Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pooch, D. Pegden (eds.)

501

PROLOG AS A SIMULATION LANGUAGE

Heimo H. Adelsberger
Department of Computer Science
Texas A&M University, College Station, TX 7784

ABSTRACT

Prolog is a rather new language and is very different
from traditional languages. Prolog is favored by the
Japanese for their Fifth Generation Computer Systems.
The acronym PROLOG is derived from PROgramming in
LOGic and emphasizes the derivation of the language
from predicate logic. Prolog can be considered as a
general purpose very high level language, best suited
for general symbol manipulation, intelligent and fle-
xible database handling or problems, where some kind
of search is required. Examples of application areas
are computer aided désign, database and "knowledge-
base" management, natural language processing and
rapid prototyping.

It 1is the purpose of this paper to demonstrate, how
Prolog can be used as a tool in a simulation project.

The paper consists of two parts: a survey of the
language Prolog and a description of T-Prolog, a Pro-
log based simulation language, using a process inter~
action approach.

INTRODUCTION

Most of the current work in simulation is done in
general purpose high level languages like FORTRAN,
BASIC or Pascal, or in simulation languages like GPSS,
SIMSCRIPT or SLAM. The common characteristic of these
languages is their imperative nature. One has to des-
cribe how a result is to be computed, or more precise-
ly, how the computer should compute the desired re-
sult. This means that the programmer and analyst is
forced to translate the real-world-problems into the
“thinking scheme of the machine®.

Prolog supports a radically opposite view of the pro-
blem: tell the computer what is to be done and what
the facts and rules of the problem are. The name
Prolog means PROgramming in LOGic and relates to the
fact that at first, Prolog was a theorem prover.
Prolog can be best described as a declarative langu-
age.

For simulation, the goal orientation of Prolog can
help users to find an appropriate model. The typical
search process which leads to a model 1is not well
supported in ordinary simulation environments which
are only able to run a given model, In the traditional
approach most of the work in this area is done by
humans: results of simulation runs are evaluated and
in case of unacceptable results new input data and
model parameters are provided for additional runs.
This process is repeated until the desired results are
reached, or otherwise the model must be redefined.

These tasks can be performed in Prolog automatically.
A modeler declares his knowledge about the system,
especially the description of the objects, the rules
for modification of input data, model parameters and

model characteristics. In such a manner the class of
all possible and acceptable models is defined. It is
the responsiblity of Prolog to find a model which
fulfills the desired specification. (For more details,
see /06/ and /08/.)

PROLOG

Prolog ('Programming in Logic') is a programming lan-
guage based on symbolic logic, designed to represent
and use facts about a field of knowledge. Facts are
represented by a set of relations which describe the
properties of objects and their interaction. A Prolog
program consists of a set of rules describing these
objects and relations.

Prolog is very different from traditional programming
languages like FORTRAN, COBOL, BASIC, Pascal and even
Ada. These languages are best described to be procedu-
ral or imperative: a program specifies explicitly the
steps which must be performed to reach a solution of
the problem under consideration.

Prolog can be viewed as a declarative or descriptive
language. It is only necessary to describe the problem
in terms of statements and rules affecting the objects
in question. If the description of the problem is
sufficlently ‘precise, the problem can be solved.

The following list gives a rough idea of which kind of
problems Prolog is best suited:

-— symbol manipulation

—-- pattern matching

-- intelligent and flexible database handling
—=— searching

Application Areas

Colmerauer's work on Prolog was designed to assist in
natural language analysis and comprehension. Since
then, Prolog has been chosen for applications of sym-
bolic computation. Typical application areas are:

-- natural language processing
-- expert systems

-- database management

-- mathematical logic

~~ symbolic equation solving
-~ architectural design

~~ software prototyping

-- artificial intelligence

History

Prolog is slightly over ten years old. Alain
Colmerauer developed the first Prolog interpreter in
Marseille in the early 70's, The work was based on the
idea of logic programming, theoretically founded by R.
Kowalski and P. Hayes. During the 70's the knowledge
about Prolog was restricted to a rather small communi-

502

Heimo H. Adelsberger

ty in academia., This situation changed with the an-
nouncement of the Japanese Fifth Generation Computer
Project in 1981. Prolog (or its enhancement) was cho-
sen as the key language of the project.

Basic Idea of Logic Programming

The problem specification is written in first-order
logic and a theorem prover is used to provide a con-
structive proof of existence for an object meeting
that specification,

A:-~B, C, D.

This can be interpreted as a statement in logie,
saying that A will be true if B, C and D are all true.

But it can also be interpreted as the definition of
the procedure for checking the validity of A, stating
that in order to execute A all procedures B, C and D
should be executed.

Programming in Prolog

Computer programming in Prolog consists of:

-~ declaring some facts about objects and their rela-
tionships

-- defining rules about objects and their relation-
ships

-~ asking questions about objects and their relation-
ships

By now there exists a lot of different Prolog dia-
lects. For the following the version given in Clocksin
and Méllish's book "Programming in Prolog" (see /02/)
is used.

Facts

For example, to say "Mozart composed Don Giovanni"
merely affirms that a relation (composed) links two
objects, designated by their names: Mozart and Don
Giovanni. This could be written in Prolog in standard
form:

composed(mozart, don-giovanni).

The name of the relationship is given first, and the
objects are separated by commas and are enclosed by
parenthesis.

A collection of facts (and later, rules) is called a
database.

Example: A database for operas

composed(beethoven, fidelio).

composed(mozart, don-giovanni).

composed(verdi, rigoletto).

composed(verdi, macbeth).

composed(verdi, falstaff).

composed(rossini, guglielmo~tell).
composed(rossini, il-barbiere-di-seévilla).
composed(paesiello, il-barbiere-di-sevilla).

Questions and Variables

It is possible to ask questions in Prolog. Two diffe-
rent types of questions can be asked: is-questions and
which-questions. A typical is-question is: "Did Mozart
compose Falstaff?", A typical which-question would be:
"Who composed Falstaff?"., In Prolog one would write:

?- composed(mozart, falstaff).
?- composed(X, falstaff).

For is-questions the answer is 'yes' or 'no'; in the

above example it would be 'no'. For which-questions

one has to specify one or more variables. 'X' is the

variable in the above example, and the result would be
X = verdi.

If there are more solutions to a question as in "Which
operas have been composed by Verdi?"

?- composed(verdi, X).

all solutions are listed:

rigoletto
macheth
falstaff

n

n

X
X
X

When Prolog is asked a question containing a variable,
Prolog searches through all its facts to find an
object that the variable could stand for.

Syntax

Prolog programs consist of terms., A term is a con~
stant, a variable or a compound term (structure).
Constants are numbers or atoms. Names of atoms begin
with a lower-case letter. Varidbles are always capita-
lized. A structure is written by specifying its func-
tor ('composed' in the example above), followed by its
components (also called arguments) enclosed in paren-
thesis, separated by commas. Lists are a special form
of compound terms.

Conjunctions
Given the following database:

likes(mary, food).
likes(mary, wine);
likes(john, wine):
likes(john, mary).

In Prolog one could ask "Is there anything that John
and Mary both like?" in the following form:

?- likes(mary, X) , likes(john, X).

The comma is pronounced 'and', and expresses the fact
that one is interested in the conjunction of these two
goals.

Rules

A rule is a general statement about objects and their
relationships. Rules are used to say that a fact
depends on a‘group of other facts. For . example, to
explain that a person is someones sister one could
say:

'X is a sister of Y if
X is female and
X and Y have the same parents.'

In Prolog syntax one would write:
sister-of (X,¥Y) :-
female(X),
parents(X, Z1, Z2),
parents(Y, 21, Z2).

The symbol ':-' is pronounced 'if'.

Prolog as a Simulation Language

Lists

A list is an ordered sequence of elements that can
have any length. Lists are written in Prolog using
square brackets, elements are separated by commas as
in:

languages{ [gpss, simseript, simula, slam]).

Some other lists:

[
[[the [boyl]1L[kicked [the [ball J 1 1]

The first 1list is the empty 1list, the second one
represent the grammatical structure of the sentence
*the boy kicked the ball'.

The vertical bar is used to split a list intc its head
and tail:

?- languages{ [X[Y¥]).
X = gpss
Y = [simscript, simula, slam]

Recursion

Recursion 1is a powerful technique to express complex
algorithms and structures in an easy way. In many
cases algorithms can be expressed in two different
forms: one using recursion and one using loops. &
simple and good example is the computation of ‘the
factorial function. In Prolog, recursion is the normal
and natural way.

The membership test for an element of a list is a
simple and good demonstration of recursion in Prolog:

member (X, [X|Y¥1).
member (X, [H[Y]) :- member(X,Y).

This can be read as:

tThe element given as the first argument is a member
of the list given as the second argument, I1f the list
starts with the element (the fact in the first line)
or if the element is member of the tail (the rule in
the second line).'

Possible question:

?- member(d, [a,b,c,d]).
yes
?- member{e, [a,b,c,dl).
no

-1t is possible to get all members of a list by asking:

?~ member(X, [a,b,c,d]).

e oo lta
LIS S
o0 o

Example: Permutations

The following Prolog program can be used to compute
all permutations of a given list:

pern(X, [H|TI) :-
append{ ¥, [H|Z], X),
append{ Y, Z, P),
perm(P, T).

perm{ [1, [] J.

503

append([I, X, X).
append{ [4]B], C, [A]D] } :-
append{ B, C, D).

?- perm([a,b,el, X).
La,b,c]
[a,e,b]
[v,a,c]
[b,e,al
[c,a,b]
[e,b,al

ECR
LSS I T

Explanation: The predicate 'append' defines that the
list given as the third argument is the joint of the
list given as the first and second argument. For
example it is true that:

append([a,b,c], [i,3], [a,b,c,1,31).
With the first two arguments instantiated and a vari-
able as the third argument, ‘append' can be used to
Join two lists:

?- append([1,2,3], [4,5,6], X).
X =1 t2t3’u;5v6:|

But 'append' can also be used to split a list into all
possible sublists:

?- append{ X, Y, [1,2,3].
[l

X = Y= [1:2’3]
X = [1] Y = [2,3]
X =1[1,2] Y = [3]

X = [1t2'3] Y =[]

With the help of ‘'append' the predicate 'perm' is easy
to understand:

The list X is split into two sublists Y and [H|2]. Y
and Z together form the list P which is permuted. A
permutation of P is called T. The element H from the
first split process together with each permutation T
yields a result.

Glossary

The above Prolog 'program' to compute permutations
consists of two 'procedurss! ("perm" and "append").
Each procedure comprises one or more 'clauses' (2 for
"perm" and 2 for "append™). A clause is terminated by
a period. The procedure name is called a ‘predicate’.
The number of ‘'arguments! is called the ‘arity' (2 for
"perm " and 3 for "append"). Each clause has a ‘head!
which 1s also called 'procedure entry point' and may
have a 'body'. A body is separated from the head by
the symbol 'i-', The head defines the form of the
predicates arguments. The body of a clause consists of
tgoals' or ‘procedure calls' which impose conditions
for the head to be true. Clauses without bodies are
called 'facts', clauses with bodies are called
*rules'. Prolog objects are called 'terms'. Terms are
elither 'variables', ‘'atoms' or 'compound teérms'. Com-
pound terms comprises a !'functor' (like "append") and
its arguments. An atom can be considered as a functor
of arity O.

T-PROLOG

T-Prolog has been developed by I. Futo and J. Szeredi.
T-Prolog can be considered as a goal oriented discrete
simulation language. Compared to conventional simula-
tion languages 1t can be called a very high level
simulation language. The main characteristics of T-
Prolog are (see /08/):

504

-~ A process interaction view of simulation is suppor-
ted.

—-= A built-in backtrack mechanism permits backtracking
in time in case of a deadlock or a hopeless inter-
mediate situation arising during program execution.

-- The system can change the structure of the original
simulation model automatically on the basis of
logical consequences derived from sophisticated
preconditions,

== Advanced procéss communication mechanisms are sup-
plied for the user.

T~-Prolog is based on the M-Prolog system, the Prolog
implementation developed at the Hungarian Institute
for Co~ordination of Computer Techniques.

The basic ideas of T-Prolog can be best described by a
small example (see /08/):

Example

Jim and Dick want to rob the Prolog—Savings-Bank. Jim
climbs into the bank (which takes him 5 minutes)
whereas Dick waits outside. There are different safes
in the bank for each of which appropriate tools are
needed. Jim choses a safe, and if they have the tools
they rob the bank. The robbery has to be finished in
25 minutes. Details can be found in the following
Prolog program. The question is, which safe shall be
chosen for a succesful robbery.

(1) jim-gets—the-money(Bank,Safe) :—
Jjim-climbs-into(Bank),
chooses(Safe),
wait-for(Tools),
opens(Safe,Tools),
outputs(Safe,Bank).

(2) dick-gets-the-money(Bank,Safe) :—
wait(nonvar(Safe)),
has(Tools,Safe),
send(Tools).

(3) chooses{wertheim).
(4) chooses(milner).
(5) chooses(chatwood).

(6) has(tool-set—-a,milner).
(7) has(tool-set-b,chatwood).

(8) Jjim-climbs-into(Bank) :- during(5).

(9) opens(milner,Tools) :- during(40).
(10) opens{chatwood,Tools) :- during(10).

(11) outputs(Safe,Bank) :-
systemtime(T),
outstring("The bandits got "),
outstring("the money from the "),
output(Safe), outstring(" safe, "),
outstring(® from the"),
output(Bank), outstring(" bank "),
outstring(" at time "),
output(T).

(12) fin. .

(13) problem :-—
new(dick-gets-the~money(prolog-savings,Safe),
dick,0,25),
new(jim-gets-the-money(prolog-savings,Safe),
jim,0,25).

Heimo H. Adelsberger

Explanation:

Two processes are created to solve the problem (13)
via predicate 'new': The first argument of 'new' "is
the head of the process, ‘the second one the name of
the process. The third argument is the time when the
process has’ to start and the forth argument is the
maximum duration for the process.

Synchronization is achieved via ‘'during' (8,9,10),
'wait' (2) and the message passing predicates ‘'wait-
for' and 'send' (1,2). During suspends the execution
for T time units, wait until the argument of wait can
be successfully completed. Processes executing a
'wait-for' goal are suspended until another process
executes a 'send'.

The current internal time can be used via the predi-
cate 'systemtime' (11).

The result of the simulation run would be:

"The bandits got the money from the chatwood safe,
from the prolog-savings bank at time 15".

SUMMARY

The basic concepts of Prolog make it easy to extend
the language for a specific type of application, as
demonstrated for simulation by the example of T-Pro-
log. In addition, the goal orientation of Prolog can
support the search process to find an appropriate
model. The fact that Prolog is normally implemented as
an interpreter has the known advantages and disadvan-
tages: interpreters speed up code development but slow
down execution, which, of course, is crucial for simu-
lation. One way to circumvent slow execution is to
regard'a model developed in such a manner as a proto-
type, which later can be transformed automatically or
by hand into a suitable language. Although not inven-
ted originally for this purposeé, rapid prototyping
with Prolog seems to be in general a very promising
field.

REFERENCES

/01/ Clark K.L., McCabe F.G., micro-PROLOG: Program-
ming in’ Logic, Prentice/Hall International,
Englewood Cliffs, New Jersy, 1983.

/02/ Clocksin W.F., Mellish C.S., Programming in Pro-
log, Springer-Verlag Berlin Heidelberg New York,
1981.

/03/ Coelho H., Cotta J.C., Pereira L.M., How to solve
it with PROLOG, Ministerio da Habitacao e Obras
Publicas - Laboratorio Nacional de Engenharia
Civil, 2nd edition, Lisboa, 1980.

/04/ Colmerauer A., Kanoui H., Caneghem M. van, Pro-
log, theoretical principles and currént trends,
Technology and Science of Informatics, vol. 2,
no. 4 (1983), pp. 255-292.

/05/ Domolki'B, Szeredi P,: PROLOG in Practice, Infor-
mation Processing 83, R.E.A. Mason (ed), Elsevier
Science Publishers B.V. (North-~Holland), IFIP,
1983.

/06/ Futo'I., Szeredi J.: T-PROLOG User Manual Version
4.2, Inst. for Coord. of Comp. Techn., Budapest,
Hungary, 1983.

/07/ Kowalski "R., Logic for Problem Solving, North
Holland, New York, Oxford, 1979.

/08/ SZKI, T-PROLOG A Very High ‘Level Simulation
System, Budapest, 1982,

