Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U, Pooch, D. Pegden (eds.)

563

NEW DIRECTIONS FOR THE DESIGN OF ADVANCED SIMULATION SYSTEMS

Michael G, Ketcham, Ph.D.
Department of Industrial Engineering
University of Massachusetts
Amherst, Mass., 01003

John W. Fowler
Department of Industrial Engineering
Texas A&M University
College Station, Texas 77843

Don T. Phillips, Ph.D., P,E.
Department of Industrial Engineering
Texas A&M University
College Station, Texas 77843

ABSTRACT

This paper will review the philosophy behind advanced
simulation wmethodologies and the advantages these
concepts offer to simulation analysts. It also
proposes a generilc design of an integrated simulation
system based on an analysis of theoretical studies, a
review of recently developed simulation systems, and
current research.

INTRODUCTION

In 1979, Tuncer Oren and Bernard Zeigler {1)
identified several weaknesses in conventional
simulation languages and proposed developing new
simulation systems based on two concepts. First,
simulation languages should functilonally separate the
logically distinct stages in model development, and,
second, simulation environments should be created to
take advantage of current computer capabilities for
database management, graphics, and program
verification.

Over the last five years several special purpose
simulation systems and general purpose languages have
been developed that, either independently or
influenced by Oren and Zeigler, have included a
functional separation of model development, entity
description, scenarlio specification, and output
analysis. Furthermore, in separating these
capabilities, these systems use sophisticated
database management software to maintain separate
databases for storing model components, entity
attribute values, and simulation output (see Golub
and Soper [2], Ludwigs [3], Pegden [4], Pritsker and
Associates [5], Trott and Franz {6], Willis and
Austell [7]).

In addition to these major architectural features,
recent simulation systems have incorporated tools to
facilitate the user's interaction with the system.
These tools have included graphical input and output,
the ability to develop models hierarchically, and the
separation of different classes of wusers with
different privileges in developing and experimenting
with system models (see Comer [8], Engelke, et al.
[9], Rose [10]). As a2 result of these developments,
we are now seeing the first generation of simulation
packages based on radically new design concepts.
This paper reviews the advantages these concepts
offer to simulation studies and proposes a generic
design for an integrated simulation system based on
recent theoretical studies, recently developed
simulation systems, and current research. We intend

to present a general architecture that will provide a
unified view of advanced simulation methodologies and
provide a framework for considering the
implementation of specific simulation systems.

SYSTEM DESIGN

Recent studles of decision support have identified
four functions provided by decision support software:
1) it must provide capabilities for model development
and modification; 2) it must provide capabilities for

interactive data entry; 3) it must allow users to
execute models with user—specified experimental
conditions; and 4) it must provide flexible,
user—selectable display formats.

Simulation systems used for decision support must
provide these same four capabilbities. Toward this
end, we have distinguished four frames that provide
four distinct views of simulation models and
simulation output. These include:

* Model Frame, for model development

* Entity Representation Frame, for entering
parameters describing system entities

* Experimental Frame, to specify experimental
conditions

% Output Analysis Frame, for examining
simulation results

We have adopted Oren and Zeigler's terminology to
characterize three of these frames, although our
account of their function is drawn from several
practical studies in addition to theoretical
research. The Entity Representation Frame is not
explicitly represented in Oren and Zeigler's
formulation.

Figure 1 gives an overall view of our generic
simulation-based decision support system, with eight
principal components:

* User Interface Controller

* Model Frame

* Entity Representation Frame

* Experimental Frame

* Qutput Analysis Frame

564

* Execution Controller
% Statistical Capabilities Package
* System Library

Each of the four frames is itself composed of several
parts, including an interactive user interface, an
associated database, and a communications link with
other system components. Also, simulation software
should communicate with externmal databases that hold
historical data from the actual system being
modeled. This more complete picture of the system is
given in Figure 2, with the User Interface Controller
removed for clarity.

Using Figure 2, we can also represent the system's
data flows. FEach of the four frames interacts with
the System Library, which acts as a controller for
maintaining an integrated data flow. The Entity
Representation, Experimental, and Output Analysis
frames interact with the Statistical Capabilities
package which provides statistical routines for data
analysis or experimental design. The Eatity
Representation Frame also interacts with an actual
system database to retrieve current data about the
behavior of the real system.

The following sections discuss the four frames along
with thelr interactions with other system
components. However we should emphasize that many
details regarding component iInteractions will be
implementation decisions that we have examined but
have not tried to resolve in this paper. It should
be an implementation decision, for example, whether
there should be "hard” or "soft” boundaries between
frames. A hard boundary would require the user to
make a deliberate choice to enter one frame or
another, whereas with soft boundaries the system
would automatically shift contexts if the user wishes
to perform a function that is logically part of
another frame. Regardless of the decisions made for
implementing these components, they will share the
same basic architecture and the same underlying
logic, and it is this underlying logic that we have
tried to capture in our discussion of the fours
frames.

MODEL FRAME

The Model Frame consists of three principal parts: a
user interface for interactive model development, a
data base for storing models and component modules
that can be linked to form complete models, and a
model translator that converts the user defined
model into an executable form.

The user enters the Model Frame through the User
Interface Controller. Once in the Model Frame he or
she can build new model components and save them in
the model database or can retrieve and modify
existing model components. Models may be developed
graphically, using the cursor or a mouse to move
icons across the screen as a way of representing
system configurations. In effect, the user draws a
network on the CRT while the system software
automatically maintains a data base of wmodel
specifications in response to graphilcal inputs.

This kind of graphical entry is part of a development
editor (MDE), which should also allow for more
traditional statement entries and which should
provide context~sensitive HELP messages. The MDE

Michael G. Ketoham, John W. Fowler, Don. T. Phillips

should provide support for automatic documentation of
established software development stages such as
requirements definition, design, specifications, and
coding. It should also provide immediate,
interactive checks of syntax and should allow the
user to freely shift between graphical and statement
formats and other input modes. The MDE should be
able to automatically generate statements from
graphical input and a graphical representation from
statement input.

The model itself is specified within a model
development language (MDL). In different systems
there may be different types of MDLs designed for
different types of models. That is, one
implementation wmay emphasize continuous modeling,
while another may emphasize process or event-oriented
simulations. For any of these model types, however,
the MDL should be structured so that models can be
developed modularly and hierarchically. The MDL
should guide model development according to the logic
of the system being simulated by tailoring modeling
constructs as closely as possible to the featureés of
the system being modeled. At the same time, the
hierarchical structure of the MDL should allow users
to run high-level prototype models to examine gross
system performance and also be able to specify
multiple levels of detail, if needed, for more
detailed representations of the system. A corporate,
model for example, may allow a broad view of plant
operations for high-level planning, but the broad
corporate model may permit another set of experiments
that depict transportation flows among plants. Or,
moving down the model ‘hierarchy, it may allow
production engineers to examine the behavior of a
particular plant or production cell.

Because of the requirement for hierarchical modeling,
we see system models as being comprised of model
components that can be linked to form complete,
executable models. This concept of system modeling
leads to three views of the model code. First, there
will be model components store separately in the
model database. Second, these model components. may
be grouped through a system linker to collectively
form a "declared model."”

A declared model wmay combine several model
components, any of which may also be used in other
declared wmodels. As a result, a declared model
presents a logical view of the real system that may
vary from other views presented in other declared
models. Before being declared, a grouping of model
components will first be verified by a system linker
to insure that labels, module parameters, etc., are
consistent among the collected model components.
Once these linkages are verified, the model 1is
declared in the System Library for use by other
system users. Pointers to the model components and
the groupings that make up a declared model are
maintained in the System Library. When a user asks
to execute a "model," the library identifies the
separate modules that are to be joined to make up the
executable code. An executable model exists only at
run time and is the collected, translated, and linked
form of a declared model that can be run as an
experiment.

The movement from model components to an executable
model is carried out by the translator and linker.
Ideally, the translator should have syntactic and
lexical checks and at least minimal logic checks for
model verification. The result of model translation
may be either executable object code if the MDL is

New Directions for the Design of Advanced Simulation Systems

EXPERIMENTAL EXECUTION ENTITY

CRAME CONTROLLER REPRESENTION
FRAME

USER
INTERFACE
CONTROLLER

OUTPUT
ANALYSIS
FRAME

Figure 1

ENTITY

EXPERIMENTAL
FRAME

EXECUTION
CONTROLLER

Tion

FRAME

STATISTICAL
CAPABILITIES

SYSTEM
LIBRARY

REAL

SYSTEM
DATABASE

Figure 2

565

566 Michael G. Ketcham, John W. Fowler, Don. T. Phillips

directly compiled, or input statements for an
existing simulation language, such as SIMSCRIPT,
SLAM, CMSP, etc. Furthermore, as model components
are translated into an executable form,
specificatlions for entities described in the model
are provided to the Entity Representation Frame where
initial attribute values and parameters will be
entered.

ENTITY REPRESENTATION FRAME

Like the Model Frame, the Entity Representation Frame
includes a wuser interface, access to its own
database, and control software that supervises the
user's interaction with the database. The Entity
Representation Frame also has a close interaction
with the system 1library and system statistical
capabilities, and can potentially communicate with
actual system data maintained in an external database
such such as a management information system (MIS).

As a user translates a model in the Model Frame, the
simulation system establishes entity descriptors to
characterize entity attributes and process
parameters. Entities represented in ‘the Entity
Representation Frame include temporary entities
(transactions), permanent entities (resources or
facilities), queues (storages), etc. The descriptors
used to characterize these entities thus include
entity attributes, part routings, processing times,
initial resource levels, queue capacities, etc.

The Entity Representation Frame accepts requirements
for entity descriptors from the Model TFrame and
prompts the user to enter the required data through a
Data Entry Interface. Separating the Entity
Representation Frame from the Model Frame allows
users to enter information about the actual system
using the Entity Representation database without
knowing the structure of the model or knowing how the
data will eventually be formatted and used during a
simulation run, so that data can be entered by data
entry or production personnel. The separate Entity
Representation Frame, in fact, allows data entry to
be fully automated by having the Entity
Representation database updated from an operational
database, such as an MIS, as the real system changes
over time.

In addition to maintaining a database of system
descriptors, the Entity Representation Frame will
allow users to perform statistical tests by means of
the Statistical Capabilities Package to determine
appropriate distributions and distribution

parameters to be used in generating artificial data
for the simulation. Also, by interpreting experiment
specifications, the Entity Representation Frame can
automatically generate initialization statements for
entity descriptors using values stored in the Entity
representation database, and can generate multiple
copies of system entities or form aggregate entities,
depending on the scenario a user wishes to explore.
Thus, these kinds of entity initialization are
removed from the wuser's responsibility, unless of
course, he or she chooses to override these defaults
in specifying an experiment through the Experimental
Frame.

EXPERIMENTAL FRAME

The design of this system allows a user three sources
of flexibility in specifying experimental
conditions. First, he or she can specify which
declared model is to be executed., Second, he or she

can specify decision variables and their initial
values. Third, he or she can specify run conditioms,
such as stopping rules, number of replications,
random number seeds, etc, Also, within the
Experimental Frame, the user will be able to specify
restrictions on statistics collection, if the user is
confident that certain types of statistics will not
be needed in output amalysis. The actual computation
and display of statistics will take place in the
Output Analysis Frame.

In executing an experiment, the Experimental Frame
interacts closely with the System Library and
Statistical Capabilities Package. While in the
Experimental Frame, the user can browse through and
select from the library of declared models. When the
user requests that an experiment be performed, the
system will first check the library to see if the
same experiment has already been conducted. If so,
the user will be notified and he or she will be
given the choice of rerunning the experiment or using
previous results. The user can also query the
library to determine if related experiments have been
conducted with similar values for user-specified
decision variables.

When the user does conduct an experiment, the library
will record information regatding the time of the
run, the user's name, the model executed, the set of
system descriptors read from the Entity
Representation Frame, and run results(which would
phsically reside in the Output Analysis database).
This library record can include any user comments
regarding the purpose of the rum or the run results.

The Experimental Frame database itself stores
user—~specified scenarios, including number of
experiment replications, dinitial variable values,
specifications for overriding Entity Representation
defaults, etc. These scenarios can later retrieved
and modified for further experimentation.

The Experimental Frame will also interact with the
system's Statistical Capabilities Package to enable
the user to determine elements of experimental
design, such as the number of replications, factorial
experiment design, and search strategies for system
optimization.

The Experimental Frame should also give the user the
option of conducting an experiment as a batch or
interactive process. As an extension to batch
execution, the system should provide pause or
interrupt capabilities so that the user can review
intermediate results and intervene in the simulation,
if necessary, as we will explain in the discussion of
output analysis.

OUTPUT ANALYSIS FRAME

Output analysis involves two distinct functions, the
recording of observations and computation of
statistics. For most existing simulation languages,
statisties such as mean values, standard deviations,
etc., are computed during the simulation run. These
statistics are generally aggregate values determined
by the variations in system state variables. For
most languages, the user must accept language-—
specific default statistiecs or must specify, in the
model it self, the statisties to be computed.
Recording observations, in contrast to computing
statistics, involves writing the value of state
variables, such as the number of items in queue,
event occurence times, utilization of resources,
etc. into an output database. We have followed the

New Directions for the Design of Advanced Simulation Systems 567

lead of ICAM [5], and have separated observation and
computation because the user should not have to know
at run time what statistics he or she may want to see
from the finished simulation. The aim of a
simulation system of the type we are describing is to
provide flexible support for decisions regarding
systems design. In this context wusers will
frequently not know in advance which statistics will
provide useful or mnecessary information about system
performance. The design of the Output Analysis
Frame, therefore, should allow for recording a
generous set of observations as a default, and should
then allow users to query the simulation results and
to display the results in user-determined formats.
This design, however, does not preclude the user
specifying, in the Experimental Frame, statistics to
be computed during the rumn.

Separating observations from statistics computation
gives the Output Analysis Frame a wide range of
capabilities. Primarily, it allows the user to view
simulation results either as trace data or aggregate
data, with statistics being computed according to the
user's decision requirements. To derive aggregate
statistics, the output analyzer scans the database of
observations generated during simulation execution
and computes and displays the required values. Once
these values are computed, they are stored in the
output database and identified so that the Output
Analysis Interface can immediately display these
results in response to future requests.

Analysts may use both trace data and aggregate data
to verify and validate system models. If an analyst
finds unexpected results, he or she can review a
trace and ask unanticipated questions about system
performance measures at any point in the simulation.
Anyone who has gone through the process of debugging
a complex model will see the value of being able to
retrieve information about system variables without
writing debugging statements for repeated runs of the
same model. The Output Analysis Frame also allows an
analyst to view traces as the simulation is running.
If the analyst interrupts the simulation in response
to the interactive run-time displays, he or she can
compute intermediate statistics and terminate the run
on the basis of these statistics.

Decision makers can also tailor displays for both
types of data to meet their requirements, as well.
Frequently, user's reports will be non-graphical,
summary reports-'in tabular form. The user can also
have results displayed in various graphical forms,
including histograms, line graphs, ple charts, etc.
Displays should allow for windowing, light-pen or
mouse Interactions, and other user-defined image
manipulations. Similarly, the decision maker should
be able to use recorded observations to produce an
animated trace, perhaps overlaid on graphical image
of the real system.

After examining the simulation results, the user can
choose to retain the run~time observations, or
computed statistics, or both in the System Library.
He or she can also create a “comments” file
associated with the current run to record his or her
reactions to the data obtained. Both the results and
the comments file can then be accessed through the
System Library by any member of the decision team who
may wuse these, and related results, to guide
organizational planning.

USER ENVIRONMENT

The institutional character of large scale
simulations has been the driver for many of the
software engineering and decision support techniques
incorporated into simulation software.
Traditionally, simulation packages have been
developed to be run and interpreted by specialists,
such as the members of an operations research group.
Large scale simulations for a corporation or
government agency, however, may be run, maintained,
and modified over a period of years by people other
than members of the original design and development
team. The requirements of this extended class of
users has placed new demands on simulation modeling
and output analysis:

* For large-scale simulations, 1logic of a
monolithic program becomes difficult, if not
impossible, to verify and document so that modular
design becomes a necessity in simulation design as in
other large-scale software projects.

% Because the model may be used and modified by
people other than members of the original design
team, simulation systems need to support standardized
modeling techniques and standardized documentation.

* Because the system may be used by an extended
class of users, there need to be procedures for
running the model and changing experimental
conditions that do not require the user to be
familiar with the model code. Instead, the
simulation system software should provide an
appropriate view of the model and results for each of
the potential user groups.

* Advanced simulation techniques require the
user—adaptable interactions that have come to be
associated with decision support systems. These
include interactive queries, easily established
“what-if" scenarios, dinteractive, user-specified
techniques for data analysis and output display,
etc,

A system of the type we have described is intended to
support several classes of users throughout the life
cycle of a simulation model. The models themselves
will be developed, as they are at present, by trained
programmers and analysts. The graphical modeling
features embodied in the Model Frame, however, are
intended to make the completed models comprehensible
to other users who will need to review or exercise
the model. Because the design specifies a separate
Entity Representation Frame, model-developers can
separate data collection from the job of capturing
the logic of the actual system. the Data Entry
Interface can be tailored to the needs of additional
users, which may include the analysts responsible for
determining relevant distributions and statistical
parameters but which may also include production
personnel or data entry clerks who can enter data
without knowing the internal form of the model
itseif. The Data Entry Interface may, in fact, be
tailored to accept data from an actual system data
base so that, once a model is developed and declared,
data can be routinely entered, without the need of
trained analysts,

Finally, the Experiment Interface allows analysts to
specify simulation control conditions (such as
stopping rules), decision wvariables, and special
statistics collection points. A decision-maker may
choose to ignore the more specialized simulation
control conditions, once defaults have been

568 Michael G. Ketcham, Jomn W. Fowler,

established by analysts. In this case, a manager,
engineer, or other decision maker can execute the
model as he or she chooses, manipulating the decision
variables of dinterest at each execution. These
experimental capabilities, combined with the fact
that the model representation i1s designed to be
comprehensible to non-technical users, provide
unparalleled flexibility in using simulation as a
management decision tool. Commonly, an experiment's
results will be reviewed by the users who established
the experimental conditions in the Experimental
Frame. The Output Analysis Interface, however,
allows queries and displays to be tailored to the
needs of higher level executives, policy makers, or
other users still further removed from the original
model formulation.

As we have explained, many of the details of
implementing a simulation system of this type will be
based on the specific circumstances for which the
system will be designed. However, we have emphasized
the need for adapting the architecture of the
simulation system to the user environment.
Regardless of the implementation decisions, advanced
simulation systems should be founded on an underlying
logic and software architecture that will provide for
multiple user views of a simulation and that will
meet user’s requirements for planning and decision
making for several classes of user.

In summary, these advanced simulation systems present
flexible modeling and output analysis features, with
multiple views of a simulation, all supported by
sophisticated software and by an integrated system
design. It has been the purpose of this paper to
provide a generic system design, midway between the
general requirements that have been identified in
theoretical studies and the specific implementations
used in recently developed simulation packages. We
feel that a generic design of this type provides the
simulation community with a basis for describing new
simulation systems and a framework for future studies
of simulation capabilities.

REFERENCES

{11 Oren, T. I. and Zeigler, B. P., "Concepts for
advanced simulation methodologies,” Simulation,
69-82, March, 1979,

[2] Golub, J. and Soper, W. A., "Prototyping for
Naval Battle Group Simulation Development.”
Record of Proceedings: 16th Annual Simulation
Symposium. TIEEE Computer Society Press, 79-82,
1983.

[3] Ludwigs, H., "Simis II--An Environment for
Material Flow Systems Simulation."” Record of
Proceedings: 16th Annual Simulation Symposium.
IEEE Computer Society Press, 69-78, 1983.

[4] Pegden, C. D., Introduction to Siman.
Modeling Corp., 1982,

Systems

[5]1 Pritsker & Associates, ICAM Definition Method:
IDEF2 Dynamics Modeling, Architects Manual.
Softech, Inc., 1980.

[6] Trott, K. C. and Frantz, F. K.,
Interactive Simulation' Sytem for Developing
Command and Control Systems." Record of
Proceedings: 16th Annual Simulation Symposium.
IEEE Computer Society Press, 11-31, 1983,

"A Detailed

{71

(8]

[91

315-331, 1982.

Don. T. Phillips

Wiliis, R. R. and Austell, W. P., "GMSS:
Graphic Modelling and Simulation System."
record of Proceedings: 16th Annual Simulation
Symposium. IEEE Computer Society Press,

Comer, E. R. "Structured Model Specifications

with a Supportive Simulation Architecture.”
Record of Proceedings: 15th Annual Simulation
Symposium. IEEE Computer Society Press,

315-331, 1982,

Engelke, H., Grotrian, J., Scheuing, C.,
Schmackpfeffer, A., and Solf, B., "Structured
Modeling of Manufacturing Processes.” Record of
Proceedings: 16th Annual Simulation Symposium.

IEEE Computer Society Press, 55-68, 1983.

