Proceedings of the 1984
Winter Simulation Conference
S. Sheppard, U. Pocch, D. Pegden (eds.)

491

SIMULATION WITH C

Floyd H, Grant, III, Ph.D.
Douglas G. iMacFarland
Pritsker & Associates, Inc.
P.0. Box 2413
West Lafavette, IN 47906

INTRODUCTION

The C Programming Language was developed at Bell
Laboratories in 1972 by Dennis Ritchie. Since that time, C
has had major acceptance as a modern programming language
suitable for a large variety of applications. Those
applications include the operating system UNIX, which was
written in C for portability. It requires only a C compiler
and the rewriting of some low level routines in machine
language for implementation on virtually any computer. The
best documentation of C is provided in a book entitled The C
Programming Language by Kerninghan and Ritchie.[1]

This paper explores the use of C as the host language for
discrete event simulation. One of the primary motivators is
the portability of C code. C compilers are now available
for a variety of computers from microcomputers to
mainframes. Hence, a simulation model developed in C could
execute on a microcomputer or a mainframe, given a standard
_C compiler, The standard for C is well defined via
compilers which have a full implementation of C. Kerningham
and Ritchie's text provides the documentation for that
standard.

As simulation modeling typically requires extensive
programming, the features available in C are of interest. C
permits the user to program on a variety of levels. This
may be as detailed as being close to machine code, or it may
be on the same Tevel as FORTRAN. This flexibility provides
many alternatives for model development not available in
earlier host languages.

Additionally, C contains many features that are ideal for
simulation. These include capabilities such as named
attributes, pointer datatypes for entities in the event
calendar and in files, dynamic core allocation, and other
organization features that make simulation models easier to
develop. Details on these various features will be
discussed in the subsequent sections of this paper. C is
also actively being extended and refined. A new version of
C called C+ [2] has been developed at Bell Laboratories.
C++ provides additional capabilities in the form of a
preprocessor which allows the user to extend the Tanguage by
creating new data types and operators. For simulation, this
means that we can create operators that will perform the
functions most often required in a simulation model.

The objective of this paper is to illustrate how C
capabilities can be used in simulation. We will discuss the
components typically found in a simulation modeling language
and describe how C can be used to address these capabilities
in ways not previously available. Examples will be provided
to illustrate the various concepts.

ENTITIES AND ATTRIBUTES

In discrete event simulation the programmer is typically
concerned with the flow of "entities” through the simulation
model. Depending upon the particular model, an entity could
be a custorper, a part being manufactured, a telephone call,
or a cart in an AGV system. In many models there will be
several types of entities in the system at the same time.

Each entity in the system will have attributes associated
with it. The attributes of an entity might be its weight,
the amount of a particular resource it will require, and the
time at which it entered the system. Since the code written
by a programmer to describe his system will often refer to
these attributes, and because these attributes may differ
from entity to entity, it is very desirable to be able to
refer to an entity, and its attributes, by names which are
meaningful to the programmer. The C programming language
provides such a capability through the use of structures,
unions and pointers. The following sections provide details
on the use of C constructs to support the use of entities
and their attributes in simulation models.

Structures and Named Attributes

The C progranming language, through the use of unions and
structures of data elements, provides an excellent
environment for referencing and manipulating entities and
attributes by name. An entity is defined as a structure
composed of the data elements which represent its
attributes. The C programmer can create a data
representation in which each entity, and each attribute of
each_ent1ty, may be referred to by a meaningful name such as
"entity.car" or "entity.car.color",

By entering the entity and attribute declarations into a
separate "header" file, the C preprocessor "#include”
command may be used to reference these declarations from
many different source files. An example of what this entity
and attribute definition header file might ook Tike is
shown in Figure 1.

struct Car_typ {
float ar_time;
int color;
int body;
int engine;
int options;
}s

struct Truck typ {
float ar_time;
int color;
int bed;
int engine;
int trans;



492

Floyd H. Grant, III, Douglas G. McFarland

union Entity {
struct Car _typ car;
struct Truck typ truck;

} s

Figure 1. Entity Attribute Definition.

In this example, the model has two types of entities, cars
and trucks. The programmer has defined a structure
consisting of the attributes of the car, and named it
Car_typ. He has also defined the structure Truck typ, which
contains the attributes for a truck. Note that, although
these attributes are similar, by defining the entities as
separate structures, the programmer is able to give them
names which are specific to each entity. The final
statement in the header file defines the type Entity to be a
union which may contain either of the two entity structures.
The reader should note that these declarations serve only to
define the entity types.and do not create any occurrences of
these types. This is done elsewhere in the model.

The C Preprocessor and Symbolic Constants

One of the most powerful features of the C programming
Tanguage in enhancing the readability of its source code is
the preprocessor of the C compiler. One of the features of
the preprocessor is to allow the programmer to represent any
text string with another text string through the "#define"
command. By using the #define command, the user may replace
constants, parts of expressions, or even entire statements,
with names which are more meaningful to the application.

For example, consider the attribute entity.car.color from
the previous section. For efficiency of storage and
manipulation, this attribute is declared to be an integer.
We could agree that the number 1 would represent the color
ved, and then the statement "if(entity.car.color == 1)..."
would test the color attribute to see if it is red. This
statement would invariably cause the reader to refer to his
copy of the color definitions that had been agreed upon.
If, however, we use the C preprocessor command "#define RED
1" this statement becomes:

“if(entity.car.color == RED)...".

Readability is even further enhanced in switch constructs
such as the one in Figure 2. In this case, we want to
process the "car" entity in different ways based on its
color. (The use of the “switch" construct is also a major
reason that the color attribute was declared as an integer
in the first place, since the object of a case label must be
an integer constant.)

switch(entity.car.color) {
case RED:

case.BLUE:

Figure 2. String Replacement with #define.

Pointers for Entity Manipulation

One of the distinguishing features of the C programming
language is its ability to deal with pointers, which are
similar to machine addresses. This provides a considerable
advantage in efficiency when passing, or otherwise
manipulating, complex data structures. For example, by
using a pointer to the entity union defined above, the C
programmer can reference any element and field in that
structure by name through the use of the -> operator. As an
example, if "eptr" has been declared to be a pointer to a
union of type Entity, then the programmer may refer to the
car color field of the structure pointed to by eptr as
"eptr->car.color.

In progranming a descrete event simulation, the .programmer
will often make use of functions which perform tasks
involving entities (filing, scheduling, etc.). By using a
pointer to an entity structure, access to all of the
attributes of an entity may be passed to these functions
with a single argument. Possibly even more significant is
the fact that, while a function may return only a single
value, this value may be a pointer. By taking advantage of
this, we can write functions returning entity pointers which
lead to concise and readable notation such as

Yentity = get (1,QUEUE1);".

Dynamic Storage Allocation

Most modern programming languages provide facilities for the
dynamic allocation of storage. C is no exception. Through
the use of the functions sbrk, alloc, and free, the
programper may allocate and free blocks of storage at
program run time. This has obvious advantages in a
simulation environment.

When constructing a simulation model, the programmer often
has Tittle or no prior knowledge as to the amount of
congestion in the system (i.e., the number of entities in
the system concurrently). In Tanguages which provide only
static storage allocation, notably FORTRAN, this situation
causes the programmer to grossly over-allocate the storage
for entity lists or to risk termination of his simulation
run due to lack of core storage. The problem is compounded
by the fact that in order to alter the amount of storage
allocated it is necessary to recompile one or more modules,
and relink the entire system.

By allowing the entity storage requirements to be allocated
at run time, C relieves the programmer of the task of
estimating the requirements of a model run and may also help
reduce the Toad on the computing system by reducing the Toad
on the system memory resources.

Note that while there is some overhead involved with
dynamically allocating and releasing storage, this can be
minimized by properly designing the functions which handle
entity creation and destruction. Rather than allocating and
freeing storage as each entity is created an destroyed, this
storage could be allocated in groups of some fixed number of
entities. The size of the group of entities for which
storage is allocated is a parameter which could be tuned to
the type of model which is run most often at a particular
installation.



Simulation with C 493

LIST MANIPULATION

Since the manipulation of 1ists is so prevalent in
simulation, one of the services provided by a discrete event
simulation package should be a number of functions for
dealing with 1ists. Functions should be available for
inserting an entity in a Tist, removing an entity from a
list and finding an entity which meets a specific
description from within a Tist. In addition there should be
a function to schedule an event.

The C programming Tanguage has some capabilities which make
it very well suited to writing functions which perform Tist
manipulation. The following sections discuss these
capabilities and the specific areas of discrete event
simulation to which they apply.

Pointers for List Manipulation

As mentioned in previous sections, C provides a powerful
facility for the manipulation of entities through the
pointer data type. This capability is even more
advantageous in the manipulation of Tists of entities.

A typical 1list is doubly Tinked, requiring a forward and
backward pointer. In lanquages such as FORTRAN, "pointers”
usually consist of integer subscripts into a large array
which comprises the Tist space. This results in some
problems in writing procedures which return an entity from a
Tist. Either they must copy the attributes of the entity
into another array, a time consuming task if there are many
attributes, or they must return a subscript into the list
space resulting in very awkward references to the attributes
of that entity.

In C this problem can be totally avoided by returning a
pointer to the attributes of the entity. This allows the
code of the simulation model to refer to these attributes by
name without any need to physically move them to a new
location. In fact, through the use of pointers, it should
never be necessary to physically move the attributes of an
entity in memory, regardless of how many lists it appears
on.

Another advantage of using pointers in the manipulation of
Tists is that the simulation code need not have any
knowledge as to the structure of the pointer system.
Although a header containing a forward and backward pointer
must be bound onto an entity in order to Tink it into the
event 1ist and other 1ists, it is possible, through pointer
arithmetic and casting, to completely hide the existence of
this header from the model code which refers to the
attributes of the entity. Again, this is done without the
need to copy attributes into a temporary variable.

Figure 3 is an example of how the C programmer might write a
segment of code to remove the third entity from a Tist
called QUEUEL, and place it in the 1ist called QUEUE3 using
functions designed for the manipulation of pointers. The
function Q_size returns the number of entities currently
occupying a particular Tist, and is used to determine if
there are at least 3 entities in QUEUEL. Note that although
this code segment is concise and compact,it is still very
readable.

struct Entity *get();

1£(Q_size(QUEUE1) >= 3)
1 (gat((z)ﬁsusa, get(3,QUEUED) )

Figure 3. List Transfer in C.

List Ordering

In simulation, as in any application which deals with lists,
a matter of great concern is the ordering of Tists. To
avoid unnecessary searching, the event Tist should be
maintained in increasing order of event time. Queues are
often FIFO or LIF0, but more complex orderings are not
uncommon. Means for efficiently ordering and searching
lists are of paramount importance in the performance of the
simulation model. C provides some unique capabilities for
the manipulation of entity Tists.

In € it is possible not only to pass the address of a
procedure to another procedure, but to store this address in
a pointer variable. Taking advantage of this capability,
the address of a user-written comparison function could be
passed to, and saved by, the simulation executive at the
time when the 1ist was initialized. This comparison
function would be passed pointers to the attributes of two
entities, and would return their relationship in the desired
ordering. (Greater than, less than or equal.) This
function would then be used by the simulation executive in
determining the ordering for that 1ist. Through the use of
a comparison function, it is possible to maintain very
complex orderings, without the need for the simulation
executive to know about the structure of the entities being
manipulated.

When a Tist is to be maintained in a LIFO or FIFQ order, the
simple doubly linked list is quite sufficient. For more
complex orderings, however, the doubly Tinked list results
in a linear search, either on insertion, or removal from the
Tist. This may be avoided by structuring the 1ist as a
binary tree. The same forward and backward pointers that
serve to chain a doubly linked Tist together may be used a
left and right pointers in a tree structured list. The time
required to search such a binary tree is a log factor less
than would be required in a Tinear search of a Tist of the
same size. Combined with the user-written comparison
function discussed above, this is a very powerful

capability for efficiently maintaining or searching lists
with other than LIFO or FIFO orderings. Both Tinked 1ists
and binary trees could coexist in the C based simulation
model.

The Event List

The event Tist is a very special 1ist in the simulation
environment. It is used to store entities while they are
awaiting processing by the simulation executive. This list
requires two additional attributes: the event type and the
event time. With many descrete event simulation packages,
these additional attributes must be carried at all times by
every entity in the system, regardless of which 1ist they
are currently occupying. Through the use of pointers and
dynamic storage allocation, the C programming language
provides the capability to bind these additional attributes
onto an entity only while the entity is actually on the
event Tist, and to completely hide the existence of these
attributes from the application code.



49

Floyd H. Grant, III, Douglas G. McFarland

In addition to the efficiency of storage afforded‘by
eliminating the need to carry the additional attr1butgs
throughout the system, considerable speed would be gained by
maintaining the event 1ist as a binary tree in increasing
order of event time. This would ensure a that minimal time
would be spent in finding and removing the next event.

MULTIPLE CLOCK TYPES FOR THE SIMULATION EXECUTIVE

One topic which is seldom addressed in the creation of a
descrete event simuTation package is the issue of multiple
clock types. The simulation executives of mo§t paclgagc:zs use
a single precision, floating point clock. While this is
quite adequate for most simulation needs, there are
surprising number of situations which require the accuracy
of a double precision clock, or the speed of an integer
clock.

In the simulation of comunications systems, events often
occur in very short time intervals, thus requiring a double
precision clock if the model is to be run for any
significant period of time. Computer systems are qnother
application where event intervals may be rpeasured in
nanoseconds. However, in some computer simulation models
events occur in integer multiples of the machine clock
cycle, suggesting that an integer clock be used in the
executive for these models.

Many micro-computers lack any hardware instructions for
floating point mathematics. On these machines, floating
point math must be done in software, and is therefore often
quite slow. In porting a simulation package to such a
micro~-computer it may be desirable to use an integer clock
in the simulation executive in order to greatly increase the
execution speed of the model. This will, of course, depend
u?on whether or not the model lends itself to this type of
clock.

With some existing packages, changing the executive from one
clock type to another may be accomplished by editing the
source code and changing the declaration of any variables
used to hold a clock time. With other packages, the
assumption of a single precision floating point clock is
much more deeply rooted and would require a nearly complete
re-write in order to change to another type. In either of
these two cases the result would be multiple copies of the
source code for the simulation package, all of which would
‘have to be maintained separately. In addition, the source
code for a model would most Tikely not be compatible with
versions of the package other than the one for which it was
written.

The ability of the C programming language to define new data
types in terms of existing types provides a simple sojution
to this problem. By using the typedef statement to define a
new data type with the symbolic name CLOCK, and which
represents the actual data type of the clock, we can hide
the actual data type from the code of the simulation
executive and from the programmers model code. If all
variables and functions which hold or return this data type
are declared to be of type CLOCK, changing the type of the
clock will be as easy as changing a single typedef statement
in a header file. (See Figure 4?

typedef double CLOCK;
CLOCK tbeg, tfin, tnow, tlast;

Figure 4. Alternate Clock Types.

While the use of the typedef statement would still result in
multiple executables, there would only be a single source
file, greatly reducing maintenance requirements.

In addition to the data type of the clock, the type used for
many of the other executive functions could be parameterized
in this fashion also. Some 1ikely candidates would be the
statistical accumulators, the random number seed and some of
the other variables used in random number generation. By
making good use of the typedef statement it would be
possible to generate versions of the simulation package for
a wide variety of machines from a single source file. This
extreme portability, and the ease of porting the C compiler
itself, is one of the major factors in the increasing
popularity of C.

STATISTICS COLLECTION

The purpose for constructing and executing a computerized
simulation model is obviously to gain some insight into the
behavior of the system it represents. The normal means for
determining the performance of a simulation model is through
the collection of statistics based upon parameters of the
model which are of interest to the modeler. Simulation
statistics may be grouped into two categories: time weighted
statistics, such as the mean utilization of a resource over
the simulated period, and observation based statistics, such
as the mean waiting time in the queue for a machine. The
following discusses issues in which C can provide much
support for the collection of statistics.

Assignment Operators And Register Variables

The major advantage of C in the collection of observation
based statistics is that of speed. The C programming
Tanguage provides a wealth of operators; among these are the
assignment operators. Assignment operators are unique to C
and are very close to the instruction set of the machine
itself. They result in compiled code which is very compact
and efficient.

Another feature of C which helps generate more efficient
code is the register variable type. By declaring a variable
to have the register storage class, a programmer may inform
the compiler to make an extra effort to treat that variable
in an efficient manner. This varies from machine to
machine, but usually results in the variable being
maintained in a machine register, rather than in memory.
This eliminates the memory fetch step, and the time required
to execute it.

The typical way in which a simuTation package provides
observation based statistics to the programmer is through a
call to a statistical collection function. This function is
passed an observation and the index of the stream in which
the observation is to be collected. The way this function
usually maintains the statistics is through updating a
counter, normalized sum of observations and normalized sum
of squared observations. In performing this task, the
collection function must perform multiple memory fetches of
both the observation and stream index. By declaring both of
these parameters to be register variables and by using
assignment operators to update the statistical accumulators,
it is possible to write very efficient routines for the
collection of observation based statistics.



495

Simulation with C

Pointers For Time Weighted Statistics

Time weighted statistics, because of the nature of their
calculation, must be collected at the occurrence of every
event. To relieve the progranmer from having to do this
himself, this task is usually performed by the simulation
executive. Before the simulation executive can collect time
weighted statistics, it is necessary for it to know which
variables are to be collected. In most programming
Tanguages this is done by placing a set of variables in a
predetermined Tocation (common block or external array) and
requiring the programmer to use these variables to contain
any values within his model about which he desires time
weighted statistics.

This is quite restrictive in terms of the names and/or types
of variables which the programmer may use in constructing
his model. These restrictions may be eliminated in C, once
again through the use of pointers. A C function may be
written which takes a pointer to a variable and the data
type of that variable as arguments, and saves them for use
by the simulation executive in collecting time based
statistics. The programmer may then call this function at
the time he initializes the model for each variable he
wishes to have collected during the simulation runm.

Figure 5 shows a sequence of code in which the programmer
has requested that time weighted statistics be collected on
a floating point variable res_avail, and on an integer
variable serv_stat. The unary operator & is used to take
the addresses of the two variables and pass them to the
simulation executive for use during the simulation run. The
symbolic names FLOAT and INT are defined in the header file
simtype.h, and the programmer may use them wherever this
file has been included.

#include "simtype.h"

timstat(FLOAT, &res_avail);
timstat(INT, &servstat);

Figure 5. Statistics Collection.

GENERATION OF RANDOM DEVIATES

One of the most frequently executed tasks in a typical
simulation model is the generation of random deviates.
Because of this, it is very desirable to generate these
deviates as efficiently as possible.

The most common random number generators in use today are
those classed as Tinear congruential random number
generators. The linear congruential algorithms rely heavily
upon modulus division. Because modulus division is one of
the slowest operations to perform on a digital computer,
much effort is spent trying to avoid it through bit
shifting, synthetic division, etc. Although the C
programming Janguage provides a rich set of operators for
bit shifting and bit-wise logical functions, in most cases
the C programmer need not resort to any of these
techniques.

If the choices for the coefficients are made carefully, and
the seed variable is declared as unsigned, unsigned overfiow
may be used to perform implicit modulus division. This
results in much faster execution than would be possible in a
language which can perform only signed math.

Figure 6 shows the source code for a C function to return a
uniform (0,1) random deviate of either float or double data
type, depending upon the type of the clock. It is written
in such a way as to be portable to any machine with a
native word size of 16, 32 or 36 bits. The #ifdef
statements are compiler directives, and instruct the
compiler as to which section of source code is to be
compiled. Since they are evaluated at compile time, they
have no effect on the execution speed of the function.

The header file simtype.h contains the typedef statements
for CLOCK and SEED, as well as a #define statement for ONE
of the word size symbols. This is an excellent example of
how the typedef statement, #define statement, conditional
compilation directives, and inclusion of header files may be
combined to make C source code extremely portable and
versatile.

#include "simtype.h"

CLOCK random(seed)
/* __________________ */

register SEED *seed;

{
#ifdef 16_bit_seed
Code for 16 bit seed.

#endif
#ifdef 32_bit_seed

Code.for 32 bit seed.

#endif
#ifdef 36_bit_seed

Code for 36 bit seed.
#endif
}
Figure 6. Random Number Generators.

CONCLUSTON

This paper provides a discussion of the use of the C
programming language for simulation. It defines important
features of C which can support simulation language
development and describes how these features can be used.

We anticipate that the development of a formal language in C
will provide a consistent language across a wide variety of
machines and provide capabilities to modelers not currently
available.



496
Floyd H. Grant, III, Douglas G. McFarland

REFERENCES

[1] Kernighan, B.W., Ritchie, D.M. (1978) The C Programmin
Language. First Edition, Prentice-Hall Inc., Englewo
Cliffs, New Jersey 07632 pp.228.

[2] The C++ Programming Language - Reference Manual
"Computing Science Technical Report No. 108" Bjarne
Stroustrup, AT&T Bell Laboratories, Murray Hill, New
Jersey 07974 January 1, 1984,

[3] Law, A.V., Kelton W.D., (1982) Simulation Modeling and
Analysis. Consulting Edition, McGraw-Rill Series in
Industrial Engineering and Management Science. pp.400

[4] Fishman, G.S. (1973) Concepts and Methods in Discrete
Event Digital Simulation. First Edition, John Wiley &
Sons, New York. pp. 385

[5] Pritsker, A.B., (1984) Introduction to Simulation and
SLAM II. Second Edition, Systems Publishing
Corporation, West Lafayette, IN 47906 pp. 612.

[6] Pritsker, A.B., (1974) The GASP IV Simulation Language
First Edition, John Wiley & Sons, New York pp.451




