include the capa-
bilities for database management required by the three
managers (Project, Premodels, and Assistance). User
interaction with the operating system would obviate the
CLI requirements for menu-driven dialogue and human
engineering.

Finally, partitioning the extensive functionality of the
host should be unconstrained so that communication
services provided by the Kernel would enable broad
flexibility in the interactions among MDE tools. Data-
base access functions should represent no constraints
on the three managers in their interfacing with users.
Terminal control should provide the flexibility needed
by any of the MDE tools and furnish any desired level
of protection for tool invocation.

UNIX Support of MDE Requirements

No existing operating system can meet the expectations
for the ideal host, but selection of UNIX for the initial
MDE prototype reflects the conviction that no other
alternative offers as many advantages. The strategy
employed in the rapid prototyping of the MDE is sim-
ple:

(1} learn the extent to which UNIX can meet the
expectations of the ideal host,

(2) determine the major and minor deficiencies
with respect to each tool and the Kernel,

(3) identify the UNIX tools that can contribute
to removing the deficiencies,

(4) evaluate (subjectively) the benefit/effort
ratio for obtaining the functionality required
by each tool and the Kernel, and

(5) design the next prototype based on the
evaluation.

Note that the intent of the initial prototyping effort
requires the evaluation of UNIX in supporting both
tasks mentioned earlier: (1) as a MDE host and (2) as
a system for developing MDEs.

Tabie 1 provides a brief summary of the quite exten-
sive evaluation. Several points should be noted
regarding interpretation of the Table 1 entries:

o+

.

UNIX Tools

UNIX Tools
Providing Some Contxributing to Benefit/Effort
MDE Component Abstract of Requirements Functionality Major (M) and Minor(m) Deficiencies Devel opment Ratio
Project Manager Administer the Project Database, {dm, calendar, Insufficient capability for "alerters" and | stdio, curses, high/med
record project history, generate [Mkey, hunt, "triggers" (M) . termcap
"triggers" and "alerters". inv Relational db support lacking (M) .
Query language and security lacking (M) .
Premodels and Administer respective databases: [dm, mkey, inv, Secord and third from above. stdio, curses, med/med
Assistance Managers| access, security, reorganization. {hunt termcap
Command Language Menu-driven interface, extensi- [sh, csh, No menu capability (M. yacc, lex, ar, high/high
Interpreter ble, human-engineered. system calls Lack of window management (M . curses, termcap
Model Generator Create mcdel specification and vi, ed fack of window menagement (M). stdio, curses high/high
muéftilevel documentation, assist ’ Little capability for interactive dialogue termca':p !
in mcdel qualification. ™.
Model Analyzer Diagrose model specifications and |spline, plot Limited capability for graph production yace, lex, grep high/high
assist in comunicative medel gragh (M) . .
verification. No operations on graghs (m).
Model Translator Translate model specification None Mo model translation capabilities (19 . yace, lex high/high
into executable representation
for some abstract machine.
Model Verifier Verification of program represen- |adb, sdb, lint, Executable code restrictions for sdb (m) . stdio, curses, med/high
tation based on commmicative Clib (assert) Use of adb and sdb for debuyging only termcap
representations. (m . adb, sdb
Sowrce Code Construct the run time system for [None Absence of simulation programing language- | SPL dependent. high/ (1low-~high)
Manager experimentation with the program .
representation.
Electronic Mail Facilitate comnnication among mail, write No deficiencies. Mot applicable. low/low
System project participants.
Text Hitor Text formatting, creation and vi, ed, sed No deficiencies. Not applicable. high/low
moduction.
Kernel Database access and protection; |sh, csh, Limited process comunication primitives, stdio, sh, csh, ar] high/med
commnication ameng tools, run-~ [system calls other than ssmathores in System V (M) . system calls
time support; temminal controls. Communication is restricted (m).
Table 1. A Brief Summary of UNIX Support of MDE Requirements.

(a brief explanation of each WNIX utility is given in the Appendix.)

285

sJp ‘0SOOW *7 4JS0CY ‘TOTEg URWS) ‘80UeN *F pJeyoTy

Evaluation of the UNIX Host for a Model Development Envirorment 583

(1) Only the UNIX operating system is consid-
ered; extensions to broaden the utility of
UNIX such as Programmers Workbench
(pwb), etc. are not included.

(2) The interest is in “generic" UNIX, i.e.
capabilities found in System V or BSD4.2,
and not in one version at the exclusion of
the other, or in particular manufacturers’
hybrid versions.

(3) Utilities that would obviously contribute to
the development of every MDE tool, such as
the text editors ed and vi or the C lan-
guage and programming library (Clib) are
omitted from the fifth column. Many of the
utilities identified in the concluding section
describing UNIX are ubiquitous in program
development and are omitted.

The absence of entries in the row corresponding to the
Source Code Manager reflect the lack of a SPL within
UNIX. However, translators for GPSS/H [11] and
SIMULA 67 [27] are available from other sources. The
range in development effort is based on the approach
taken to realize model execution -- purchase (low) or
develop (high).

CONCLUDING SUMMARY

Having established the need for improved model man-
agement, the investigation described herein focuses on
the model development phases of the model life cycle.
The Conical Methodology serves to identify a new
modeling paradigm, providing a f{framework for the
definition of a Model Development Environment. The
implementation of such an environment hosted by the
UNIX Operating System is under investigation using
rapid prototyping.

A review of MDE requirements and UNIX functionality
precedes the description of the ideal MDE host. Judg-
ing UNIX against an ideal admittedly forces a harsh
comparison, but the severe assessment is necessary in
reaching the difficult decisions regarding the MDE tools
to be developed in the second prototype. Prototypes
of the Command Language Interpreter, Model
Generator, Mode! Analyzer, Model Verifier, and the
Kernel are under development.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of C. W.
Box, M. Humphrey, T. B. Massie, C. M. Overstreet,
and J. C. Wallace during this work. We are indebted
to A. V. Box for the excellent formatting, organiza-
tion, and typing of the manuscript.

APPENDIX: BRIEF DESCRIPTIONS OF SOME UNIX
TOOLS

adb: debugger for use on object code and
core image files.

ar: file library maintenance utility.

program to print reminders near spe-
cified dates.

calendar:

Clib(assert): assertion routine in C subroutine
library.

csh: C shell command language.

curses: curser movement and screen [/O
package.

dbm: database management routines.

ed: text editor.

graph: graph drawing utility.

grep: program to print lines from a file
which match a specified pattern.

hunt: search and retrieval routine for
inverted indeces.

inv: index creation routine for inverted
indeces.

lex: lexical analyzer generator.

lint: C program checker which detects pos-
sible defects generally undetected by
the C compiler.

mail: interuser mail utility.

mkey: key maker for inverted indeces.

plot: graphics output program and subrout-
ines compatible with several types of
terminals.

sdb: symbolic debugger.

sh: Bourne shell command language.

spline: curve interpolation program.

stdio: standard buffered /0 routines for

use in C programs.
system calls: entries to low level system routines
(for 1/0, process management, and
other operations).

termcap: database of terminal capabilities and
routines which use this database.

vi: screen oriented text editor.

write: program for interactive, interuser
communication.

yacc: compiler generator.

REFERENCES

[1] Adelsberger, H.H., "interactive Modeling and
Simulation of Transaction Flow or Network Models
Using the ADA Simulation Support Environment,"

Proc. Winter Simulation Conference, Arlington,
VA, 1983, pp. 561-570.
[2] Advanced Research Projects Agency, "Require-

ments for ADA Programming Support Environ-
ments -- 'STONEMAN'," U.S. DoD, Arlington,
VA, 1980.

584

£31

[4]

(5]

fe]

(7]

(el

[el

[10]

[11]

f12]

{13]

[14]

{151

[16]

{17]

(18]

Richard E. Nance, Osman Balei, Robert L. Moose, Jr.

Balci, O., "Requirements for Model Development
Environments," Technical Report C€$83022-R,
Department of Computer Science, Virginia Tech,
Blacksburg, VA, 1983.

Balzer, R., Cheatham, T.E., and Green, C.,
"Software Technology in the 1990's: Using a New
Paradigm," [EEE Computer, 16 (11), 1983, pp.
39-45.

Bell Telephone Laboratories, "UNIX/32V Time-
Sharing System: UNIX Programmer's Manual,"
Version 1, 1, (with Preface to the Seventh Edi-
tion), Bell Telephone Laboratories, Murray Hill,
NJ, 1979.

Bourne, S.R., "The UNIX Shell," Bell System
Technical Journal, 57 (8), Part 2, 1978, pp.
1971-1990.

Bourne, S.R., The UNIX System, Addison-Wes-
ley, London, 1983.

Frankowski, E.N. and Franta, W.R., "A Process
Oriented Simulation Model Specification and Docu-
mentation Language," Software -- Practice and
Experience, 70 (9), 1980, pp. 721-742.

Gass, S.l., "Decision-Aiding Models: Validation,
Assessment, and Related Issues for Policy Analy-
sis,”" Operations Research, 31 (4), 1983, pp.
603-631.

Henriksen, J.0., "The Integrated Simulation
Environment (Simulation Software of the 1990's),"
Operations Research, 31 (6), 1983, pp.
1053-1073.

Henriksen, J.O.,
1984.

Personal Communication, May

Kernighan, B.W. and Pike, R., The UNIX Pro-
gramming Environment, Prentice-Hall, Englewood
Cliffs, NJ, 1984.

Lehman, M.M., "The Software Engineering Envi-
ronment,"” Research Report, Department of Com-
puting Science, Imperial College, London, 1979.

Lehman, M.M., "Programs, Programming and the
System Life Cycle," Research Report 80/6,
Department of Computing Science, Imperial Col-
lege, London, 1980.

Lehman, M.M., "Program Evolution,"” Research
Report 82/1, Department of Computing Science,
Imperial College, London, 1982.

Mathewson, S.C., "The Application of Program
Generator Software and Its Extensions to Dis-
crete Event Simulation Modeling,” [/E Transac-~
tions, 16 (1), 1984, pp. 3-18.

Nance, R.E., "The Feasibility of and Methodol-

ogy for Developing Federal Documentation Stan-
dards for Simulation Models,”" Final Report to the
National Bureau of Standards, Department of
Computer Science, Virginia Tech, Blacksburg,
VA, 1977.

Nance, R.E., "Model Representation in Discrete
Event Simulation: Prospects for Developing Docu-
mentation Standards," In: N. Adam and A. Dog-
ramaci (editors), Current I[ssues in Computer
Simulation, Academic Press, New York, NY,
1979, pp. 83-97.

{19]

(20]

[21]

[22]

[28]

[24]

25]

[26]

[27]

(28]

[29]

[30]

Nance, R.E., "Model Representation in Discrete
Event Simulation: The Conical Methodology,"
Technical Report CS81003-R, Department of Com-
puter Science, Virginia Tech, Blacksburg, VA,
1981.

Nance, R.E. and Balci, O., "The Objectives and
Requirements of Model Management," In: M.
Singh (editor-in-chief), Encyclopedia of Systems
and Control, Pergamon Press, Oxford, to appear
in 1985.

Nance, R.E., Mezaache, A.L., and Overstreet,
C.M., "Simulation Model Management: Resolving
the Technological Gaps," Proc. Winter Simulation
Conference, Atlanta, GA, 1981, pp. 173-179.

Oren, T.l., "Computer Aided Modeling Systems
(CAMS)," Plenary Address, Simulation '80 Sym-
posium, Interlaken, Switzerland, 1980.

Oren, T.l. and Zeigler, B.P., "Concepts for
Advantced Simulation Methodologies,” Simulation,
32 (3), 1979, pp. 69-82.

Project JADE, "Papers for the Conference on
Simulation in Strongly Typed Languages,”
Department of Computer Science, University of
Calgary, Alberta, Canada, 1984.

Ritchie, D.M., "A Retrospective," Bell System
Technical Journal, 57 (8), Part 2, 1978, pp.
1947-1969.

Ritchie, D.M. and Thompson, K., "The UNIX
Time-Sharing System," Bell System Technical
Journal, 57 (8), Part 2, 1978, pp. 1805-1929.

"S-Port Simula on VAX/UNIX," SIMULA Newslet-
ter, 72 (3), 1984, p. 16.

U.S. General Accounting Office, "Ways to
Improve Management of Federally Funded Compu-
terized Models," LCD-75-111, Washington, D.C.,
1976.

Zeigler, B.P., "Concepts and Software for
Advanced Simulation Methodologies," In: T.lL.
Oren, C.M. Shub, and P.F. Roth (editors),
Simulation with Discrete Models: A State-of-the-
Art View, I|EEE, New York, NY, 1980, pp.
25-44,

Zeigler, B.P., "System-Theoretic Representation
of Simulation Models," //E Transactions, 16 (1),
1984, pp. 19-34.

